Axion-photon conversion in transient compact stars: Systematics, constraints, and opportunities

Ángel Gil Muyor

September 2025

Dipartimento di Fisica e Astronomia Galileo Galilei

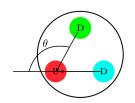
Based on: Fiorillo, AGM, Janka, Raffelt, Vitagliano [2509.XXXXX] (This week!)

Headline Slide

Hot, dense sources, as **supernovae and neutron star mergers, emit axions**. These axions **convert into photons** in the magnetic field outside these sources, which could be detected as gamma rays. We use this to place **bounds on the axion couplings**, specifically $g_{a\gamma}$ and $g_{ap} \times g_{a\gamma}$.

Strong CP Problem

Classical perspective: Why is the electric dipole moment of the neutron so small?



$$|ec{d}|=|\sum qec{r}|=10^{-13}\sqrt{1-\cos heta}$$
 e cm

Experiments:
$$|\vec{d}| < 10^{-26} \ e \ \text{cm} \implies \boxed{ D - U - D }$$

Drawings borrowed from TASI lectures notes by Anson Hook.

Strong CP Problem

Quantum field theory perspective of the problem: Why does QCD preserve CP?

$$\mathcal{L}_{QCD} \supset heta rac{oldsymbol{g}_{s}^{2}}{32\pi^{2}} oldsymbol{G}_{\mu
u} ilde{oldsymbol{G}}^{\mu
u}; \quad G_{\mu
u} ilde{oldsymbol{G}}^{\mu
u} \equiv \epsilon^{\mu
ulphaeta} G_{\mu
u} G_{lphaeta}$$

 $G\tilde{G}$ term is **CP-odd**, so it contributes to EDM.

SM prediction:
$$d=3\cdot 10^{-16}~\bar{\theta}$$
 e cm; $\bar{\theta}=\theta+\theta_{\it EW}$

Experiments:
$$|d| < 10^{-26} \ e \ cm \implies |\bar{\theta}| < 10^{-10}$$
 ???

Solution: axion

Axion solution: we add a new pseudoscalar field a coupled with gluons.

$$\mathcal{L}_{QCD}
ightarrow \mathcal{L}_{QCD} + rac{1}{2} \partial_{\mu} \mathsf{a} \partial^{\mu} \mathsf{a} + rac{\mathsf{a}}{f_{\mathsf{a}}} rac{1}{32\pi^2} \mathsf{G}_{\mu
u} ilde{G}^{\mu
u} - V(\mathsf{a})$$

Now, the prediction for the electric dipole moment is

$$d=3\cdot 10^{-16}~\left(rac{m{a}}{m{f_a}}+ar{ heta}
ight)$$
 e cm

The potential for the axion is

$$V(a) \approx 1 - \cos\left(\frac{a/f_a + \bar{\theta}}{2}\right) \implies \langle a \rangle = -f_a\bar{\theta}$$

The axion dynamically cancels the CP-breaking contribution.

Axion electrodynamics

The axion photon coupling modifies Maxwell's Equations:

$$\mathcal{L} \supset rac{1}{4} g_{a\gamma} \ a \ F_{\mu
u} ilde{F}^{\mu
u} = g_{a\gamma} \ a \ ec{E} \cdot ec{B} \$$

$$\begin{cases} ec{
abla} \cdot ec{B} = 0 \ \partial_t ec{B} + ec{
abla} imes ec{E} = 0 \ ec{
abla} \cdot ec{E} = 0 \ \\ ec{
abla} \cdot ec{E} = \rho \ \\ ec{
abla} \cdot ec{B} - \partial_t ec{E} = ec{j} \ \\ -\partial_t^2 a +
abla^2 a = m_a^2 a \end{cases}$$

Axion electrodynamics

The axion photon coupling modifies Maxwell's Equations:

