Axion Quality: Challenges and Pathways to Improvement

Federico Mescia

Axion Quality: Challenges and Pathways to Improvement

- The strong CP problem:
 - > the axion solution
- The dirty side of the Axion Solution:
 - → origin and quality problem of U(1)_{PQ}
- Overview of solutions for the axion problem
- Recent developments in connection with Flavour

Strong CP Problem

QCD violates CP symmetry

$$\delta \mathcal{L}_{\mathrm{QCD}} = \theta \, \frac{\alpha_s}{8\pi} G \tilde{G}$$

Natural expectation

$$\theta \sim \mathcal{O}(1)$$

Gauge-invariant + renormalizable non-perturbative QCD (instantons)

Strong CP Problem & The Axion

Strong CP problem

$$\delta \mathcal{L}_{\mathrm{QCD}} = \theta \, rac{lpha_s}{8\pi} G \tilde{G}$$

$$|\theta| \lesssim 10^{-10}$$

Electric Dipole Moment for **Neutron**

Why so small??

promote θ to a dynamical field, which relaxes to zero via QCD dynamics

$$\theta \to \frac{a}{f_a}$$

$$\theta \to \frac{a}{f_a} \qquad \to \frac{a}{f_a} \frac{\alpha_s}{8\pi} G \tilde{G}^{\dagger}$$

with
$$\langle a \rangle = 0$$

Axion: a new spin-0 boson $\rightarrow pNGB$ of a spontaneously broken global U(1)_{PQ} with QCD anomaly

$$\Phi = f_a e^{i\mathbf{a}/f_a}$$

$$U(1)_{PQ}$$

$$a \rightarrow a + \alpha f_a$$

Strong CP Problem & The Axion

Strong CP problem

$$\delta \mathcal{L}_{\mathrm{QCD}} = \theta \, \frac{\alpha_s}{8\pi} G \tilde{G}$$

$$|\theta| \lesssim 10^{-10}$$

Electric Dipole Moment for Neutron

$$\rightarrow \frac{a}{f_a} \frac{\alpha_s}{8\pi} G \tilde{G}^{\dagger}$$

Axion potential

$$V_a \approx -\Lambda_{\rm QCD}^4 \cos\left(\frac{a}{f_a}\right)$$

by QCD PQ-breaking effects at low-energy

Vafa-Witten theorem

$$V(a) \ge V(0)$$

→ minimum at a=0 CP is preserved!

Axion: a new spin-0 → pNGB of a QCD anomalous global U(1)_{PQ}

1. axion mass
$$m_a \approx 1 \text{ eV} \frac{10^7 \text{ GeV}}{f_a}$$

2. axion couplings to photons, nucleons, electrons $\propto 1/f_a$

$$\rightarrow \frac{a}{f_a} \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} + \frac{a}{f_a} \frac{\alpha}{8\pi} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\partial_{\mu} a}{f_a} \bar{f} \gamma^{\mu} \gamma_5 f$$

$$(f = p, n, e)$$

The lighter the axion, the weaker are its interactions!

(being not yet excluded & detected)

Invisible long-lived light particle → <u>DM candidate</u> ©

- \Box Origin of U(1)_{PQ}: Do global symmetries exist in nature?
 - ✓ Global symmetries act uniformly across spacetime (e.g., rotating all fields by the same phase)
 - → Broadly, this is at odds with the local nature of spacetime deformations in Quantum Gravity.
 - → Opposite to gauge symmetries, which are inherently local

Global symmetries are not believed to be fundamental, presumably an accident at low-energy!?!

 \Box Origin of U(1)_{PQ}: a global symmetry might not exist in nature

Quantum Gravity Conjecture:→ no-global symmetry

Susskind '95

Banks, Seiberg '11

Harlow, Ooguri '18

Black Hole information paradox

Hawking radiation

No global symmetries in String theory

No global symmetries in ADS/CFT

Quantum Gravity must break all global symmetries at any [d]

$$\Delta \mathcal{L}_{\mathrm{UV}}^{\mathrm{PQ}} \sim \frac{1}{\Lambda_{\mathrm{UV}}^{d-4}} \mathcal{O}^{[d]}$$
 $\Lambda_{\mathrm{UV}} = M_{\mathrm{Pl}} \simeq 1.2 \times 10^{19} \, \mathrm{GeV} \gg \Lambda_{\mathrm{QCD}}$

- \Box Origin of U(1)_{PQ}: a global symmetry might not exist in nature
 - ✓ Global symmetries explicitly broken by Quantum Gravity

$$\Delta \mathcal{L}_{\mathrm{UV}}^{\mathrm{PQ}} \sim \frac{1}{\Lambda_{\mathrm{UV}}^{d-4}} \mathcal{O}^{[d]}$$
 [d]>0

- ✓ Moreover, U(1)_{PQ} is anomalous: absent in nature as real symmetry
 - \rightarrow PQ broken already at the renormalizable level: $d \le 4$

$$\mathcal{O}^{[d \le 4]} \to \Phi^d + \text{h.c.}$$
 $\Phi = f_a e^{i\mathbf{a}/f_a}$

Therefore, $U(1)_{PQ}$ is not fundamental: its origin presumably/desirable an accident (e. g., emerging by imposing Lorentz and Gauge invariance ex. baryon/lepton number) or approximate by unknown mechanism (χ sym)

Benchmark axion models → **DFSZ and KSVZ**

SM quarks 2 Higgs (H_u, H_d) + **Singlet**

BSM quark Q_L 1 Higgs + Singlet

Zhitnitsky '80, Dine, Fischler, Srednicki '81

DFSZ

KSVZ

Kim '79, Shifman, Vainshtein, Zakharov '80

PQ already broken at renormalizable level

 $\mu_H^2 H_u H_d$

 $\mu_{\mathcal{Q}} \bar{\mathcal{Q}}_L \mathcal{Q}_R$

The $U(1)_{PQ}$ symmetry is imposed by hand, no explanation for its origin

- \square Quality problem of U(1)_{PQ}: axion solution fragile at d>4?
 - \odot **Ideally**, PQ symmetry emerges at low-energy accidentally \rightarrow protected at d \leq 4

new gauge symmetries!

