
Kubernetes
Networking

An In-Depth Look

Lisa Zangrando

Kubernetes Networking

Overview

The Kubernetes networking model allows the different parts of a
Kubernetes cluster, such as Nodes, Pods, Services, and outside
traffic, to communicate with each other.

Why understanding it matters

• Properly configure your environment.

• Enable complex networking scenarios.

Key concepts covered

• Networking Model

• Cluster communication types:

• Container-to-Container

• Pod-to-Pod

• Pod-to-Service

• Internet-to-Service

Kubernetes Networking
model

• The Kubernetes networking model is designed around the following
key principles:

• Every pod gets its own IP address
• Containers within a pod share the pod IP address and can

communicate freely with each other
• Pods can communicate with all other pods in the cluster using pod IP

addresses (without NAT)
• Isolation (restricting what each pod can communicate with) is

defined using network policies
• Plugin-based flexibility and customization.

• This style of network is referred to as a “flat network”
• From a pod's view, the cluster is a single network plane

https://www.tigera.io/learn/guides/kubernetes-networking/

Kubernetes Networking
model

• Given these constraints, Kubernetes networking can be
broken into four distinct problems to solve:

o Container-to-Container Networking: how containers
within the same Pod communicate.

o Pod-to-Pod Networking: how Pods communicate with each
other across nodes.

o Pod-to-Service Networking: how Pods interact with
Services, including load balancing and discovery.

o Internet-to-Service Networking: how external traffic
reaches cluster Services.

• And to solve them, Kubernetes employs several key
networking components and resources:

• Network namespaces, iptables, CNI plugins, Services...

Container-to-Container
networking

• Pod is modelled as a group of containers

• How containers within the same Pod communicate?

• Occurs through the Pod (Linux) Network Namespace
o logical networking stack with its own logical router, firewall,

and other network devices.
o It allows for separate network interfaces and routing tables

isolated from the rest of the system.
o Container within the Pods will communicate with each

other via localhost within the same Pod Network
namespace

Pod-to-Pod networking
(same node)

• Pods network namespaces are connected via virtual ethernet
devices (veth pairs) to root network namespace within the node

• A virtual network bridge allows traffic between these interfaces,
with communication using ARP (Address Resolution Protocol)

• Operates at Layer 2 (Data Link) using MAC addresses for packet
forwarding.

• When a packet arrives:
1. The bridge checks the destination MAC address.
2. If the destination is local (on the same node), it forwards the

packet to the appropriate veth interface.
3. If the destination is not local, it sends the packet to the default

route (gateway).

Pod-to-Pod networking
(same node)

• If data is sent from Pod 1 to Pod 2, the flow of events would like
this (refer to diagram)

1. Pod 1 traffic flows through eth0 to the root network namespaces
virtual interface veth0.

2. Then traffic goes via veth0 to the virtual bridge which is
connected to veth1.

3. Traffic goes via the virtual bridge to veth1.
4. Finally, traffic reaches eth0 interface of Pod 2 via veth1.

Pod-to-Pod networking
(different nodes)

• How do Pods communicate across Nodes?

• Each Pod has a unique IP within the cluster assigned by the CNI
plugin.

• When a Pod sends traffic to another Pod on a different node:
o the traffic exits the Pod through its veth interface.
o the virtual bridge forwards the traffic to the default route if the

destination is not local.
o the default route sends the packet to node B, using one of two

methods implemented by the CNI plugin: overlay and underlay
network

• On the destination node:
o The packet enters the node's root network namespace.
o It is forwarded to the destination Pod via the virtual bridge and veth

interface.

Pod-to-Pod networking
(different nodes)

Container Network Interface
(CNI plugin)

• The Container Network Interface (CNI) is a specification
maintained by the Cloud Native Computing Foundation (CNCF)
that standardizes the configuration of network interfaces for Linux
containers.

• In Kubernetes, a CNI plugin is a software component implementing
the CNI specification, enabling seamless communication between
Pods, Nodes, and external network components.

• Key features:
• configures network interfaces for Linux containers.
• allocates networking resources, such as IP addresses.
• enforces network policies for traffic control.
• manages routing between Pods and external networks using two

approaches: overlay networks and underlay networks.

Overlay vs Underlay Network
(CNI plugin)

• Overlay Network
• Uses a virtual network layer on top of the existing physical network.
• Encapsulates Pod traffic (e.g., VXLAN, IP-in-IP) so that Pods can

communicate across nodes without modifying the underlying
infrastructure.

• More flexible but can introduce additional overhead.

• Underlay Network
• Directly integrates Pods with the physical network infrastructure.
• Assigns routable IP addresses to Pods, making them first-class citizens

in the network.
• Provides lower latency and better performance but requires more

advanced networking configurations.

