Nuclear Clock as Quintessometer

Cédric DELAUNAY Laboratoire d'Annecy de Physique Théorique

Cosmic WISPERs Workshop | Sofia | September 9, 2025

based on arXiv:2503.02932 w/ S.J. Lee, R. Ozeri, G. Perez, W. Ratzinger and B. Yu

Nuclear clock

Clock = stable oscillator (and a counter)

atomic/nuclear clocks based on 2-level systems

prepare a superposition $|\psi_0\rangle = \frac{1}{\sqrt{2}}\Big[|1\rangle + |2\rangle\Big]$ at later time $|\psi(t)\rangle = \frac{e^{iE_1}}{\sqrt{2}}\Big[|1\rangle + \exp{(i\Delta E\,t)}\,|2\rangle\Big]$ project back $P(t) \equiv |\langle\psi_0|\psi(t)\rangle|^2 = \cos^2(\Delta E\,t/2)$

Thorium 229

229Th nucleus has a low isomeric state

$$\Delta E \approx 8 \, \mathrm{eV}$$

close enough to optical range excitable with VUV lasers

 $= 0.360(7) \mu_N$

 $= 3.11(6) \times 10^{-28} e m^2$ $t_{1/2} = 7917(24) \text{ yr } (\alpha \text{ decay})$

We have good atomic clocks, so who cares? metrologists because better stability relative to electronic transitions, due to Faraday screening of external fields

Thorium 229m is unique (so far)

High BSM sensitivity

Nuclear binding and Coulomb repulsion naively cancel

$$\Delta E = \Delta E_{
m nuc} + \Delta E_{
m em}$$
 8eV ~ MeV - MeV

Changes in $\Delta E_{
m nuc,em}$ are amplified in the frenquency

$$\frac{\delta \nu}{\nu} \sim K_g \frac{\delta(\Delta E_{\text{nuc}})}{\Delta E_{\text{nuc}}} + K_e \frac{\delta(\Delta E_{\text{em}})}{\Delta E_{\text{em}}}$$
$$K_{g,e} \equiv \Delta E_{\text{nuc,em}} / \Delta E \sim \mathcal{O}(10^5)$$

Cancellation

Nuclear modeling of $\Delta E_{ m em}$

Woods-Saxon distribution
$$\ \rho(r,\theta) = \frac{\rho_0}{1 + \exp\left(\frac{r - R(\theta)}{z}\right)}$$

with nonspherical nucleus:

$$R(\theta) = R_0 \left[1 + \beta_2 Y_{20}(\theta) + \beta_3 Y_{30}(\theta) + \beta_4 Y_{40}(\theta) + \dots \right]$$

Fix R_0, β_2 with measurements of

$$\langle r^2 \rangle \equiv \frac{1}{e\,Z}\,\int d^3{f r}\,r^2 \rho(r,\theta)$$
 charge radius

$$Q_0 \equiv \int d^3 {f r} \, r^2
ho(r, \theta) \left[3 \cos^2(\theta) - 1 \right]$$
 quadrupole moment

then vary $\beta_{3,4}$

Caputo+ 2407.17526

Hidden forces

Ultralight scalar interactions

$$\mathcal{L}_{\text{int}} = \left[\frac{d_e}{16\pi\alpha} F_{\mu\nu} F^{\mu\nu} - \frac{d_g \beta(\alpha_s)}{4\alpha_s} G^a_{\mu\nu} G^{a\mu\nu} - d_{m_e} m_e \,\bar{e}e \right]$$
$$- \sum_{q=u,d,s} \left(d_{m_q} + \gamma_{m_q} d_g \right) m_q \bar{q}q \left[\frac{\phi}{M_{\text{Pl}}} \equiv \varphi \right]$$

normalized such that
$$\frac{\mathrm{d} \log \alpha}{\mathrm{d} \varphi} = d_e$$
, $\frac{\mathrm{d} \log \Lambda_{\mathrm{QCD}}}{\mathrm{d} \varphi} = d_g$, $\frac{\mathrm{d} \log m_{e,q}}{\mathrm{d} \varphi} = d_{m_{e,q}}$

Current constraints

MICROSCOPE

Eot-Wash

Projected sensitivities

significant improvements expected both at large and small distances assuming $\delta\nu/\nu=10^{-19}$

Scalar-field solutions near a source

Massive bodies source nonzero scalar fields:

$$Q({\bm r}) = (d\log m_A({\bm r})/d\alpha,\cdots)$$
 dilatonic charges
$$\left({\bm \nabla}^2 - m_\phi^2\right)\phi({\bm r}) = \frac{Q({\bm r})\cdot d}{M_{\rm Pl}}\rho({\bm r})$$
 linear couplings source density

