
FPGA Design Flow

Andrea Triossi – University of Padova – INFN Padova

Design Flow

• RTL source files

• Intellectual Property (IP)

• Simulation

• Constraint files

• Synthesis

• Implementation

• Debug

RTL IP Constraints

Synthesis

Implementation

Debug

Si
m

u
la

ti
o

n

Synthesis

• Transforming an RTL design into a gate-level representation

• Start from
• HDL languages (VHDL, Verilog, mixed languages…)

• Coding Techniques

• RTL attributes
• Mapping style of certain part of design, registers and nets preservation or controlling

design hierarchy

• Constraint files (optional)
• Timing constraints

• The outcome is a technology mapped netlist

Implementation

• Optimization: optimizes logical design to fit into target device and to
reduce power demands

• Place: places the design onto the device and performs fanout replication to
improve timing

• Post-place optimization: optimizes power, logic and placement using
estimated timing

• Route: Routes the design onto the target device

• Post-route optimization: optimizes logic, placement and routing using
actual routed delays

• Write bitstream: generate a bitstream that contains the device
configuration

Implementation

• Design constraints
• Physical

• Pin location

• Absolute/relative location of cells (Block RAM, DSP, LUT, FF…)

• Timing

• Power
• Voltage and current settings

• Switching rate

Timing violations

• Setup time is the minimum amount of time a synchronous data input
should be held steady before the clock event so that the data input is
reliably sampled by the clock event

• Hold time is the minimum amount of time a synchronous data input
should be held steady after the clock event so that the data input is
reliably sampled by the clock event

• Tsetup + Thold is an indication of the quality of the technology

data

clock Tsetup Thold

FPGA configuration

• SRAM is a volatile memory -> data is lost at power off

• At each power on a SRAM based FPGA needs to be configured

• External source for configuration
• Loaded by FPGA from a non-volatile memory

• Loaded to FPGA by a processor/controller

• Connections available
• Serial for minimizing pins number

• Parallel for performance

• JTAG port any time available

FPGA configuration

configuration
memory source microprocessor FPGA

FPGA flash memory

JTAG

JTAG

When the flash is programmed
by JTAG through the FPGA is
called indirect programming

FPGA configuration

• Dynamic reconfiguration is intended for changing configuration of functional
blocks, like CMT, XADC or fast transceiver, while they are operational
• Dedicated port on the functional block that allow read and write on configuration

memory

• MultiBoot and fallback allows to switch dynamically between images during
reprogramming
• The MultiBoot image is first loaded at power up from an upper address space

• If this image fails configuration, the device automatically triggers a fall-back to the
golden image stored at the bottom address

• Partial reconfiguration is an even more flexible FPGA reconfiguration
• Only a region of the FPGA is reconfigured while the other part is operational

Intellectual property

• Modules that can be added to the design
• AMD IP

• Third-party IP

• Designs packaged IP

• High-Level Synthesis (HLS) IP

• IP are usually customizable

• Out-of-context synthesis
• Speed up run time avoiding re-synthesizing

• Simulation even without behavioral HDL

Simulation

• Emulating real design behavior in a software environment

• Verify code syntax and confirm the code behaves as expected

• RTL simulation is not architecture specific

• Timing simulation

• Simulation flow
• Creating a testbench

• Generating a netlist (only for post-synthesis or post-implementation)

• Running simulation

Testbench

• To simulate a circuit, we need a series of stimuli and possibly an
automatic way of checking results

• Testbenches are not synthesizable -> the full VHDL can be used

• A Testbench is an entity without ports, it must contain everything
needed

DUTStimuli Results

Testbench

Debug

• In-system debugging of the implemented design
+ Timing accurate
+ Actual system environment
- Less design visibility than simulation
- Longer iteration time
• Debugging flow

• Identifying the signals to probe and how to probe
• Insertion in the design of the debug IP (at RTL or netlist level)
• Design implementation with debug IP
• Analysis of the output of the debug IP

• In-system high-speed I/O debugging

	Slide 1: FPGA Design Flow Andrea Triossi – University of Padova – INFN Padova
	Slide 2: Design Flow
	Slide 3: Synthesis
	Slide 4: Implementation
	Slide 5: Implementation
	Slide 6: Timing violations
	Slide 7: FPGA configuration
	Slide 8: FPGA configuration
	Slide 9: FPGA configuration
	Slide 10: Intellectual property
	Slide 11: Simulation
	Slide 12: Testbench
	Slide 13: Debug