- BUT UV physics (ex. gravity?) still violates the PQ symmetry at h.o:
 - → gauge-invariant PQ-breaking operators of d>4 are still generated at low energies

$$\Delta \mathcal{L}_{\text{UV}}^{\text{PQ}} \sim \frac{\Phi^d}{\Lambda_{\text{UV}}^{d-4}} + \text{h.c}$$
 $\Phi = f_a e^{i\mathbf{a}/f_a}$

⊗ New contribution to the axion potential → axion solution lost!

$$\Delta V_{\rm UV}^{\rm PQ}(\theta_{\rm eff}) \sim \left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4$$

Quality problem of $U(1)_{PO}$

The minimum of the potential is shifted

$$\langle \theta_{\rm eff} \rangle \neq 0$$

$$\delta \mathcal{L}_{\mathrm{QCD}} = \theta \, \frac{\alpha_s}{8\pi} G \tilde{G}$$

Then, the minimum is CP-violating!

Strong CP problem strike back

$$\Delta V_{\rm UV}^{\rm PQ}(\theta_{\rm eff}) \sim \left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4$$

Quality problem of U(1)_{PQ}

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potential, $V_{
m QCD} + \Delta V_{
m UV}^{
m PQ}$, it translates to

$$\left(\frac{f_a}{\Lambda_{\mathrm{UV}}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\mathrm{QCD}}^4 \text{ QCD}$$

UV PQ-breaking physics Experimental bound

$$\Delta V_{\mathrm{UV}}^{\mathrm{PQ}}(\theta_{\mathrm{eff}}) \sim \left(\frac{f_a}{\Lambda_{\mathrm{UV}}}\right)^{d-4} f_a^4 \qquad \qquad \frac{\alpha_s}{32\pi^2} GG$$

Quality problem of U(1)_{PQ}

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potential, $V_{
m QCD} + \Delta V_{
m UV}^{
m PQ}$, it translates to

$$\lambda \left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

For physically well-motivated scales

Dark Matter
$$f_a \sim 10^{9-11} \; \mathrm{GeV}$$

Gravity $\Lambda_{
m UV} \sim M_{
m Pl}$

PQ must be preserved up to $d \ge 10$ for $\lambda \sim 1$

High-Quality PQ Symmetry

Quality problem of U(1)_{PQ}

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potential, $V_{
m QCD} + \Delta V_{
m UV}^{
m PQ}$, it translates to

$$\lambda \left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

❖ For physically well-motivated scales

Dark Matter
$$f_a \sim 10^{9-11} \; \mathrm{GeV}$$

Gravity $\Lambda_{
m UV} \sim M_{
m Pl}$

PQ breaking d < 10 for $\lambda \sim 1$ must be forbidden

High-Quality PQ Symmetry

Quality problem of U(1)_{PO}

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$

(neutron EDM)

Minimizing the full potential, $V_{
m QCD} + \Delta V_{
m TV}^{
m PQ}$, it translates to

More generally
$$\frac{f_a^n v_I^{d-n}}{\Lambda_{\rm UV}^{d-4}} \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

$$\mathcal{O}^{[d]} o \Phi_I^d o v_I e^{ia_I/v_I}$$

We can reduce d in presence of more vevs, such $v_{\rm I} < f_a$

For physically well-motivated scales

Dark Matter
$$f_a \sim 10^{9-11}~{
m GeV}$$

Gravity $\Lambda_{
m UV} \sim M_{
m Pl}$

$$\Lambda_{
m UV} \sim M_{
m Pl}$$

PQ must be preserved up to $d \ge 10$ for $\lambda \sim 1$

High-Quality PQ Symmetry

$$\lambda \left(\frac{f_a}{\Lambda_{\mathrm{UV}}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\mathrm{QCD}}^4$$

- \star Low-scale f_a
- Gravitational suppression of coupling $\lambda \ll 1$
- Gauge protection of PQ-breaking operators at d>10

$$\lambda \left(\frac{f_a}{\Lambda_{\mathrm{UV}}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\mathrm{QCD}}^4$$

- \star Low-scale f_a @d>4
- ***** Gravitational suppression of coupling $\lambda \ll 1$
- Gauge protection of PQ-breaking operators at d>10

U(1)_{PQ} origin not addressed accidental/approximate for d≤4

U(1)_{PQ} only **approximate** due to tiny breaking terms

U(1)_{PQ} accidental/exact up to d>10 terms

$$\lambda \left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

 \star Low-scale f_a @d>4

Challenge: evade astrophysical bounds, $f_a \gtrsim 10^8 \text{ GeV}$

for example, by modifying the $m_a - f_a$ relation:

$$m_a \propto \frac{\Lambda_{\rm QCD}^2}{f_a}$$

may arise in mirror SM models (or QCD or GUT models)

extra contribution to m_a from hidden gauge sector with PQ anomaly:

$$\Lambda_D \gg \Lambda_{\rm QCD}$$

Rubakov '97, Berezhiani, Gianfagna, Giannotti '01, Gianfagna Giannotti Nesti '04, Gaillard, Gavela et al. '18, ...

$$\lambda \left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

 \star Low-scale f_a @d>4

Gravitational suppression of coupling $\lambda \ll 1$

Non-perturbative quantum gravitational effects may generate PQ-breaking operators

⇒ studied in the context of Euclidian action of Wormholes configurations

$$\lambda \sim e^{-S_A}$$

© Lee '88, Giddings, Strominger '88:

$$S \sim M_{\rm Pl}/f_a$$

No quality problem

$$S \sim \log M_{\rm Pl}/f_a$$

Quality problem

$$\lambda \left(\frac{f_a}{\Lambda_{\mathrm{UV}}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\mathrm{QCD}}^4$$