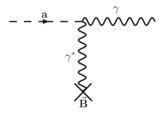
$$\mathcal{L} \supset rac{1}{4} g_{a\gamma} \ a \ F_{\mu
u} ilde{F}^{\mu
u} = g_{a\gamma} \ a \ ec{E} \cdot ec{B}$$

$$\begin{cases} \vec{\nabla} \cdot \vec{B} = 0 \\ \partial_t \vec{B} + \vec{\nabla} \times \vec{E} = 0 \\ \vec{\nabla} \cdot \vec{E} = \rho - g_{a\gamma} \vec{B} \cdot \vec{\nabla} a \\ \vec{\nabla} \times \vec{B} - \partial_t \vec{E} = \vec{j} + g_{a\gamma} (\vec{B} \partial_t a - \vec{E} \times \vec{\nabla} a) \\ -\partial_t^2 a + \nabla^2 a = m_a^2 a - g_{a\gamma} \vec{B} \cdot \vec{E} \end{cases}$$

Axion electrodynamics

 $g_{a\gamma}$ is very small. How could we measure $g_{a\gamma}$ a $\vec{E} \cdot \vec{B}$?

Idea: Strong external magnetic field.



Axion-photon conversion

Possible indirect detection of axions!

Axion production

Where do these axions come from? They are a **good dark matter** candidate!

Axions are copiously produced in hot, dense environments: stars

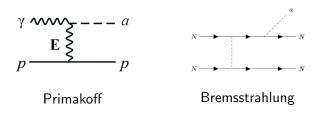
Stars also provide an **external magnetic field**, enhancing the axion-photon conversion.

We consider two cases: **Core-collapse Supernovae** and **Neutron Star mergers**.

Axion production

We will consider axion production through axion-photon coupling $g_{a\gamma}$ and, separately, through axion-nucleon coupling g_{ap} .

Production through $g_{a\gamma}$ is dominated by **Primakoff** $(p \gamma \to p \ a)$, and production through g_{ap} is dominated by **Bremsstrahlung** $(N \ p \to N \ p \ a)$:



Axion-photon conversion within magnetic fields

Assuming ultrarelativistic axions, the **mixing system** can be reduced to a Schröndiger-like system:

$$i\frac{\partial}{\partial R} \begin{pmatrix} A \\ a \end{pmatrix} = -\mathcal{H} \begin{pmatrix} A \\ a \end{pmatrix}, \text{ with } \mathcal{H} = \begin{pmatrix} \Delta_{\gamma} & \Delta_{a\gamma} \\ \Delta_{a\gamma} & \Delta_{a} \end{pmatrix},$$
 (1)

where

$$\Delta_a = \frac{-m_a^2}{2\omega}$$
 $\Delta_{a\gamma} = \frac{g_{a\gamma}B_{\perp}}{2}$

The kinetic term for the photon Δ_{γ} can include different contributions; here we consider only **vacuum birefringence**:

$$\Delta_{\gamma} = \Delta_{\parallel} = rac{7lpha}{90\pi} \left(rac{B_{\perp}}{m_e^2/e}
ight)^2$$

Axion-photon conversion within magnetic fields

For B_{\perp} , we consider a **dipole magnetic field**:

$$B_{\perp} = B_0 \left(\frac{R_0}{R}\right)^3$$

In the **small-coupling regime**, we can solve the mixing system perturbatively; for a single initial axion:

$$P_{a\gamma} = |A|_{R o \infty}^2 = \left| \int_{R_0}^{\infty} ds' \Delta_{a\gamma}(s') \exp \left[i \int_0^{s'} ds'' \left(\Delta_{\gamma}(s'') - \Delta_{a}(s'') \right) \right] \right|^2$$

The **conversion probability** $P_{a\gamma}$ tells us how many axions convert into photons.

Axion-photon conversion within magnetic fields

$$P_{a\gamma} = |A|_{R o \infty}^2 = \left| \int_{R_0}^{\infty} ds' \Delta_{a\gamma}(s') \exp \left[i \int_0^{s'} ds'' \left(\Delta_{\gamma}(s'') - \Delta_{a}(s'') \right) \right] \right|^2$$

The conversion will be suppressed while the phase difference is large.

