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and their interactions

?Since Higgs discovery (2012),
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but no breakthrough
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Beyond the Standard Model of particle physics

… but also at low energy and small scale through a precision measurement of the electron!
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This violates time-reversal violation.

The Standard Model: 

the eEDM is tiny, not measurable 


(~10-40 e.cm)


10 orders of magnitude difference!

New theories:

the eEDM is small but measurable!


(~10-30 e.cm)

We test time-reversal violation and probe 
physics beyond the Standard Model 

through a precision measurement of the 
electron’s EDM.
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Think different!

Observation of eEDM hugely 

enhanced in a molecule:


Barium monofluoride (BaF)



Table-top particle physics
Complementary approach: precision measurements on atoms

Using advances of laser technology, and control over atoms and molecules 

Magneto-optical trapping of Calcium atoms, for isotope separation Simple idea: measure quantum 
structure and compare to theory



Precision measurements with atoms
Quantum systems with an advantage
Example 1: Parity non-conservation

Measurement of Parity Nonconservation and an Anapole Moment in Cesium

C Wood, S Bennett, D Cho, B Masterson, J Roberts, C Tanner, and C Wieman. 

Science, 275, 1759 (1997)

Experiment: beam of Cs atoms Theory
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Example 2: Variation of constants

Theoryproposed experiment
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skimmer
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Axions!

Very sensitive to proton / electron mass ratio



SrOH as a recent example
Dark matter coupling to molecules

Credit: website John Doyle @ Harvard, more details: Phys. Rev. A 103, 043313 (2021) earlier work on nEDM to set axion limits: Abel et al., Phys. Rev. X 7, 041034 (2017)



SrOH as a recent example
Dark matter coupling to molecules

Credit: website John Doyle @ Harvard, more details: Phys. Rev. A 103, 043313 (2021)

It turns out that the 
molecules and techniques 

needed to do a precise 
electron-EDM experiment 

are also those for a 
sensitive axion-detection 

experiment!

earlier work on nEDM to set axion limits: Abel et al., Phys. Rev. X 7, 041034 (2017)
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Solution: 
use electron embedded  

in a polar molecule! 
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Choice of molecule Experimental approach

Statistical sensitivity for eEDM

statistical error

state sensitivity

molecular sensitivity

(effective E-field)

total # 

detected particles

coherent interaction time

of spin precession

In addition to this, 
control of systematic 

effects is crucial!



Creates a quantum superposition,

creating coherent excitation of all 

molecules

laser pulse 1:

Frequency set by external reference,

tuned to molecular resonance

Laser

Resonance in 
molecules

Measures state of the molecules 
through interference

laser pulse 2:

Time T

Coherent interaction time
Key technique: Ramsey spin interferometer

T

Ramsey π/2 pulses

π/2 pulse π/2 pulse

Interference fringes

3 2 1 0 1 2 3
0
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Increasing T
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fountain

𝜏 ~ 100 ms

L ~ 0.5 m

L

slow vertical beam

trap

𝜏 ~ 1-10 s
L ~ 0.5 mm

L

molecules trapped in 
laser focus

𝜏 ~ 1-2 ms
L ~ 0.5 m

L

fast beam

v ~ 250-500 m/s

𝜏 ~ 15 ms
L ~ 0.5 m

L

slow beam

v ~ 30 m/s

Main challenge:  
how to maintain N while increasing t 

Strongly connected to choice of molecule!

Towards longer coherent interaction times



eEDM experiments using molecules

ACME - beam of ThO molecules 
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Gerald Gabrielse
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JILA - trapped HfF+ ions 
Eric Cornell, Jun Ye 
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An intense, slow and cold beam of molecules
Our approach

cryogenic source decelerator state preparation interaction optical detectionlaser coolingguide

operational

significant infrastructure available; modest investment required

new; significant investment

1) Cryogenic source 
2) Stark deceleration 
3) Molecular laser cooling

Combining three recent experimental breakthroughs



How-to: source
An intense beam of molecules

Aims:

- slow beam (~180 m/s)

- High N: 4x109/shot in the desired state

- Use for eEDM measurement

Cryogenic
Aims:

- Intense, fast beam (600 m/s)

- Short pulse

- Test lasers systems, state 

manipulation and interaction 
zone

Supersonic

cryogenic source decelerator state preparation interaction optical detectionlaser coolingguide

operational

significant infrastructure available; modest investment required

new; significant investment



A slow beam of molecules
Molecule deceleration
A traveling-wave with a tunable velocity
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Traveling-wave decelerator

b)

Main aims: 

- Capture as many molecules as possible from molecular beam 
- Bring average beam velocity from ~190 to ~30 m/s 
- Maintain N during deceleration

§

cryogenic source decelerator state preparation interaction optical detectionlaser coolingguide

operational

significant infrastructure available; modest investment required

new; significant investment



Traveling-wave decelerator



Molecular beam source Decelerator 
4.5 m

Fluorescence detection

Traveling-wave decelerator

Challenges for heavy diatomic molecules: 

- Heavy -> long decelerator 
- Rotational structure -> limited Stark shift

Deceleration, trapping, collision studies, lifetime measurements  
Demonstrated for light molecules: OH, CO, NH3, NH 

PRL 98, 133001 (2007), Science 313 5793 (2006), PRL 110, 133003 (2013) 



Modular traveling-wave 
decelerator



Traveling-wave decelerator



A slow beam of molecules
SrF: First combination of deceleration and cryogenic source
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A slow beam of molecules
Deceleration to standstill
Deceleration to standstill in 4.2 m, 
hold there for some time,  
accelerate out again to 50 m/s to 
detect

Deceleration and trapping of SrF molecules 
Parul Aggarwal, Yanning Yin et al (NL-eEDM),  
PRL 127 173201 (2021)



Great! Let’s do a supersensitive eEDM measurement!


Challenge 1: the electric fields needed to hold the molecules in 
the trap interfere with the eEDM measurement….


OK, let’s make a slow beam for now.


Challenge 2: if you decelerate molecules without cooling them,

they spread out on their way to the eEDM measurement


… 

and you have not gained anything!



Hexapole focusing
In combination with laser cooling
2D transverse laser cooling of a hexapole focused beam of cold BaF molecules, arXiv:2506.19069 (june 2025)



A hexapole electrostatic lens
CCD camera images the molecular beam
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Interference data using fast molecular beam
to demonstrate control over systematic effects

Create molecular beam Quantum interference Readout by fluorescence Compare to theory that includes the 
full interaction of the molecule with 
light, electric and magnetic fields


(optical Bloch equations)

Beautiful quantum interference!


Contains all relevant experimental parameters

Crucial for reduction of systematic effects


(A.Boeschoten et al, NL-eEDM collaboration,  
arXiv:2303.06402v1)

NL-eEDM



Contains all relevant experimental parameters

Crucial for reduction of systematic effects

Laser detuning (MHz)

Measured interference pattern



Contains all relevant experimental parameters

Crucial for reduction of systematic effects

Laser detuning (MHz)

When flipping 
E-field direction, 
this pattern will 
change. 


Slow beam, 
more molecules 
-> 

higher eEDM 
sensitivity

Measured interference pattern



Experiment and theory
Optical Bloch equations



Future: an eEDM 
measurement in an 
optical lattice

This approach could be used to probe axions!

Phys. Rev. A 111, 062815 (2025)



Summary

Spin interference demonstrated 

and understoodFocussing of molecular beamDeceleration demonstrated

Testing the Standard Model in a table-top experiment
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