- * Low-scale f_a @d>4
- * Gravitational suppression of coupling $\lambda \ll 1$
- Gauge protection of PQ-breaking operators at d>10

 $U(1)_{PQ}$ origin not addressed accidental/approximate for d<4

 $U(1)_{PQ}$ only approximate due to tiny breaking terms

U(1)_{PQ} accidental/exact up to d>10 terms

Benchmark axion models → **DFSZ and KSVZ**

 \diamond discrete gauge symmetries can make $U(1)_{PO}$ accidental and protect to higher order

Discrete gauge symmetries:

 $\mathbb{Z}_n: \Phi \to e^{i\frac{2\pi}{n}}\Phi$

$$\Delta\mathcal{L}_{\mathrm{UV}}^{\mathrm{PQ}} = \frac{\Phi^{\mathrm{n}}}{\Lambda_{\mathrm{UV}}^{n-4}}$$

allowed

$$\frac{n}{n-4}$$

High-Quality PQ

It can emerge from a U(1) gauge symmetry:

$$\Phi \to e^{i\alpha} \Phi$$
$$S \to e^{in\alpha} S$$

$$S \to e^{in\alpha}S$$

$$\langle S \rangle : U(1) \to Z_n$$

$$\alpha = \frac{2\pi}{n}$$

Discrete gauge symmetries:

$$\mathbb{Z}_n: \Phi \to e^{i\frac{2\pi}{n}}\Phi \longrightarrow \Delta \mathcal{L}_{\mathrm{UV}}^{\mathrm{PQ}} = \frac{\Phi^n}{\Lambda_{\mathrm{UV}}^{n-4}} \longrightarrow n \geq 10$$

High-Quality PQ

It can emerge from a U(1) gauge symmetry:

$$\Phi \to e^{i\alpha} \Phi$$
$$S \to e^{in\alpha} S$$

$$\Phi \to e^{i\alpha} \Phi$$
 $\langle S \rangle : U(1) \to Z_n$
 $S \to e^{in\alpha} S$ $\alpha = \frac{2\pi}{n}$

Krauss and Wilczek '89, Dias et al. '03 Carpenter et al. '09, Harigaya et al. '13

$$\Phi_1 \to e^{iq_1\alpha}$$

$$\Phi_2 \to e^{iq_2\alpha}$$

$$\begin{array}{ccc} \Phi_1 \rightarrow e^{iq_1\alpha} & & \\ \Phi_2 \rightarrow e^{iq_2\alpha} & & \\ \end{array} \qquad \Delta \mathcal{L}_{\mathrm{UV}}^{\mathrm{PQ}} = \frac{(\Phi_1^\dagger)^{q_2}(\Phi_2)^{q_1}}{\Lambda_{\mathrm{UV}}^{q_1+q_2-4}} \end{array}$$

$$\begin{array}{c} \text{HQ PQ} \\ \longrightarrow \\ q_1 + q_2 \ge 10 \end{array}$$

Non-Abelian gauge group:

Di Luzio et al. '17 Darme', Nardi '21 +Smarra '22

$$SU(N) \otimes SU(N)$$

$$\Phi \sim (N, \bar{N})$$

$$SU(N) \otimes SU(N) \quad \Phi \sim (N, \bar{N}) \longrightarrow \quad \Delta \mathcal{L}_{\mathrm{UV}}^{\mathrm{PQ}} = \frac{\det \Phi}{\Lambda_{\mathrm{UV}}^{N-4}}$$

$$U(1)_{PQ}: \Phi \to e^{i\alpha}\Phi$$

Discrete gauge symmetries:

 $\mathbb{Z}_n: \Phi \to e^{i\frac{2\pi}{n}}\Phi \longrightarrow \Delta \mathcal{L}_{\mathrm{UV}}^{\mathrm{PQ}} = \frac{\Phi^n}{\Lambda_{\mathrm{UV}}^{n-4}}$

High-Quality PQ

 \longrightarrow $n \ge 10$

It can emerge from a U(1) gauge symmetry:

$$\Phi \to e^{i\alpha} \Phi$$
$$S \to e^{in\alpha} S$$

$$\Phi \to e^{i\alpha} \Phi$$
 $\langle S \rangle : U(1) \to Z_n$
 $S \to e^{in\alpha} S$ $\alpha = \frac{2\pi}{n}$

Krauss and Wilczek '89, Dias et al. '03 Carpenter et al. '09, Harigaya et al. '13

❖ Abelian gauge U(1):

$$\Phi_1 \to e^{iq_1\alpha}$$

$$\Phi_2 \to e^{iq_2\alpha}$$

$$\Delta \mathcal{L}_{\text{UV}}^{\text{PQ}} = \frac{(\Phi_1^{\dagger})^{q_2} (\Phi_2)^{q_1}}{\Lambda_{\text{UV}}^{q_1 + q_2 - 4}}$$

Barr and Seckel '92

$$\begin{array}{c} \mathsf{HQ} \ \mathsf{PQ} \\ \longrightarrow \end{array} q_1 + q_2 \ge 10$$

Non-Abelian gauge group:

Di Luzio et al. '17 Darme', Nardi '21 +Smarra '22

$$SU(N) \otimes SU(N)$$

$$SU(9)_{GUT}$$

$$SU(N) \to SO(N)$$

Georgi et al. '81

Ardu et al. '20

- ightharpoonup Discrete gauge symmetries (vertical): \mathbb{Z}_n
- lacktriangle Abelian gauge U(1) (vertical): U_1

These examples solve the PQ quality problem to dimension *N*BUT they have some limitations:

- i) ad-hoc gauge symmetries → solution to PQ-quality problem hidden in the UV
- ii) lack of testability of the UV mechanism addressing the quality problem
- * Are possible models with low-energy signatures? explaining additional SM puzzles (like SM flavor structure, Dark Matter)?