Massless-axion case ($\Delta_a=0$): suppressed conversion until the accumulated phase is small enough, i.e. $\Delta_{\gamma}(R) \cdot R \sim 1$; this defines a **conversion radius** R_{conv} . Then,

$$P_{a\gamma} \sim (\Delta_{a\gamma}(R_{\mathsf{conv}}) \cdot R_{\mathsf{conv}})^2$$

This reasoning is **generic**. In our specific case, the factor is $\simeq 0.71$.

Axion-photon conversion: mass effect

(Not the classic videogame saga).

$$P_{a\gamma} = |A|_{R o \infty}^2 = \left| \int_{R_0}^{\infty} ds' \Delta_{a\gamma}(s') \exp \left[i \int_0^{s'} ds'' \left(\Delta_{\gamma}(s'') - \Delta_{a}(s'') \right) \right] \right|^2$$

 Δ_a becomes relevant when $\Delta_a \gtrsim \Delta_\gamma(R_{\mathsf{conv}})$: suppressed conversion because the accumulated phase is always $\gtrsim 1$.

The conversion will occur at R_a such that $\Delta_a = \Delta_\gamma(R_a)$, and then

$$P_{a\gamma} \sim \Delta_{a\gamma} (R_a)^2 \cdot rac{R_a}{|\Delta_a|} \cdot \mathrm{e}^{-k|\Delta_a|R_a}$$

 $k \sim 1$. Again, **generic**.

Axion-photon conversion: irrelevant Δ_{γ}

$$P_{a\gamma} = |A|_{R o \infty}^2 = \left| \int_{R_0}^{\infty} ds' \Delta_{a\gamma}(s') \exp \left[i \int_0^{s'} ds'' \left(-\Delta_a(s'') \right) \right] \right|^2$$

Until now, we assumed that $R_0 < R_{\rm conv}$. If $R_{\rm conv} < R_0$, then Δ_γ can be neglected. In this case,

Massless case:
$$P_{a\gamma} \sim (\Delta_{a\gamma}(R_0) \cdot R_0)^2 = (B_0 \cdot R_0)^2$$

Now Δ_a becomes relevant when $\Delta_a \cdot R_0 \gtrsim 1$. In this case,

Massive case:
$$P_{a\gamma} \sim \left(\frac{\Delta_{a\gamma}(R_0)}{|\Delta_a|}\right)^2 = \left(\frac{B_0}{|\Delta_a|}\right)^2$$

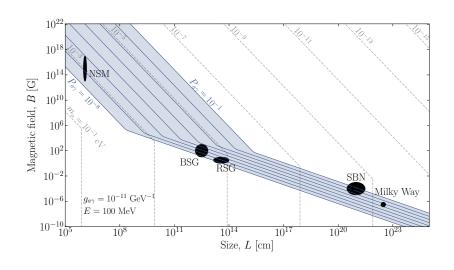
Axion-photon conversion: summary

These numbers can be computed exactly. In our specific case of a dipole magnetic field $\Delta_{a\gamma}\sim R^{-3}$, $\Delta_{\gamma}\sim R^{-6}$,

- Massless, $R_0 < R_{\text{conv}}$: $P_{a\gamma} \simeq 0.71 \left(\Delta_{a\gamma}(R_{\text{conv}}) \cdot R_{\text{conv}}\right)^2$
- Massive, $R_0 < R_{\mathsf{conv}}$: $P_{a\gamma} \simeq \frac{\pi}{3} \Delta_{a\gamma} (R_a)^2 \cdot \frac{R_a}{|\Delta_a|} \cdot \mathrm{e}^{-1.2|\Delta_a|R_a}$
- Massless, $R_0 > R_{\mathsf{conv}}$: $P_{a\gamma} \simeq 0.25 \left(B_0 \cdot R_0 \right)^2$
- Massive, $R_0 > R_{\mathsf{conv}}$: $P_{\mathsf{a}\gamma} \simeq \left(\frac{B_0}{|\Delta_{\mathsf{a}}|}\right)^2$

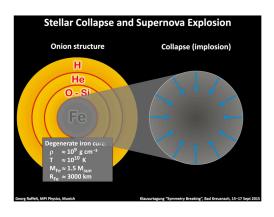
Once we know the axion energy ω , the surface magnetic field B_0 , and the size R_0 , we can classify our system.