Common CNI plugins

• Calico: focuses on security and network policies using BGP for routing.

• Flannel: simplifies networking by creating an overlay network using VXLAN.

• Weave Net: provides a simple and fast overlay network for Kubernetes.

• Cilium: advanced networking with eBPF-based security policies and
observability.

• Canal: combines Flannel for networking and Calico for network policies.

• Kube-Router: integrated networking, firewall, and routing for Kubernetes
clusters.

• Multus: allows Pods to attach to multiple network interfaces.

• Amazon VPC CNI: optimized for AWS, enabling Pods to use VPC-native
networking.

• Azure CNI: integrates with Azure virtual networks for Kubernetes workloads.

• Google Cloud CNI: provides seamless networking for Pods in GKE.

• Antrea: implements Open vSwitch for Kubernetes networking.

Pod-to-Service networking

• Pods are Dynamic!
• Scale up or down in response to changes in demand.
• Recreated automatically after a crash or node failure.
• IP addresses change with these events, which can

complicate networking.

• Kubernetes solution: the Service abstraction:
• Provides stable network access to a set of Pods, shielding

clients from the dynamic changes of Pods.
• Assigns a long-term virtual IP to the frontend, ensuring

reliable communication with backend Pods.
• Load-balances traffic directed to the virtual IP, distributing it

evenly among the backend Pods.

• Clients connect with the static virtual IP of the Service.

Defining a Service

• This example creates a Nginx Pod and exposes it via a Service. The
Service forwards traffic to any Pod with the label app: nginx, ensuring
dynamic routing as Pods are added or removed.

• Explanation of Service attributes
• selector: Matches the label of the target Pods, ensuring that traffic

is dynamically routed to the correct set of Pods.
• type: Determines how the Service is exposed:

▪ ClusterIP: The Service is accessible only within the cluster.
▪ NodePort: The Service is accessible externally on each

node's IP and a specific port.
▪ LoadBalancer: Integrates with cloud providers to create an

external load balancer.
▪ ExternalName: Maps the Service to an external DNS name.

• port: The port on which the Service is accessible within the cluster.
• targetPort: The port on the Pod where traffic should be forwarded,

ensuring requests reach the correct application process.

apiVersion: v1

kind: Pod

metadata:

 name: nginx-pod

 labels:

 app: nginx # Label used by the Service selector

spec:

 containers:

 - name: nginx

 image: nginx:latest

 ports:

 - containerPort: 80 # The port on which the container listens

apiVersion: v1

kind: Service

metadata:

 name: nginx-service

spec:

 selector:

 app: nginx # Matches the label of the target Pod(s)

 type: ClusterIP # ClusterIP, NodePort, LoadBalancer,

ExternalName

 ports:

 - protocol: TCP # Communication protocol (TCP/UDP)

 port: 80 # Port exposed by the Service

 targetPort: 80 # Port on the Pod to which traffic is forwarded

-o wide

ClusterIP Service type

• This example illustrates how to set up a Service to route traffic
to two NGINX Pods, using a ClusterIP Service for exposure.

• The Pods are accessible only within the cluster

apiVersion: v1

kind: Service

metadata:

 name: nginx-clusterip

spec:

 type: ClusterIP

 selector:

 app: nginx

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

$ kubectl get pods –o wide

NAME READY STATUS RESTARTS AGE IP NODE

nginx1 1/1 Running 0 65m 10.244.1.3 k8s-node

nginx2 1/1 Running 0 65m 10.244.1.4 k8s-node

$ kubectl get svc -o wide

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR

nginx-clusterip ClusterIP 10.103.197.222 <none> 80/TCP 46m app=nginx

$ kubectl describe svc nginx-clusterip

...

IPs: 10.103.197.222

Port: <unset> 80/TCP

TargetPort: 80/TCP

Endpoints: 10.244.1.3:80,10.244.1.4:80

Access the Service from within the cluster (e.g., using another Pod):

kubectl exec -it dnsutils – sh

curl http://10.103.197.222

<html>

<body>

 <h1>Nginx 1</h1>

</body>

</html>

curl http://10.103.197.222

<html>

<body>

 <h1>Nginx 2</h1>

</body>

</html>

NodePort Service type

• When a Service is defined with type: NodePort, Kubernetes
exposes it on a static port (e.g., 30080) on all cluster nodes. This
allows external users to access the application using
http://<node-ip>:30080.

• The traffic flow is as follows:
• A user sends a request to http://<node-ip>:30080.
• The request reaches any Kubernetes node in the cluster.
• Kubernetes forwards the request internally to the appropriate

Pod running the Nginx container on targetPort: 80.

