

Sensitivity of CTAO to axion-like particles from blazars A machine learning approach

^{1,2}**F. Schiavone**, ²L. Di Venere, ^{1,2}**F.** Giordano

for the CTAO Consortium

¹Università degli Studi di Bari

²INFN Bari

3rd General Meeting of COST Action **COSMIC WISPers (CA21106)**

10 September 2025 University of Sofia, Bulgaria

Blazars

- Rare class of active galactic nuclei, with relativistic jets aligned with the line of sight from Earth
- High luminosity, extreme variability and polarised emission
- Almost all extragalactic sources observed in the gamma-rays are blazars

https://fermi.gsfc.nasa.gov/science/eteu/agn/

ALP-photon conversions in blazars

- The blazar jets feature ~ G magnetic fields over ~ pc distances
- Potential imprint on the gamma-ray spectra

$$\phi_{\text{obs}}(E) = \phi_{\text{int}}(E)P_{\gamma\gamma}(E)$$

- Expected features:
 - Spectral «wiggles»
 - Increased fluxes at high energies, due to reduced EBL absorption

A «cosmic LSW experiment»

Spectral modelling

- Intrinsic spectral models (assumed valid between 30 GeV and 10 TeV):
 - Baseline states from the Fermi-LAT 4FGL-DR4 catalog
 - Flaring states from past IACT observations
- Photon survival probability $P_{\gamma\gamma}(E)$ computed using GammaALPs, including:
 - Jet magnetic field [Potter & Cotter 2015, arXiv:1508.00567]
 - Milky Way magnetic field [Jansson & Farrar 2012]
 - EBL absorption [Domínguez+ 2011]

https://github.com/me-manu/gammaALPs/ https://gammaalps.readthedocs.io/

ALP effects on gamma-ray spectra

Cherenkov Telescope Array Observatory

- Next-generation gamma observatory
- 2 arrays planned in the Northern and Southern hemispheres
- ~70 telescopes total
- Better energy and spatial resolution, faster time response to transients, full sky coverage
- 20 GeV to 300 TeV sensitivity

https://www.ctao.org/emission-to-discovery/array-sites/

Dataset simulation

- We employ the publicly available CTAO prod5 instrument response functions (IRFs)
- We simulate observations at a 20 deg zenith angle, using the ON-OFF technique ($\alpha = 1/3$, 0.7° offset) and 20 bins per energy decade

Example dataset for 50h observation of Mkn 501 baseline state

Project outline

- Motivation: CTAO's energy resolution and point-source sensitivity are well-suited to detect the spectral oscillations due to ALPs
- Goal: obtain (better) CTAO sensitivity limits on the ALP parameter space
- Standard method: likelihood-ratio test (applied e.g. to NGC 1275)
- Our method: define a grid of machine learning (ML) classifiers over the ALP parameter space
- Tested blazars:
 - Mrk 501 (this talk)
 - Mrk 421
 - PKS 2155—304

Classifier training

 $P_{\gamma\gamma}(E)$ computed by **gammaALPs** including

- Jet magnetic field
- Milky Way magnetic field
 - EBL absorption

CTAO response functions

20 000 ALP-less datasets

20 000 ALP-like datasets

https://github.com/dmlc/xgboost https://github.com/me-manu/gammaALPs/

Classifier evaluation

Estimation of confidence levels

 $CL = \int_0^{\Pi_0} f(x) \, \mathrm{d}x$

Derivation of limits

Classifier performance

- The algorithm choice was motivated by generally good performance on test datasets and ease of use
- As expected, the algorithm accuracy is better where the ALP signatures are stronger

Example Π distributions

Uninformed classifier – no exclusion

Well-performing classifier – exclusion

Results (Mrk 501, 50h observation)

95% CL limits for a 50-hour observation of Mrk 501 are shown in red and compared to those obtained with a classical LRT (dashed contour)

Reference limits from https://github.com/cajohare/AxionLimits

Conclusions

- Among its many exciting prospects, CTAO will be a great tool to probe new fundamental physics
- Blazars in particular are ideal targets for ALP searches
- Previously unconstrained ALP parameter space can be covered
- Good agreement between «classic» LRT and new ML method
- A paper and a public GitHub repository are currently in preparation stay tuned!

All questions and comments welcome:) francesco.schiavone@ba.infn.it

Backup

Blazar selection

Source	z	RA [deg]	Dec [deg]
Mrk 501	0.034	253.47	39.76 38.21 -30.23
Mrk 421	0.031	166.11	
PKS 2155-304	0.116	329.72	

- Some of the most well-known and studied extragalactic gamma-ray sources
- High synchrotron peaked BL Lacs (HBLs) → significant TeV emission
- Available jet magnetic field models
- Included in the CTAO AGN Key Science Project → lots of data to be expected! [arXiv:1709.07997]