Fiorillo-Hillas Plot



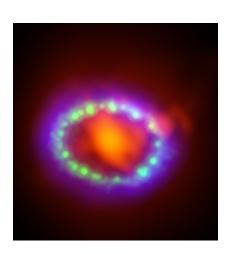
Core-collapse supernovae

During a type II supernovae, the core reaches temperatures of \sim 30 MeV: efficient emission of axions, which convert in the magnetic field of the progenitor (Manzari et al., 2405.19393).



SN1987A

In February 1987, SN 1987A was detected, but no gamma-rays were observed by Solar Maximum Mission \implies bounds on axions.



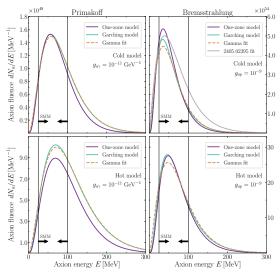
Supernova axion fluxes

We use several Garching models to build two informed one-zone models, using weighted averages of the relevant quantities.

Quantity	Cold	Hot
Density $ ho~[10^{14}~{ m g/cm^3}]$	4.0	6.0
Temperature T [MeV]	30	45
Proton fraction Y_p	0.15	0.15
Lapse $(1+z)^{-1}$	0.75	0.65
Exposure of mass $Mt \ [M_{\odot} \mathrm{s}]$	5.0	10.0

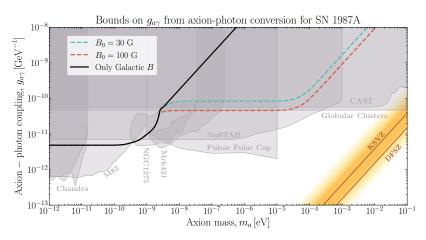
Supernova axion fluxes

Here we compare with two different Garching models: SFHo-18.8 (Cold) and LS220-20.0 (Hot).



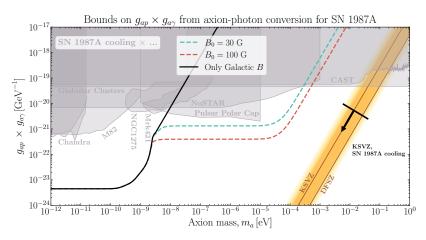
SN 1987A bounds on $g_{a\gamma}$

We also include the conversion within the galactic magnetic field (Unger and Farrar, 2311.12120). We use $R_0=30R_{\odot}$.



SN 1987A bounds on $g_{ap} imes g_{a\gamma}$

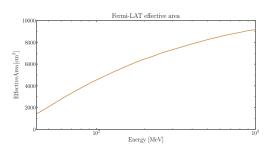
We also include the conversion within the galactic magnetic field (Unger and Farrar, 2311.12120). We use $R_0=30R_{\odot}$.



Future Supernovae

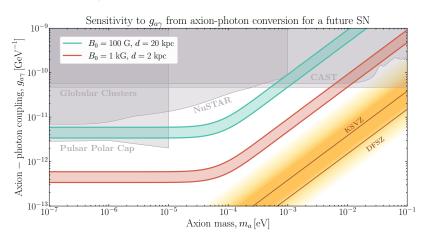
What if we detected a supernova nowadays? In the Milky Way, $1\sim 2$ supernovae are expected per century.

Fermi-LAT is the current most sensitive telescope in the 10-100 MeV range.



