Kubernetes
Networking

An In-Depth Look

Kubernetes Networking

Overview

The Kubernetes networking model allows the different parts of a
Kubernetes cluster, such as Nodes, Pods, Services, and outside
traffic, to communicate with each other.

Why understanding it matters
* Properly configure your environment.
+ Enable complex networking scenarios.

Key concepts covered
* Networking Model
* Cluster communication types:
+ Container-to-Container
* Pod-to-Pod
* Pod-to-Service
* Internet-to-Service

Kubernetes Networking
model

* The Kubernetes networking model is designed around the following
key principles:

* Everypod getsits own IP address

* Containers within a pod share the pod IP address and can
communicate freely with each other

* Pods can communicate with all other pods in the cluster using pod IP
addresses (without NAT)

* Isolation (restricting what each pod can communicate with) is
defined using network policies

* Plugin-based flexibility and customization.

* This style of network is referred to as a “flat network”

* From a pod's view, the clusteris a single network plane

https://www.tigera.io/learn/guides/kubernetes-networking/

Kubernetes Networking
model

* Given these constraints, Kubernetes networking can be
broken into four distinct problems to solve:

o Container-to-Container Networking: how containers
within the same Pod communicate.

o Pod-to-Pod Networking: how Pods communicate with each
other across nodes.

o Pod-to-Service Networking: how Pods interact with
Services, including load balancing and discovery.

o Internet-to-Service Networking: how external traffic
reaches cluster Services.

* Andto solve them, Kubernetes employs several key
networking components and resources:

. Network namespaces, iptables, CNI plugins, Services...

€——— |nternet to Kubernetes

v

Pod to Pod

Kubernetes Cluster

—_—_ —_——,e— e e e e e e e e e e — — — — — —— — — — ————

Container-to-Container
networking

* Podis modelled as a group of containers
* How containers within the same Pod communicate?

* Occursthrough the Pod (Linux) Network Namespace

o logical networking stack with its own logical router, firewall,
and other network devices.

o It allows for separate network interfaces and routing tables
isolated from the rest of the system.

o Container within the Pods will communicate with each
other via localhost within the same Pod Network
namespace

[Pod 1 Network @ \

namespace wid

Container 2

4

Container 1

t

Localhost

—— - ——
| Virtual
@ P Bridge

Root Network Namespace

Pod 2 Networ@

namespace Rod

Container 3

| eth0 |

Container-to-Container & Pod-to-Pod Networking

node
Node 1

Pod-to-Pod networking
(same node)

namespace pod

#od namespace

Container 1 Container 2

4

Container 3

* Pods network namespaces are connected via virtual ethernet *
devices (veth pairs) to root network namespace within the node

Localhost

* Avirtual network bridge allows traffic between these interfaces, | ————p——————— — & e
with communication using ARP (Address Resolution Protocol) % %

* Operates at Layer 2 (Data Link) using MAC addresses for packet

1 veth1 |
forwarding. I 8. '---T---‘
* When a packet arrives: IV_’@_’ \;::;a; >3
1. Thebridge checks the destination MAC address. ~
2. Ifthe destination is local (on the same node), it forwards the Root Network Namespace e
packet to the appropriate veth interface. ,—etho_l %
3. Ifthe destination is not local, it sends the packet to the default node

route (gateway). Container-to-Container & Pod-to-Pod Networking Node 1

Pod-to-Pod networking
(same node)

[Pod 1 Network @ Pod 2 Networ@

namespace pad

pad namespace

Container 1 Container 2

t i}

Container 3

Localhost

* Ifdatais sent from Pod 1 to Pod 2, the flow of events would like T T --"-_---"---"--"--% -----------
this (referto diagram) _ W

r ve

1. Pod 1 traffic flows through ethO to the root network namespaces L 0. e i)

virtual interface vethO. | T
2. Then traffic goes via vethO to the virtual bridge which is @ ‘;':,:;f >

connected to veth1. -
3. Traffic goes via the virtual bridge to veth1. Root Network Namespace o
4. Finally, traffic reaches ethQinterface of Pod 2 via veth1. [etho |

node

Container-to-Container & Pod-to-Pod Networking Node1

kube-proxy
iptables/IPVS)
el
| eth0 | 0{}
node
Node 2

—{ Cluster Network

o= o

Pod-to-Pod networking \
(different nodes)

* Each Pod has aunique IP within the cluster assigned by the CNI
plugin.