Around the source:
$$\phi(\boldsymbol{r}) = \frac{1}{M_{\rm Pl}} \int \mathrm{d}^3 \boldsymbol{r'} \, \phi_G(\boldsymbol{r}, \boldsymbol{r'}) \; Q(\boldsymbol{r'}) \cdot d \; \rho(\boldsymbol{r'})$$
 Green's function
$$\phi_G(\boldsymbol{r}, \boldsymbol{r'}) = -\frac{e^{-m_\phi |\boldsymbol{r} - \boldsymbol{r'}|}}{4\pi |\boldsymbol{r} - \boldsymbol{r'}|}$$

Spherical Homogeneous Sources

2 regimes = long and short distance from the source

$$M = \frac{4\pi}{3}\rho R^3$$

$$r \gg R$$

point-like source

approximation
$$m_{\phi}R \rightarrow 0$$

$$\phi_{\text{point}}(r) \approx -Q \cdot d \frac{M}{M_{\text{Pl}}} \frac{e^{-m_{\phi}r}}{4\pi r}$$

infinite-plate

approximation

$$m_{\phi}R \to \infty$$

r = R + s

 $|s| \ll R$

$$\phi_{\rm plate}(R+s) \approx -Q \cdot d \, \frac{\rho}{2 M_{\rm Pl} m_{\phi}^2} \, \left\{ \begin{array}{l} e^{-m_{\phi} s} \ , \ s > 0 \\ 2 - e^{-m_{\phi} |s|} \ , \ s < 0 \end{array} \right. \label{eq:plate}$$

Quintessometers

Th229 clock will provide best probes for hidden forces of various ranges

Basic scheme

Move a nuclear clock close to a source in a controlled way

The clock frequency will change due to interaction with the ambient field that varies with distance $\delta\phi=\phi(r_2)-\phi(r_1)\neq 0$

$$\frac{\delta \nu_{\rm Th}}{\nu_{\rm Th}} = K_{\rm Th} \cdot d \; \frac{\delta \phi}{M_{\rm Pl}} \quad + \, {\rm effect \; from \; gravity-field \; gradient \; (time \; dilation)} \\ \qquad \qquad K_{\rm Th} = (K_{\rm Th}^e, K_{\rm Th}^g, \cdots) \; \; {\rm nuclear \; clock \; sensitivity \; coefficients}$$

Quintessometer

nuclear/electronic clock comparison

universal gravitational effects cancel out the clocks still respond differently to $\delta\phi$

$$\frac{\delta(\nu_{\rm Th}/\nu_{\rm el})}{\nu_{\rm Th}/\nu_{\rm el}} = (K_{\rm Th} - K_{\rm el}) \cdot d \frac{\delta\phi}{M_{\rm Pl}}$$

no loss in sensitivity: $K_{\mathrm{Th}} \gg K_{\mathrm{el}}$

$\delta\phi$ scalings

ullet Point-source $m_\phi R o 0$ taking $r_2 o \infty$

$$\delta\phi_{\mathrm{point}} \propto \frac{e^{-m_{\phi}r_{1}}}{r_{1}}$$

• Infinite-plate $|s_{1,2}| = |r_{1,2} - R| \ll R$ for $m_\phi R \to \infty$

$$\delta\phi_{\text{plate}} \propto m_{\phi}^{-2} \left(e^{-m_{\phi}s_1} - e^{-m_{\phi}s_2} \right)$$

Large distance probes

using Earth as a source

Clock in space

Monitor a quintessometer along an elliptic orbit For long-range forces $m_{\phi} \lesssim R_{\oplus}^{-1} \approx 3 \times 10^{-14} \, \mathrm{eV}$, and high altitude $s_1 \gtrsim R_{\oplus}$:

$$\delta\phi_{\mathrm{point}} \propto \frac{e^{-m_{\phi}r_1}}{r_1} \simeq \frac{e^{-m_{\phi}s_1}}{s_1}$$

exponentially suppressed for $m_{\phi}s_{1}>1$

 $s_2\gg s_1$

$$|d_g| \approx 3 \times 10^{-8} \left[\frac{5.5 \text{ g/cm}^3}{\rho_{\oplus}} \right]^{1/2} \left[\frac{K_g}{10^5} \right]^{-1/2} \left[\frac{\delta \nu / \nu}{10^{-19}} \right]^{1/2} \times \sqrt{s_1 / R_{\oplus}}$$

only rely on clock stability (not accuracy), as the clock is compared to itself

Clocks in space vs on the ground

Compare quintessometers on the ground and at far distance in space Q_{Th}^1 at s_2 isn't affected, but Q_{Th}^2 is!