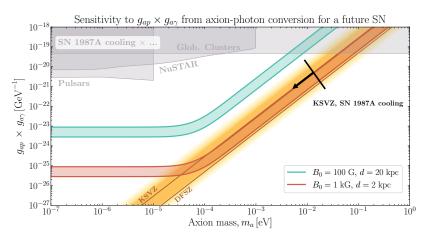
Sensitity from future supernova on $g_{a\gamma}$

We use $R_0 = 30R_{\odot}$.



Sensitity from future supernova on $g_{ap} imes g_{a\gamma}$

We use $R_0 = 30R_{\odot}$.



Neutron star mergers

When two neutron stars collide, a hypermassive neutron star (HMNS) might form.

Imagen taken from 2012.08172

In August 2017, the first merging of two neutron stars was detected: GW17087 + GRB 170817A + AT 2017gfo. Two neutron stars with masses of $\sim 1.35 M_{\odot}$ collided in NGC 4993, a galaxy located 44 Mpc from Earth, and a HMNS formed.

Sadly, Fermi-LAT was crossing the south South Atlantic Anomaly, so we cannot set competing bounds :(

Kilonova: ejected material

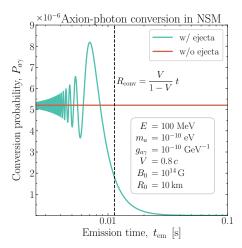
Large amounts of material are ejected after the collision!

$$|\Delta_{\rm pl}| \cdot R_{\rm conv} \gg 1 \implies$$
 Conversion is suppressed!

Once the ejecta arrives to $R_{\rm conv}$, the conversion is completely suppressed.

Conversion outside the Hypermassive neutron star

When the ejected material arrives to R_{conv} , the conversion is rapidly suppressed.



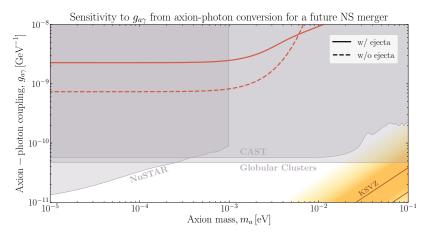
HMNS axion fluxes

We use four different (Garching) models (DD2 and SFHo, with symmetric masses and asymmetric masses) to build a representative one-zone HMNS model.

Quantity	NSM
Density $ ho~[10^{14}~{ m g/cm^3}]$	4.0
Temperature T [MeV]	25
Proton fraction Y_p	0.07
Lapse $(1+z)^{-1}$	0.85
Exposure of mass $Mt \ [M_{\odot} \ s]$	6.0×10^{-3}

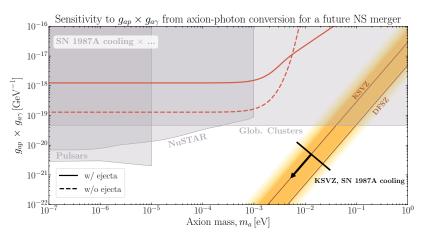
Sensitity from future NSM on $g_{a\gamma}$

We assume $B_0=10^{14}$ Gauss and $R_0=10$ km.



Sensitity from future NSM on $g_{ap} \times g_{a\gamma}$

We assume $B_0=10^{14}$ Gauss and $R_0=10$ km.



Conclusions

Conclusions

- We have derived simple expressions for the probability of (ultrarelativistic) axion-photon conversion within magnetic fields, including axion mass suppression.
- Strongest bounds to date on $g_{ap} \times g_{a\gamma}$ from the non-observation of gamma rays from SN 1987A.
- Fermi-LAT sensitivity could probe the QCD axion band for some optimistic cases.
- It is unlikely that Neutron Star Mergers will set stringent bounds on axion couplings, especially considering the presence of the ejected material.
- Main drawback: No information on the magnetic field of Sanduleak.

Backup slides

Axion potential

Vaffa-Witten theorem predicts that the energy will be minimized at $\theta=0$.