* When a Pod sends traffic to another Pod on a different node:
o the traffic exits the Pod through its veth interface.

* How do Pods communicate across Nodes?

o thevirtual bridge forwards the traffic to the default route if the
destination is not local.

o the default route sends the packetto node B, using one of two
methods implemented by the CNI plugin: overlay and underlay
network

¢ Onthe destination node:

o Thepacket enters the node's root network namespace.

o ltisforwarded to the destination Pod via the virtual bridge and veth
interface.

Pod-to-Pod networking =
(different nodes)

l___am__: l___tm___: |___'_'_'°__: l___dn__l
—@
Bridge Bridg
| kube-‘proxy | | kube-proxy |
\ 4
| iptablis/IPVS | > | iptables/IPVS |
’
[etho | 3 | etho |
node '
Node 2

—{ Cluster Network

Sy,

Container Network Interface
(CNI plugin)

The Container Network Interface (CNI) is a specification
maintained by the Cloud Native Computing Foundation (CNCF)
that standardizes the configuration of network interfaces for Linux
containers.

In Kubernetes, a CNI plugin is a software component implementing
the CNI specification, enabling seamless communication between
Pods, Nodes, and external network components.
Key features:

* configures network interfaces for Linux containers.

* allocates networking resources, such as IP addresses.

* enforces network policies for traffic control.

* manages routing between Pods and external networks using two
approaches: overlay networks and underlay networks.

Overlay vs Underlay Network
(CNI plugin)

* Overlay Network
* Uses avirtual network layer on top of the existing physical network.

* Encapsulates Pod traffic (e.g., VXLAN, IP-in-IP) so that Pods can
communicate across nodes without modifying the underlying
infrastructure.

* Moreflexible but can introduce additional overhead.

* Underlay Network
* Directly integrates Pods with the physical network infrastructure.

* Assigns routable IP addresses to Pods, making them first-class citizens
in the network.

* Provides lower latency and better performance but requires more
advanced networking configurations.

Common CNI plugins

Calico: focuses on security and network policies using BGP for routing.
Flannel: simplifies networking by creating an overlay network using VXLAN.
Weave Net: provides a simple and fast overlay network for Kubernetes.

Cilium: advanced networking with eBPF-based security policies and
observability.

Canal: combines Flannel for networking and Calico for network policies.

Kube-Router: integrated networking, firewall, and routing for Kubernetes
clusters.

Multus: allows Pods to attach to multiple network interfaces.

Amazon VPC CNI: optimized for AWS, enabling Pods to use VPC-native
networking.

Azure CNI: integrates with Azure virtual networks for Kubernetes workloads.
Google Cloud CNI: provides seamless networking for Pods in GKE.

Antrea: implements Open vSwitch for Kubernetes networking.

Pod-to-Service networking D

Request

* Pods are Dynamic!
* Scale up ordownin response to changes in demand.
* Recreated automatically after a crash or node failure.
* IP addresses change with these events, which can
complicate networking.
* Kubernetes solution: the Service abstraction:

* Provides stable network access to a set of Pods, shielding
clients from the dynamic changes of Pods.

* Assigns a long-term virtual IP to the frontend, ensuring
reliable communication with backend Pods.

* Load-balances traffic directed to the virtual IP, distributing it
evenly among the backend Pods.

* Clients connect with the static virtual IP of the Service.

Defining a Service

This example creates a Nginx Pod and exposes it via a Service. The
Service forwards traffic to any Pod with the label app: nginx, ensuring
dynamic routing as Pods are added or removed.