$$\lambda \left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

Two possibilities to enlarging the SM gauge group through a new gauge interactions

❖ or unrelated to SM families⇒ vertical gauge protection

$$\mathbb{Z}_n \qquad U_1 \qquad SU(9)_{GUT}$$

ullet or related to SM families \Rightarrow horizontal gauge protection $SU(N) \otimes SU(N)$ Darme', Nardi, Smarra '22

 $SO(10)xSU(3)_F$: Di Luzio '20

SU(4)_{PS} xSU(3)_F: Di Luzio, Ladini, FM & Susic '25

Axion quality from Flavour and GUT

SO(10): Di Luzio '20

SU(4)_{PS}: Di Luzio, Ladini, FM & Susic '25:

> \rightarrow SU(4)_{PS} group easier than SO(10) to work out details

Axion quality from the interplay of vertical and horizontal gauge symmetries

Axion quality from Flavour and GUT

Vertical structure = GUT extension of the SM

+

Horizontal structure = Gauged flavour symmetries

SO(10): Di Luzio '20

SU(4)_{PS}: Di Luzio, Ladini,

FM & Susic '25

No ad-hoc symmetries for PQ protection

PQ breaking tied to to PS/flavor scales

SM flavour structure

Axion – flavour connection

High-Quality PQ predicts new sub-eV fermions

Cosmological signatures from new fermions

Axion quality from the interplay of vertical and horizontal gauge symmetries

Pati-Salam – axion flavour model

Field	Lorentz	(Pati-Salam)	\mathbb{Z}_4	$(SU(3)_{f_R})$	\mathbb{Z}_3	Generations	$\mathrm{U}(1)_{\mathrm{PQ}}$
Q_L	(1/2,0)	(4, 2, 1)	+i	1	+1	3	+3
Q_R	(0,1/2)	(4, 1, 2)	+i	3	$e^{i2\pi/3}$	1	+1
Ψ_R	(0,1/2)	(1,1,1)	+1	$\overline{3}$	$e^{i4\pi/3}$	8	+2
Φ	(0,0)	(1, 2, 2)	+1	$\overline{3}$	$e^{i4\pi/3}$	$N_{\Phi} \ge 1$	+2
\sum	(0,0)	(15, 2, 2)	+1	$\overline{3}$	$e^{i4\pi/3}$	$N_{\Sigma} \geq 2$	+2
Δ	(0,0)	(10, 1, 3)	-1	6	$e^{i4\pi/3}$	1	+2
χ	(0,0)	(4, 1, 2)	+i	$\overline{3}$	$e^{i4\pi/3}$	1	-1
ξ	(0,0)	(15, 1, 3)	+1	1	+1	1	0

- > Gauge group: $SU(4)_{\mathrm{PS}}\otimes SU(2)_L\otimes SU(2)_R\otimes SU(3)_{f_R}$
- > Too many fields but each plays an important role!

Fermion sector

 Q_L and Q_R contain SM fermions(quarks, leptons) plus v_R (bonus in PS)

 \rightarrow only Q_R charged under $SU(3)_{fR}$: to avoid EW-scale flavour gauge bosons

 $\Psi_{R} \rightarrow$ anomalons: BSM fermions needed to cancel anomalies of SU(3)_{fR}

Pati-Salam – axion flavour model

Field	Lorentz	Pati-Salam	\mathbb{Z}_4	$ \operatorname{SU}(3)_{f_R} $	\mathbb{Z}_3	Generations	$ \mathbf{U}(1)_{\mathbf{PQ}} $
$\overline{Q_L}$	(1/2,0)	(4, 2, 1)	+i	1	+1	3	+3
Q_R	(0,1/2)	(4,1,2)	+i	3	$e^{i2\pi/3}$	1	+1
Ψ_R	(0,1/2)	(1,1,1)	+1	$\overline{3}$	$e^{i4\pi/3}$	8	+2
Φ	(0,0)	(1, 2, 2)	+1	$\overline{3}$	$e^{i4\pi/3}$	$N_{\Phi} \ge 1$	+2
Σ	(0,0)	(15, 2, 2)	+1	$\overline{3}$	$e^{i4\pi/3}$	$N_{\Sigma} \geq 2$	+2
Δ	(0,0)	(10, 1, 3)	-1	6	$e^{i4\pi/3}$	1	+2
χ	(0,0)	(4, 1, 2)	+i	$\overline{3}$	$e^{i4\pi/3}$	1	-1
ξ	(0,0)	(15,1,3)	+1	1	+1	1	0

Scalar Sector

 Φ and Σ contain SM Higgs $\to \overline{Q_L} Q_R \Phi + \overline{Q_L} Q_R \Sigma$ for realistic Yukawa sector

 $\Delta \rightarrow$ neutrino Majorana mass term $\rightarrow Q_R Q_R \Delta^*$ (seesaw type I)

 $\chi \rightarrow$ avoid spurious global symmetries together with Δ

Accidental global PQ symmetry

 $\xi \rightarrow$ needed for accidental PQ to arise: $\Delta \chi^2 \xi$

$$V = \Phi \Sigma^* \xi + \Phi \Sigma^* (|\Sigma|^2 + |\Delta|^2 + |\gamma|^2 + \xi^2) + \Sigma^{*2} (\Phi^2 + \Delta^2) + \Delta \gamma^2 \xi + \text{h.c.}$$