• User -> http://<node-ip>:30080 -> Kubernetes Node (listening on
30080) -> Forwards to Pod (targetPort: 80)

• This mechanism allows external access to services without requiring
an external load balancer, making it useful for testing or internal
access scenarios.

NodePort example

• Same example as before but using NodePort type to expose our
nginx

apiVersion: v1

kind: Service

metadata:

 name: nginx-nodeport

spec:

 type: NodePort

 selector:

 app: nginx

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

 nodePort: 30115 # port exposed on each node (optional)

$ kubectl get pods

NAME READY STATUS RESTARTS AGE IP NODE

nginx1 1/1 Running 0 65m 10.244.1.3 k8s-node

nginx2 1/1 Running 0 65m 10.244.1.4 k8s-node

$ kubectl get svc -o wide

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) SELECTOR

nginx-nodeport NodePort 10.105.120.195 <none> 80:30155/TCP app=nginx

$ kubectl describe svc nginx-nodeport

...

IPs: 10.105.120.195

Port: <unset> 80/TCP

TargetPort: 80/TCP

NodePort: <unset> 30155/TCP

Endpoints: 10.244.1.3:80,10.244.1.4:80

Access the Service from outside the cluster using the IP of the node:

curl http://<NODE_IP>:30155

curl http://192.168.81.87:30155

<html>

<body>

 <h1>Nginx 2</h1>

</body>

</html>

LoadBalancer Service type

• The LoadBalancer service type exposes a service to the
outside world using an external load balancer resource.

o It automatically provisions an external load balancer

o integration with a load balancer provider is required.

• Cloud providers such as Google Cloud (GKE) and Amazon
Web Services (AWS) automatically provision cloud-based
load balancers when you create a LoadBalancer service.

• For on-premises Kubernetes clusters, MetalLB offers a
similar load balancing functionality, allowing you to use
external IPs and distribute traffic across your cluster nodes,

• Difference from NodePort:
o NodePort exposes a service on a specific port across all

nodes in the cluster. However, external clients must know
the node’s IP and port to access the service.

o LoadBalance provides a single external IP that simplifies
access, and it automatically distributes traffic to the pods.

apiVersion: v1

kind: Service

metadata:

 name: nginx-nodeport

spec:

 type: LoadBalancer

 selector:

 app: nginx

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

ExternalName Service type

• ExternalName is a Kubernetes Service type that acts as an
alias for an external DNS name instead of directing traffic to
internal Pods.

• How it works
o When a client queries the Service, Kubernetes responds

with a CNAME record pointing to the external service.
o Useful for integrating external databases, APIs, or legacy

services without exposing internal cluster details.

apiVersion: v1

kind: Service

metadata:

 name: external-db

spec:

 type: ExternalName

 externalName: database.example.com

 Pod accessing external-db will be redirected to database.example.com
automatically.

Kube-proxy

• What is kube-proxy?
o A Kubernetes component running on each node.
o Handles network traffic to Pods associated with a Service.
o Uses iptables or IPVS to route and balance traffic.

• How does it work?
o PREROUTING: Intercepts incoming traffic to a Service and

forwards it to a Pod.
o POSTROUTING: Modifies the source IP to ensure correct

communication between the node and the client.
o Load Balancing: Distributes traffic across available Pods
o Dynamic Updates: reconfigures rules when Pods change.

• Example of iptables rules:
o iptables -t nat -A PREROUTING -p tcp -d
<Service-IP> --dport <Service-Port> -j DNAT --
to-destination <Pod-IP>:<Pod-Port>

o iptables -t nat -A POSTROUTING -p tcp -d <Pod-
IP> --dport <Pod-Port> -j SNAT --to-source
<Node-IP>

Kubernetes DNS

• Kubernetes DNS is a built-in service that enables name resolution
within a Kubernetes cluster. It facilitates communication between
pods and services using human-readable names instead of IP
addresses.

• DNS records are automatically configured for all services and pods,
streamlining service discovery.

• Service Discovery: automatically resolves service names to their
Cluster IPs, enabling seamless communication.

• Support for Namespaces: uses Fully Qualified Domain Names
(FQDNs) to uniquely identify services across namespaces.

o service-name.namespace.svc.cluster.local

• CoreDNS Integration: Kubernetes uses CoreDNS as its default DNS
server for efficient and scalable name resolution.

Kubernetes DNS
(example)

• Assume our nginx-service is running in the default namespace, its
FQAN is: nginx-service.default.svc.cluster.local.

• Inside a pod, use the following command to resolve the service
name: nslookup nginx-service.default.svc.cluster.local.