To compute the axion potential, one starts from the QCD lagrangian before chiral symmetry breaking. We do a chiral rotation of the quark fields $q \to e^{i\frac{\vartheta}{f_a}Q\gamma_5}q$ to remove the $aG\tilde{G}$ term, so the axion is present in the quark mass matrices M. Then we break chiral symmetry and write the chiral lagrangian with the explicit symmetry-breaking term M, which now includes the axion. This leads to

$$V(a) = -m_{\pi}^2 f_{\pi}^2 \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2 \left(\frac{a}{2f_a}\right)}$$
,

QCD axion vs. ALPs

From the potential one can get

$$m_a = \sqrt{V''(0)} = 5.7 \left(\frac{10^{12} \text{GeV}}{f_a}\right) \mu \text{eV}$$

Interaction with pions also yields an axion-photon coupling:

$$g_{a\gamma} = g_{a\gamma}^0 - rac{lpha_{ ext{EM}}}{2\pi f_a} \left(rac{2}{3} rac{4m_d + m_u}{m_d + m_u}
ight) \equiv rac{lpha_{ ext{EM}}}{2\pi f_a} c_\gamma$$

If we break these relations between m_a and f_a , we have axion-like particles (ALPs).

Emission processes

Primakoff:

$$\frac{\text{d}\,\dot{N}_{\text{a}}}{\text{d}\text{MdE}} = \frac{\text{E}^2}{\pi^2(\text{e}^{\text{E}/\text{T}}-1)}\,\frac{g_{\text{a}\gamma}^2\alpha Y_{\text{p}}}{8}\left[\left(1+\frac{k_{\text{S}}^2}{4\text{E}^2}\right)\log\left(1+\frac{4\text{E}^2}{k_{\text{S}}^2}\right)-1\right].$$

Bremsstrahlung:

$$\begin{split} \frac{d\dot{N}_a}{dEdM} &= \frac{g_{ap}^2}{8\pi^2 m_p^2} \, \frac{Y_p}{m_u} \, \frac{E}{e^{E/T}+1} \, \frac{\Gamma_\sigma}{1+(\Gamma_\sigma/2E)^2}. \\ \Gamma_\sigma &= 40 \, \mathrm{MeV} \, \frac{\rho}{4\times 10^{14} \, \mathrm{g/cm^3}} \sqrt{\frac{T}{30 \, \mathrm{MeV}}}. \end{split}$$

SN Averages

Weighted with T^3 (or $T^{5/2}$).

Model		SFHo-18.8		SFHo-18.6		LS220-20.0		SFHo-20.0	
Our name		Cold model		_		_		Hot model	
$\overline{M_{\mathrm{NS}}}$ (baryon)	M_{\odot}	1.351		1.553		1.926		1.947	
$M_{ m NS}$ (grav.)		1.241		1.406		1.707		1.712	
$E_{ m bind}$	10^{53} erg	1.98		2.64		3.94		4.23	
Lapse $\langle (1+z)^{-1} \rangle$	$^{-1}\rangle$	0.77	(0.76)	0.77	(0.76)	0.67	(0.65)	0.66	(0.64)
$T_{ m max}$	MeV	39.4		45.5		60.0		59.2	
$\langle T \rangle$		30.3	(29.4)	35.1	(34.1)	43.3	(41.1)	45.4	(44.4)
$ ho_{ m max}$	$10^{14}{\rm g/cm^3}$	7.82		8.70		10.2		10.9	
$\langle ho angle$		4.08	(4.73)	4.53	(5.23)	5.45	(6.33)	5.71	(6.52)
$\langle Mt \rangle$	M_{\odot} s	5.28	(5.06)	6.76	(6.46)	8.45	(8.63)	10.5	(9.90)
Average abundances per baryon									
$\langle Y_p \rangle$		0.138	(0.132)	0.140	(0.137)	0.188	(0.189)	0.161	(0.154)
$\langle Y_n \rangle$		0.853	(0.865)	0.849	(0.861)	0.811	(0.811)	0.834	(0.845)
$\langle Y_e angle$		0.119	(0.111)	0.120	(0.114)	0.149	(0.149)	0.128	(0.122)
$\langle Y_{\mu} angle$		0.022	(0.022)	0.025	(0.024)	0.039	(0.040)	0.035	(0.033)
Nucleon degeneracy suppression factors									
$\langle F_{pp} \rangle$		0.80	(0.77)	0.72	(0.77)	0.85	(0.82)	0.76	(0.77)
$\langle F_{nn} \rangle$		0.48	(0.42)	0.42	(0.44)	0.61	(0.55)	0.49	(0.47)

NSM Averages

Weighted with T^3 (or $T^{5/2}$).