SSB and vev hierarchy

Field	Lorentz	Pati-Salam	\mathbb{Z}_4	$SU(3)_{f_R}$	\mathbb{Z}_3	Generations	$U(1)_{PQ}$
Q_L	(1/2,0)	(4, 2, 1)	+i	1	+1	3	+3
Q_R	(0,1/2)	(4, 1, 2)	+i	3	$e^{i2\pi/3}$	1	+1
Ψ_R	(0,1/2)	(1,1,1)	+1	$\overline{3}$	$e^{i4\pi/3}$	8	+2
Φ	(0,0)	(1, 2, 2)	+1	$\overline{3}$	$e^{i4\pi/3}$	$N_{\Phi} \ge 1$	+2
\sum	(0,0)	(15, 2, 2)	+1	$\overline{3}$	$e^{i4\pi/3}$	$N_{\Sigma} \geq 2$	+2
Δ	(0,0)	(10, 1, 3)	-1	6	$e^{i4\pi/3}$	1	+2
χ	(0,0)	(4, 1, 2)	+i	$\overline{3}$	$e^{i4\pi/3}$	1	-1
$\boldsymbol{\xi}$	(0,0)	(15,1,3)	+1	1	+1	1	0

SSB chain:
$$SU(4)_{PS} \otimes SU(2)_L \otimes SU(2)_R \otimes SU(3)_{f_R} \otimes U(1)_{PQ}$$

$$\xrightarrow{\langle \Delta, \chi, \xi \rangle} SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \xrightarrow{\langle \Phi, \Sigma \rangle} SU(3)_c \otimes U(1)_{EM}$$

Large vevs: $\langle \Delta, \chi, \xi \rangle \sim V \sim 10^9 - 10^{14} \text{ GeV}$

PS, Flavour, PQ SSB

 $v \ll V \ll M_{\rm Pl}$

Hierarchy

Small vevs: $\langle \Phi, \Sigma \rangle \sim v \sim 10^2 \text{ GeV}$

EW SSB

Axion embedding

Field	Lorentz	Pati-Salam	\mathbb{Z}_4	$SU(3)_{f_R}$	\mathbb{Z}_3	Generations	$U(1)_{PQ}$
$\overline{Q_L}$	(1/2,0)	(4, 2, 1)	+i	1	+1	3	+3
Q_R	(0,1/2)	(4,1,2)	+i	3	$e^{i2\pi/3}$	1	+1
Ψ_R	(0,1/2)	(1,1,1)	+1	$\overline{3}$	$e^{i4\pi/3}$	8	+2
Φ	(0,0)	(1, 2, 2)	+1	$\overline{3}$	$e^{i4\pi/3}$	$N_{\Phi} \ge 1$	+2
\sum	(0,0)	(15, 2, 2)	+1	$\overline{3}$	$e^{i4\pi/3}$	$N_{\Sigma} \geq 2$	+2
Δ	(0,0)	(10, 1, 3)	-1	6	$e^{i4\pi/3}$	1	+2
χ	(0,0)	(4, 1, 2)	+i	$\overline{3}$	$e^{i4\pi/3}$	1	-1
ξ	(0,0)	(15,1,3)	+1	1	+1	1	0

* Axion a: (mostly) a combination of polar modes in Δ and χ

Peccei-Quinn scale
$$f_a = \frac{V_{\chi} V_{\Delta}}{3\sqrt{V_{\chi}^2 + 4V_{\Delta}^2}} \qquad V_{\Delta}, \ V_{\chi} \sim 10^9 - 10^{14} \ \mathrm{GeV}$$

related to PS and flavor breaking scales

Pati-Salam – axion flavour model

Axion mass range: high-quality PQ vs accidental PQ scenario

$$\mathcal{L}_{a\gamma} = \frac{\alpha_{\rm em} C_{a\gamma}}{8\pi f_a} a F^{\mu\nu} \tilde{F}_{\mu\nu} \qquad C_{a\gamma} = E/N - 1.92(4),$$

Pati-Salam – axion flavour model

Axion mass range: high-quality PQ vs accidental PQ scenario

a PQ theory tells us where to search in an otherwise huge param. space!

Axion quality in PS – flavor model

- Axion a: (mostly) a combination of polar modes in \triangle and χ
- **A**xion decay constant f_a :

proton/neutron EDM experiments

Anomalon phenomenology

Field	Lorentz	Pati-Salam	\mathbb{Z}_4	$SU(3)_{f_R}$	\mathbb{Z}_3	Generations	$U(1)_{PQ}$
Q_L	(1/2,0)	(4, 2, 1)	+i	1	+1	3	+3
Q_R	(0, 1/2)	(4, 1, 2)	+i	3	$e^{i2\pi/3}$	1	+1
Ψ_R	(0, 1/2)	(1, 1, 1)	+1	$\overline{3}$	$e^{i4\pi/3}$	8	+2
Φ	(0,0)	(1, 2, 2)	+1	$\overline{\overline{3}}$	$e^{i4\pi/3}$	$N_{\Phi} \ge 1$	+2
\sum	(0,0)	(15, 2, 2)	+1	$\overline{3}$	$e^{i4\pi/3}$	$N_{\Sigma} \geq 2$	+2
Δ	(0,0)	(10, 1, 3)	-1	6	$e^{i4\pi/3}$	1	+2
χ	(0,0)	(4, 1, 2)	+i	$\overline{3}$	$e^{i4\pi/3}$	1	-1
ξ	(0,0)	(15, 1, 3)	+1	1	+1	1	0

Flavour gauge anomaly cancellation requires new exotic fermions: *anomalons*

GUT (SM) singlet – only charged under the flavor group

Anomalons→ new testable dynamics directly related to the solution of PQ quality problem and the flavor puzzle

Anomalons are massless at the renormalizable level

$$\begin{array}{cccc} \Psi_R \Psi_R & Q_R \Psi_R & \bar{Q}_L \Psi_R \\ \Psi_R \Psi_R \phi & Q_R \Psi_R \phi & \bar{Q}_L \Psi_R \phi \end{array} \qquad \begin{array}{cccc} \text{forbidden by gauge} \\ \text{invariance} \to \text{no } \psi_L \end{array}$$