Source and simulation parameters

Source z	~	DA (dog)	Dag (dag)	gammaALPs parameters							
	RA (deg)	Dec (deg)	r_0 (pc)	B0 (G)	gmax	gmin	$n0 (cm^{-3})$	rjet (pc)	alpha		
Mrk 501	0.034	253.47	39.76	0.36	0.81	9	2	4.5×10^{4}	3.2×10^{3}	1.68	
Mrk 421	0.031	166.11	38.21	7.19	2.91×10^{-2}	12	9	8.5×10^{3}	9.7×10^{4}	1.55	
PKS 2155-304	0.116	329.72	-30.23	0.33	0.82	15	7	1.65×10^4	3.2×10^3	1.70	

Source	Livetime (h)	IRFs	Reference spectrum
Mrk 501 (baseline)	50	Prod5-North-20deg-AverageAz-4LSTs09MSTs.180000s	LP [52]
Mrk 421 (baseline)	50	Prod5-North-20deg-AverageAz-4LSTs09MSTs.180000s	SECPL [52]
PKS 2155-304 (baseline)	50	Prod5-South-20deg-AverageAz-14MSTs37SSTs.180000s	LP [52]
Mrk 501 (flaring)	5	Prod5-North-20deg-AverageAz-4LSTs09MSTs.18000s	LP [53]
Mrk 421 (flaring)	5	Prod5-North-20deg-AverageAz-4LSTs09MSTs.18000s	ECPL [54]
PKS 2155-304 (flaring)	5	Prod5-South-20deg-AverageAz-14MSTs37SSTs.18000s	ECPL [55]

Source	Model	ϕ_0	E_0	α	β	$E_{ m cut}$	a	Γ_1	Γ_2	Ref.
	Baseline	$[{ m MeV^{-1}cm^{-2}s^{-1}}]$	[MeV]			[MeV]				
Mrk 501	LP	3.91×10^{-12}	1507.92	1.75	0.018	_	_	_	_	[52]
Mrk 421	SECPL	1.79×10^{-11}	1258.26	_	_	_	0.011	1.74	0.65	[52]
PKS 2155-304	LP	1.34×10^{-12}	1146.89	1.77	0.041	_	_	_	_	[52]
	Flaring	$[\text{TeV}^{-1}\text{cm}^{-2}\text{s}^{-1}]$	[TeV]			[TeV]				
Mrk 501	LP	1.86×10^{-9}	0.3	1.73	0.13	_	_	_	_	[53]
Mr 421	ECPL	3.58×10^{-10}	1.0	_	_	2.74	_	_	_	[54]
PKS $2155 - 304$	ECPL	2.38×10^{-9}	1.0	_	_	1.0	_	_	_	[55]

Significance estimation

$$CDF(TS_A) \equiv 2 \frac{1}{\sqrt{2\pi}} \int_0^z e^{-\frac{t^2}{2}} dt = \frac{2}{\sqrt{\pi}} \int_0^{\frac{z}{\sqrt{2}}} e^{-t'^2} dt' = erf\left(\frac{z}{\sqrt{2}}\right)$$

ML classifier approach

- Define a grid of ML classifiers over the ALP space, based on the XGBoost algorithm
- Train each of those with 40000 simulated datasets with/without ALPs, using excess photon counts in each bin (normalized between 0 and 1) as features
- Present each classifier with the counts in 100 ALP-less datasets
- Compute average ALP-likeness score $p_{\text{ALP,0}}(m_a, g_{ay})$

https://github.com/dmlc/xgboost https://xgboost.readthedocs.io/en/release_3.0.0/

Derivation of limits

- Define $\Pi_A(m_a,g_{a\gamma})=1-p_{\mbox{ALP}}(m_a,g_{a\gamma})$
- For each (m_a, g_{ay}) point, compute a Π distribution from 2000 more simulated ALP datasets
 - small Π: ALP-like dataset
 - large Π : ALP-less dataset
- Fit with a Beta distribution and compute the CDF value at Π_0

$$f(x,\alpha,\beta) = \frac{\Gamma(\alpha+\beta)x^{\alpha-1}(1-x)^{\beta-1}}{\Gamma(\alpha)\Gamma(\beta)}$$

• Estimate exclusion significance in σ as $z = \sqrt{2} \, \text{erf}^{-1}(\text{CDF}_A)$

Standard derivation of limits (LRT)

- Compute the expected spectral model of the source for different ALP parameters
- Compute average likelihood-ratio $TS_0(m_a, g_{a\gamma})$ from 100 ALP-less datasets

$$TS(m_a, g_{a\gamma}|D) = -2 \ln \frac{\mathcal{L}(m_a, g_{a\gamma}, \hat{\mu}, \hat{b}, \hat{\theta}|D)}{\hat{\mathcal{L}}(D)} \quad \text{(cf. MAGIC paper)}$$

- For each point in the ALP parameter space, simulate 100 observations with ALPs and compute a TS distribution
- Fit with a Gamma distribution and compute the CDF value at TS₀
- Estimate exclusion significance as $z = \sqrt{2} \, \text{erf}^{-1}(\text{CDF})$

Example TS distribution