Model		DD2 Asym.		DD2 Sym.		SFHo Asym.		SFHo Sym.	
$M_{ m NS} + M_{ m NS}$ (baryon)	M _☉	1.25 + 1.45		1.35 + 1.35		1.25 + 1.45		1.35 + 1.35	
Lapse $\langle (1+z)^{-1} \rangle$		0.85	(0.84)	0.82	(0.81)	0.88	(0.87)	0.82	(0.81)
$T_{ m max}$	MeV	30.7		69.4		36.7		73.4	
$\langle T \rangle$		19.8	(20.6)	22.6	(22.9)	23.3	(24.2)	27.6	(27.8)
$ ho_{ m max}$	$10^{14} \mathrm{g/cm^3}$	5.63		6.43		6.40		9.74	
$\langle ho angle$		2.58	(3.15)	3.78	(4.36)	2.70	(3.46)	5.46	(6.73)
$\langle Mt \rangle$	$10^{-3} M_{\odot} \mathrm{s}$	7.46	(5.47)	7.44	(6.26)	5.67	(3.99)	5.69	(4.59)
Average abundances per baryon									
$\langle Y_e \rangle$		0.071	(0.069)	0.069	(0.069)	0.073	(0.067)	0.065	(0.062)

39 / 34

Kilonova: ejected material

Large amounts of material are ejected after the collision! Can it suppress the conversion?

Conversion is suppressed if $|\Delta_{
m pl}| \cdot R_{
m conv} \gtrsim 1$

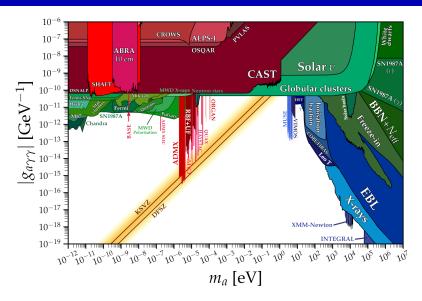
$$|\Delta_{
m pl}| \cdot R_{
m conv} = rac{\omega_{
m pl}^2}{2\omega} R_{
m conv} = rac{e^2
ho}{2m_e m_p \omega} R_{
m conv} \gtrsim 1 \implies
ho \gtrsim 10^{-9} {
m g/cm}^3$$

$$\rho = \frac{M_{\rm ejected}}{4\pi R_{\rm conv}^2 \cdot V \delta t}$$

If we consider relativistic velocities, $V\sim 0.8c$, $\delta t\sim 100$ ms, then $M_{\rm ejected}\gtrsim 10^{-14}M_{\odot}$ shuts down the conversion.

Typical ejected mass at relativistic velocities is $M_{\rm ejected} \gtrsim 10^{-7} M_{\odot}$! Once the ejecta arrives to $R_{\rm conv}$, the conversion is completely suppressed.

Axion-photon coupling constraints



https://github.com/cajohare

MeV gap

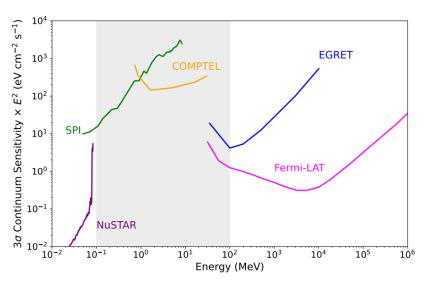


Imagen taken from 2111.10362