Higher-dimensional operators can generate their mass

type	operator \mathcal{O}	d	$\langle M_{\mathcal{O}} \rangle$
$L\Psi$	$\overline{Q}_L \Psi_R \chi(\Phi + \Sigma + \Sigma')$	5	vV/Λ_{UV}
$L\Psi$	$\overline{Q}_L \Psi_R \Delta \chi^* (\Phi^* + \Sigma^* + \Sigma'^*)$	6	$vV^2/\Lambda_{\mathrm{UV}}^2$
$R\Psi$	$Q_R \Psi_R \Delta^* \chi$	5	$V^2/\Lambda_{ m UV}$
$R\Psi$	$Q_R \Psi_R \Delta \Delta^{*2} \chi$	7	$V^4/\Lambda_{ m UV}^3$
$\Psi\Psi$	$\Psi_R \Psi_R \Delta^* \chi^2$	6	$V^3/\Lambda_{\mathrm{UV}}^2$
$\Psi\Psi$	$\Psi_R\Psi_R\Phi^{*2}$	5	$v^2/\Lambda_{ m UV}$
$\Psi\Psi$	$\Psi_R \Psi_R \left(\Sigma^{*2} + \Sigma^* \Sigma'^* + \Sigma'^{*2} \right)$	5	$v^2/\Lambda_{ m UV}$
$\Psi\Psi$	$\Psi_R \Psi_R \Delta \Delta^{*2} \chi^2$	8	$V^5/\Lambda_{ m UV}^4$

Being SM-singlets, they mix with neutrinos!

$$\frac{1}{2} \begin{pmatrix} (\overline{\nu}_L)^I \\ (\nu_R)^A \\ (\Psi_R)^K_A \end{pmatrix}^T \begin{pmatrix} (M_{LL})_{IJ} & (M_{LR})_{IB} & (M_{L\Psi})_{IN}^B \\ (M_{RL})_{AJ} & (M_{RR})_{AB} & (M_{R\Psi})_{AN}^B \\ (M_{\Psi L})_K^A_{J} & (M_{\Psi R})_K^A_{B} & (M_{\Psi\Psi})_K^A_{N}^B \end{pmatrix} \begin{pmatrix} (\overline{\nu}_L)^J \\ (\nu_R)^B \\ (\Psi_R)^N_{B} \end{pmatrix}$$

Spectrum in the neutrino-anomalon sector

see-saw type I

High-quality axion $\log_{10}(V/\text{GeV})$

High-quality PQ predicts sub-eV anomalons

Being SM-singlets, they mix with neutrinos!

and they interact with the SM via

i) flavor gauge interactions Spectrum in the neutrino-anomalon sector ii) neutrino mixing 20 20 $\log_{10}(m_X/\text{eV})$ 15 15 **Dark Radiation** 10 10 $\Delta N_{\text{eff}} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_{\Psi}}{\rho_{\gamma}}$ 5 $m_{\Psi} \lesssim 0.1 \text{ eV}$ -511 12 13 14 **High-quality axion** $\log_{10}(V/\text{GeV})$

High-quality PQ predicts sub-eV anomalons

How are they produced in the early Universe?

How are they produced in the early Universe?

Flavor production

Neutrino mixing

$$Y_{\Psi} = n_{\Psi}/s$$

Large couplings $g_f, \theta_{\nu\Psi} \sim \mathcal{O}(1)$

Thermalization with SM bath

$$\Delta N_{
m eff}^{
m TH} \simeq 1.13 rac{N_{\Psi}}{24} \left(rac{106.75}{g_s(T_{
m dec})}
ight)^{4/3} > 0.285$$

already excluded by PLANCK 18'!

	$\Delta N_{\rm eff} \ (2\sigma)$
Planck 2018	$\Delta N_{ m eff} < 0.285$
SO	$\Delta N_{ m eff} < 0.1$
CMB-S4	$\Delta N_{\mathrm{eff}} < 0.06$
CMB-HD	$\Delta N_{\rm eff} < 0.028$

Very small couplings

$$g_f, \theta_{\nu\Psi} \ll \mathcal{O}(1)$$

No thermalization / freeze-in production

$$\Delta N_{\rm eff}^{\rm FI} \simeq 56.96 \, Y_{\Psi}/g_s (T_{\rm FI})^{1/3} \ll 0.014$$

not observable!

41

How are they produced in the early Universe?

Flavor production

Neutrino mixing

$$Y_{\Psi} = n_{\Psi}/s$$

Large couplings $g_f, \theta_{\nu\Psi} \sim \mathcal{O}(1)$

Thermalization with SM bath

already excluded by PLANCK 18'!

 $\Delta N_{\rm eff}^{\rm TH} \simeq 1.13 \frac{N_{\Psi}}{24} \left(\frac{106.75}{g_{\circ}(T_{\rm dec})}\right)^{4/3} > 0.285$

Intermediate regime

 $0.014 \lesssim \Delta N_{\mathrm{eff}}^{\mathrm{FI}} \lesssim 1.13$

More precise computation is needed

Very small couplings

 $g_f, \theta_{\nu\Psi} \ll \mathcal{O}(1)$

No thermalization / freeze-in production

 $\Delta N_{\rm eff}^{\rm FI} \simeq 56.96 \, Y_{\Psi}/g_s (T_{\rm FI})^{1/3} \ll 0.014$

not observable!

42

Conclusions

- The axion hypothesis provides a well motivated BSM scenario
 - solves the strong CP problem
 - provides a DM candidate
 - is unambiguously testable by detecting the axion
- The Peccei Quinn symmetry must be protected by UV sources (quality problem)

GUT + flavor gauge symmetries provide the desired protection

No ad-hoc symmetries introduced

Connection between PQ and flavor structure

Cosmology of anomalons

- ⊗ more precise computations
- + anomalons as extended neutrino sectors
- + flavor observable connection

Много благодаря

THANK YOU!