For
$$m_{\phi} \lesssim R_{\oplus}^{-1} \approx 3 \times 10^{-14} \,\mathrm{eV}$$
:

$$\delta\phi_{
m point} \propto rac{e^{-m_{\phi}R_{\oplus}}}{R_{\oplus}}$$

and

$$|d_g| \approx 3 \times 10^{-8} \left[\frac{5.5 \text{ g/cm}^3}{\rho_{\oplus}} \right]^{1/2} \left[\frac{K_g}{10^5} \right]^{-1/2} \left[\frac{\delta \nu / \nu}{10^{-19}} \right]^{1/2}$$
 \leftarrow ultimate sensitivity

with Earth as a source

Clocks in space vs on the ground

Compare quintessometers on the ground and at far distance in space Q_{Th}^{1} at s_{2} isn't affected, but Q_{Th}^{2} is!

For $m_{\phi}R_{\oplus} > 1$ the infinite-plate limit applies:

$$\delta\phi_{\rm plate} \propto m_{\phi}^{-2}$$

$$|d_g| \approx 3 \times 10^{-8} \left[\frac{5.5 \text{ g/cm}^3}{\rho_{\oplus}} \right]^{1/2} \left[\frac{K_g}{10^5} \right]^{-1/2} \left[\frac{\delta \nu / \nu}{10^{-19}} \right]^{1/2} \times m_{\phi} R_{\oplus}$$

Clocks on the ground

Compare quintessometers at different altitude points

eg. sea-level vs. high mountain

For
$$m_{\phi} \lesssim R_{\oplus}^{-1} \approx 3 \times 10^{-14} \, \mathrm{eV}$$
:

$$|d_g| \approx 2 \times 10^{-6} \left[\frac{1 \text{ km}}{h} \right]^{1/2} \left[\frac{5.5 \text{ g/cm}^3}{\rho_{\oplus}} \right]^{1/2} \left[\frac{\delta \nu / \nu}{10^{-19}} \right]^{1/2}$$

$$\times \sqrt{m_\phi R_\oplus} \quad \text{for} \quad R_\oplus^{-1} < m_\phi < h^{-1}$$

$$imes \sqrt{R_{\oplus}/h} \left(m_{\phi} h\right) \ \ {
m for} \ \ m_{\phi} > h^{-1}$$

Large distance sensitivities

- Quintessometers could probe 2 orders of magnitude below EP tests
- Reaching uncharted territories already with ground-based experiments

Small distance probes

Getting close to Th229

Bring large source ($m_\phi R\gg 1$) very close ($s_1\ll R$) to Th229 from infinity $(s_2 \to \infty)$

$$\rightarrow \delta\phi_{\rm plate} \propto m_{\phi}^{-2} \rightarrow d \propto m_{\phi}$$

$$\leftarrow Q_{\rm Th}$$

How close can one get?

- single Th229 in a trap: $s_1 \sim 10-100\,\mathrm{cm}$
- crystal-embedded Th229: $s_1 \sim 10 \, \mathrm{nm}$

$$|d_g| \approx 10^7 \left[\frac{m_\phi}{20\,\mathrm{eV}} \right] \left[\frac{\rho_\mathrm{Pt}}{\rho} \right]^{1/2} \left[\frac{\delta \nu / \nu}{10^{-19}} \right]^{1/2} \qquad \text{for } R^{-1} \ll m_\phi < (10\,\mathrm{nm})^{-1} \approx 20\,\mathrm{eV}$$

Rotating Holed disk

Move the source, not the clock!

platinum thick disk gold-coated to suppress Casimir effects

 $\delta\phi\neq0$ induces signal modulation at frequency $\nu_{\rm mod}=N\omega/2\pi$ $-\!\!\!>\Gamma_{\rm Th}\sim200\,{\rm Hz}$

Th229 spectrum develops sidebands

Excite ²²⁹Th crystal with detuned VUV laser $\nu_{\rm laser} = \nu_{\rm Th} + \nu_{\rm mod}$ and compare to on-resonance excitation $\nu_{\rm laser} = \nu_{\rm Th}$

Host Isotope Shifts?

Compare Th229 host-crystals of different isotopes

The field is sourced by surrounding atoms in the host at lattice spacing

$$s \gtrsim 0.1 - 1 \,\mathrm{nm}$$

eg. CaF $_2$ hosts with magic nuclei 40 Ca and 48 Ca ($\delta \langle r^2 \rangle \approx 0$)

But cell volume changes, EM fields felt by Th229 also, shifting the frequency

Short distance sensitivities

• $Q_{
m Th}$ + rotating disk could probe 2 orders of mag. below 5th force searches at $m_\phi \sim 10\,{
m eV}$

Conclusions

Conclusions

- Th229 nuclear clock is a fantastic BSM probes
- Huge progress in 2024 ($\delta \nu / \nu \approx 10^{-12}$) from VUV laser excitations
- Once available at $\delta \nu / \nu \sim 10^{-19}$ accuracy (state-of-the art in electronic counterparts), possibilities to build *quintessometers* probing (static) exotic forces with unprecedented precision for $m_\phi < 10^{-10}\,\mathrm{eV}$ and $3\,\mathrm{eV} < m_\phi < 300\,\mathrm{eV}$!