$ kubectl get pods

NAME READY STATUS RESTARTS AGE IP NODE

nginx1 1/1 Running 0 65m 10.244.1.3 k8s-node

nginx2 1/1 Running 0 65m 10.244.1.4 k8s-node

$ kubectl get svc -o wide

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR

nginx-clusterip ClusterIP 10.103.197.222 <none> 80/TCP 46m app=nginx

$ kubectl describe svc nginx-clusterip

...

IPs: 10.103.197.222

Port: <unset> 80/TCP

TargetPort: 80/TCP

Endpoints: 10.244.1.3:80,10.244.1.4:80

#Access the Service from within the cluster (e.g., using another Pod):

kubectl exec -it dnsutils – sh

nslookup 10.103.197.222

222.197.103.10.in-addr.arpa name = nginx-service.default.svc.cluster.local.

curl nginx-service.default.svc.cluster.local.

<html>

<body>

 <h1>Nginx 2</h1>

</body>

</html>

Internet-to-Service
(Ingress)

• Kubernetes Ingress is an advanced solution for managing external access
to services within a cluster, centralizing traffic routing, load balancing, and
secure access.

• Ingress vs LoadBalancer Service type

Ingress: fanout

• A fanout configuration routes traffic from a single IP address to more
than one Service, based on the HTTP URI being requested.

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: simple-fanout-example

spec:

 rules:

 - host: foo.bar.com

 http:

 paths:

 - path: /foo

 pathType: Prefix

 backend:

 service:

 name: service1

 port:

 number: 4200

 - path: /bar

 pathType: Prefix

 backend:

 service:

 name: service2

 port:

 number: 8080

Ingress: virtual hosting

• Name-based virtual hosts support routing HTTP traffic to multiple
host names at the same IP address.

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: name-virtual-host-ingress

spec:

 rules:

 - host: foo.bar.com

 http:

 paths:

 - pathType: Prefix

 path: "/"

 backend:

 service:

 name: service1

 port:

 number: 80

 - host: bar.foo.com

 http:

 paths:

 - pathType: Prefix

 path: "/"

 backend:

 service:

 name: service2

 port:

 number: 80

Thanks!

References

• https://kubernetes.io/docs/concepts/cluster-
administration/networking/

• https://kubernetes.io/docs/concepts/services-
networking/

• https://kubernetes.io/docs/concepts/services-
networking/service/

• https://kubernetes.io/docs/concepts/services-
networking/ingress-controllers/

• https://kubernetes.io/docs/concepts/services-
networking/gateway/

• https://medium.com/@extio/understanding-kubernetes-
node-to-node-communication-a-deep-dive-
e1d6a5ff87f3

• https://support.tools/post/kubernetes-networking-deep-
dive/

• https://docs.cilium.io/en/stable/network/concepts/routi
ng/

https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/services-networking/
https://kubernetes.io/docs/concepts/services-networking/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/gateway/
https://kubernetes.io/docs/concepts/services-networking/gateway/
https://medium.com/@extio/understanding-kubernetes-node-to-node-communication-a-deep-dive-e1d6a5ff87f3
https://medium.com/@extio/understanding-kubernetes-node-to-node-communication-a-deep-dive-e1d6a5ff87f3
https://medium.com/@extio/understanding-kubernetes-node-to-node-communication-a-deep-dive-e1d6a5ff87f3
https://support.tools/post/kubernetes-networking-deep-dive/
https://support.tools/post/kubernetes-networking-deep-dive/

	Slide 1: Kubernetes Networking
	Slide 2: Kubernetes Networking
	Slide 3: Kubernetes Networking model
	Slide 4: Kubernetes Networking model
	Slide 5: Container-to-Container networking
	Slide 6: Pod-to-Pod networking (same node)
	Slide 7: Pod-to-Pod networking (same node)
	Slide 8: Pod-to-Pod networking (different nodes)
	Slide 9: Pod-to-Pod networking (different nodes)
	Slide 10: Container Network Interface (CNI plugin)
	Slide 11: Overlay vs Underlay Network (CNI plugin)
	Slide 12: Common CNI plugins
	Slide 13: Pod-to-Service networking
	Slide 14: Defining a Service
	Slide 15: ClusterIP Service type
	Slide 16: NodePort Service type
	Slide 17: NodePort example
	Slide 18: LoadBalancer Service type
	Slide 19: ExternalName Service type
	Slide 20: Kube-proxy
	Slide 21: Kubernetes DNS
	Slide 22: Kubernetes DNS (example)
	Slide 23: Internet-to-Service (Ingress)
	Slide 24: Ingress: fanout
	Slide 25: Ingress: virtual hosting
	Slide 26: Thanks!