SM fermions embedding

$$(\overline{Q}_L)^I_{ai} = \begin{pmatrix} \overline{u}_{L1}^I \ \overline{d}_{L1}^I \\ \overline{u}_{L2}^I \ \overline{d}_{L2}^I \\ \overline{u}_{L3}^I \ \overline{d}_{L3}^I \\ \overline{\nu}_L^I \ \overline{e}_L^I \end{pmatrix} , \qquad (Q_R)^{ai'A} = \begin{pmatrix} u_{R1}^A \ d_{R1}^A \\ u_{R2}^A \ d_{R2}^A \\ u_{R3}^A \ d_{R3}^A \\ \nu_R^A \ e_R^A \end{pmatrix}$$

Axion quality in PS – flavor model

$$\Delta \mathcal{L}_{\mathrm{UV}}^{PQ} \sim \frac{\mathcal{O}^{[d]}}{M_{\mathrm{Pl}}^{d-4}}$$

$$V_{\chi} \sim V_{\Delta} \sim V$$
$$V_{\Phi} \sim V_{\Sigma} \sim v$$

$$(\Delta\Delta^*)\Delta^3\chi^{*6} \to V^{11}/M_{\rm Pl}^7$$

$$\Phi^{2-k}\Sigma^k\Delta^2\chi^{*4} \to v^2V^6/M_{\rm Pl}^4$$

$$\Phi^{4-k}\Sigma^k\Delta\chi^{*2} \to v^4V^3/M_{\rm Pl}^3$$

$$\Phi^{4-k}\Sigma^k\Sigma^2 \to v^6/M_{\rm Pl}^2$$

Perturbativity

Landau pole of gauge couplings at scale O(10) x PS scale

Domain Wall problem

Bias term
$$V_{\text{bias}} = -2\Xi V^4 \cos\left(\frac{a}{V} + \delta\right)$$
 $V = N_{\text{DW}} f_a$

$$t_{\text{decay}} \approx 5 \times 10^{-5} \text{ s} \left(\frac{10^{-50}}{\Xi}\right) \left(\frac{12}{N_{\text{DW}}}\right)^4 \left(\frac{m_a}{0.02 \text{ eV}}\right)^3$$

Matching the bias term to $\Phi^{2-k}\Sigma^k\Delta^2\chi^{*4} \to v^2V^6/M_{\rm Pl}^4$

$$\Xi \sim \left(\frac{v}{M_{\rm Pl}}\right)^2 \left(\frac{V}{M_{\rm Pl}}\right)^2 \sim 10^{-52} (N_{\rm DW}/12)^2 (0.02 \text{ eV}/m_a)^2$$

$$t_{\text{decay}} \sim 10^{-3} \sec\left(\frac{12}{N_{\text{DW}}}\right)^6 \left(\frac{m_a}{0.02 \text{ eV}}\right)^5$$

DW decay before BBN $f_a \gtrsim 4 \times 10^8 \text{ GeV}$

Being SM-singlets, they mix with neutrinos!

New (light) fermions, interact with the SM via

- i) flavor gauge interactions
- ii) neutrino mixing

$$M_{
u\Psi} = egin{pmatrix} rac{v^2V}{\Lambda^2} & yv & lrac{vV}{\Lambda} & ilde{l}rac{vV^2}{\Lambda^2} \ .. & V & rrac{V^2}{\Lambda} & ilde{r}rac{V^4}{\Lambda^3} \ .. & .. & rac{V^3}{\Lambda^2} & rac{v^2}{\Lambda} + rac{V^5}{\Lambda^4} \ .. & .. & .. & rac{v^2}{\Lambda} + rac{V^5}{\Lambda^4} \end{pmatrix}$$

 \rightarrow In upper-left 2 \times 2: **see-saw** type I

Axion quality in PS – flavor model

Let's introduce the higher-dimensional operators

$$\Delta \mathcal{L}_{\mathrm{UV}} \sim \frac{\mathcal{O}^{[d]}}{M_{\mathrm{Pl}}^{d-4}} \longrightarrow \frac{\langle \mathcal{O} \rangle^{[d]}}{M_{\mathrm{Pl}}^{d-4}} \sim \frac{v^n V^{d-n}}{M_{\mathrm{Pl}}^{d-4}}$$

which ones are dangerous for PQ quality?

- *i)* Gauge-invariant *ii)* PQ- breaking *Easy checks*

- *iii)* check non-vanishing explicit index contraction *iv)* non-vanishing vacuum contribution $\langle \mathcal{O} \rangle \neq 0$

Not trivial

Anomalon spectrum

$$\frac{1}{2} \begin{pmatrix} (\overline{\nu}_L)^I \\ (\nu_R)^A \\ (\Psi_R)^K_A \end{pmatrix}^T \begin{pmatrix} (M_{LL})_{IJ} & (M_{LR})_{IB} & (M_{L\Psi})_{IN}^B \\ (M_{RL})_{AJ} & (M_{RR})_{AB} & (M_{R\Psi})_{AN}^B \\ (M_{\Psi L})_K^{\ A}_J & (M_{\Psi R})_K^{\ A}_B & (M_{\Psi \Psi})_K^{\ A}_N^B \end{pmatrix} \begin{pmatrix} (\overline{\nu}_L)^J \\ (\nu_R)^B \\ (\Psi_R)^N_B \end{pmatrix}$$

Dark radiation +

Dark Matter

Analogous to sterile neutrino DM

Axion astrophysical limits

Axion couplings with matter $g_{aX} = c_X m_X / f_a$

$$c_p = -0.45 + 0.29 \cos^2 \beta - 0.15 \sin^2 \beta$$
,
 $c_n = +0.013 - 0.14 \cos^2 \beta + 0.27 \sin^2 \beta$.
 $c_e = 0.33 \sin^2 \beta$

SN 1987A

 $g_{an}^2 + 0.61g_{ap}^2 + 0.53g_{an}g_{ap} \lesssim 8.3 \times 10^{-19}$

Red giants+white dwarfs

$$g_{ae} \lesssim 2 \times 10^{-13}$$

Saturating the perturbative bound $\tan \beta = 0.25$

$$\tan\beta \equiv \frac{v_u}{v_d} = \frac{\sqrt{\sum_A |v_A^{u\Phi}|^2 + \sum_A |v_A^{u\Sigma}|^2 + \sum_A |v_A^{u\Sigma'}|^2}}{\sqrt{\sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Sigma}|^2 + \sum_A |v_A^{d\Sigma'}|^2}} \cdot \frac{1}{\sqrt{\sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Sigma}|^2 + \sum_A |v_A^{d\Sigma'}|^2}}}{\sqrt{\sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Sigma}|^2 + \sum_A |v_A^{d\Sigma'}|^2}}} \cdot \frac{1}{\sqrt{\sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Sigma}|^2 + \sum_A |v_A^{d\Sigma'}|^2}}} \cdot \frac{1}{\sqrt{\sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Sigma}|^2 + \sum_A |v_A^{d\Sigma'}|^2}}} \cdot \frac{1}{\sqrt{\sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Sigma'}|^2 + \sum_A |v_A^{d\Sigma'}|^2}}} \cdot \frac{1}{\sqrt{\sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Delta'}|^2 + \sum_A |v_A^{d\Delta'}|^2}}} \cdot \frac{1}{\sqrt{\sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Delta'}|^2 + \sum_A |v_A^{d\Delta'}|^2}}} \cdot \frac{1}{\sqrt{\sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Phi}|^2 + \sum_A |v_A^{d\Delta'}|^2}}} \cdot \frac{1}{\sqrt{\sum_A |v_A^{d\Phi}|^2 + \sum_A |$$

 $f_a \gtrsim 2 \times 10^8 \text{ GeV}$ dominated by SN 1987A

Including radiative corrections to axion-electron coupling a stronger bound is obtained

 $f_a \gtrsim 2.3 \times 10^8 \text{ GeV}$

Quality problem of U(1)_{PQ}

We solve the Strong CP problem only if

$$\langle \theta_{\rm eff} \rangle < 10^{-10}$$
 (neutron EDM)

Minimizing the full potential, $V_{
m QCD} + \Delta V_{
m UV}^{
m PQ}$, it translates to

$$\left(\frac{f_a}{\Lambda_{\rm UV}}\right)^{d-4} f_a^4 \lesssim 10^{-10} \Lambda_{\rm QCD}^4$$

$$f_a \ll \Lambda_{\rm UV}$$

The lowest-dimensional PQ-breaking operators are the most dangerous!

Anomalon – neutrino mixings

			39 39
type	operator \mathcal{O}	d	$\langle M_{\mathcal{O}} \rangle$
LL	$\overline{Q}_L \overline{Q}_L \Delta (\Phi^2 + \Phi \Sigma + \Sigma^2)$	6	$v^2 V/\Lambda_{\mathrm{UV}}^2$
LR	$\overline{Q}_L Q_R \left(\Phi + \Sigma + \Sigma'\right)$	4	v
RR	$Q_R Q_R \Delta^*$	4	V
$L\Psi$	$\overline{Q}_L \Psi_R \chi(\Phi + \Sigma + \Sigma')$	5	/ 0 /
$L\Psi$	$\overline{Q}_L \Psi_R \Delta \chi^* (\Phi^* + \Sigma^* + \Sigma'^*)$	6	$vV^2/\Lambda_{\mathrm{UV}}^2$
$R\Psi$	$Q_R \Psi_R \Delta^* \chi$		$V^2/\Lambda_{ m UV}$
$R\Psi$	$Q_R \Psi_R \Delta \Delta^{*2} \chi$	7	$V^4/\Lambda_{ m UV}^3$
$\Psi\Psi$	$\Psi_R \Psi_R \Delta^* \chi^2$		$V^3/\Lambda_{ m UV}^2$
$\Psi\Psi$	$\Psi_R\Psi_R\Phi^{*2}$		$v^2/\Lambda_{ m UV}$
$\Psi\Psi$	$\Psi_R \Psi_R \left(\Sigma^{*2} + \Sigma^* \Sigma'^* + \Sigma'^{*2} \right)$	5	$v^2/\Lambda_{ m UV}$
$\Psi\Psi$	$\Psi_R\Psi_R\Delta\Delta^{*2}\chi^2$	8	$V^5/\Lambda_{ m UV}^4$

$$\begin{pmatrix} M_{LL} & M_{LR} & M_{L\Psi_{\perp}} & M_{L\Psi_{0}} \\ M_{RL} & M_{RR} & M_{R\Psi_{\perp}} & M_{R\Psi_{0}} \\ M_{\Psi_{\perp}L} & M_{\Psi_{\perp}R} & M_{\Psi_{\perp}\Psi_{\perp}} & M_{\Psi_{\perp}\Psi_{0}} \\ M_{\Psi_{0}L} & M_{\Psi_{0}R} & M_{\Psi_{0}\Psi_{\perp}} & M_{\Psi_{0}\Psi_{0}} \end{pmatrix} \sim \begin{pmatrix} \frac{v^{2}V}{\Lambda_{\text{UV}}^{2}} & yv & l\frac{vV}{\Lambda_{\text{UV}}} & \tilde{l}\frac{vV^{2}}{\Lambda_{\text{UV}}^{2}} \\ .. & V & r\frac{V^{2}}{\Lambda_{\text{UV}}} & \tilde{r}\frac{V^{4}}{\Lambda_{\text{UV}}^{3}} \\ .. & .. & \frac{V^{3}}{\Lambda_{\text{UV}}^{2}} & \frac{v^{2}}{\Lambda_{\text{UV}}} + \frac{V^{5}}{\Lambda_{\text{UV}}^{4}} \\ .. & .. & .. & \frac{v^{2}}{\Lambda_{\text{UV}}} + \frac{V^{5}}{\Lambda_{\text{UV}}^{4}} \end{pmatrix}$$