Explanation of Service attributes

* selector: Matches the label of the target Pods, ensuring that traffic
is dynamically routed to the correct set of Pods.

* type: Determines how the Service is exposed:
= ClusterlP: The Serviceis accessible only within the cluster.

= NodePort: The Serviceis accessible externally on each
node's IP and a specific port.

= LoadBalancer: Integrates with cloud providers to create an
external load balancer.

= ExternalName: Maps the Service to an external DNS name.
* port: The port on which the Service is accessible within the cluster.

* targetPort: The port on the Pod where traffic should be forwarded,
ensuring requests reach the correct application process.

apiVersion: vl
kind: Pod
metadata:

name: nginx-pod

labels:
app: nginx

spec:
containers:

- name: nginx
image: nginx:latest
ports:

- containerPort: 80

Label used by the Service selector

apiVersion: vl
kind: Service
metadata:
name: nginx-service
spec:
selector:
app: nginx

ExternalName
ports:
- protocol: TCP # Communication protocol (TCP/UDP)
port: 80 # Port exposed by the Service

targetPort: 80 # Port on the Pod to which traffic is forwarded

The port on which the container listens

Matches the label of the target Pod(s)
type: ClusterIP # ClusterIP, NodePort, LoadBalancer,

S kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
nginxl 1/1 Running 0 65m 10.244.1.3 k8s-node
nginx2 1/1 Running 0 65m 10.244.1.4 k8s-node
[)
ClusterlIP Service type 5 kubectl get ave -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S) AGE SELECTOR
nginx-clusterip ClusterIP 10.103.197.222 <none> 80/TCP 46m app=nginx

$ kubectl describe svc nginx-clusterip

IPs: 10.103.197.222

* This exampleillustrates how to set up a Service to route traffic
. . Port: <unset> 80/TCP
to two NGINX Pods, using a ClusterlP Service for exposure. TargetPort : 80/TCD
Endpoints: 10.244.1.3:80,10.244.1.4:80

* The Pods are accessible only within the cluster
Access the Service from within the cluster (e.g., using another Pod):

apiVersion: vl kubectl exec -it dnsutils - sh
kind: Service
metadata: curl http://10.103.197.222
name: nginx-clusterip <html>
spec: <body>
type: ClusterIP <h1>Nginx 1</h1>
selector: </body>
app: nginx </html>
ports:
- protocol: TCP curl http://10.103.197.222
port: 80 z;t$l>
targetPort: 80 ody> .
<hl>Nginx 2</hl>
</body>

</html>

NodePort Service type

* When a Service is defined with type: NodePort, Kubernetes
exposes it on a static port (e.g., 30080) on all cluster nodes. This
allows external users to access the application using
http://<node-ip>:30080.

* The traffic flow is as follows:
* Auser sends arequestto http://<node-ip>:30080.
* Therequest reaches any Kubernetes node in the cluster.
* Kubernetes forwards the requestinternally to the appropriate
Pod running the Nginx container on targetPort: 80.

* User-> http://<node-ip>:30080 -> Kubernetes Node (listening on
30080) -> Forwards to Pod (targetPort: 80)

* This mechanism allows external access to services without requiring
an external load balancer, making it useful for testing or internal
access scenarios.

node
Node 1

.......

Port

iptables/IPVS

&)
(abisfives]
.

N ¢

node
Node 2

.......

Port

NS

kube-proxy

[eth0 l

/

Loadbalancer | NodePort J—

S kubectl get pods

NAME READY STATUS RESTARTS AGE IP NODE

nginxl 1/1 Running 0 65m 10.244.1.3 k8s-node

nginx2 1/1 Running 0 65m 10.244.1.4 k8s-node
NodePort examp[e 5 kubectl get sve -o wide

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S) SELECTOR

nginx-nodeport NodePort 10.105.120.195 <none> 80:30155/TCP app=nginx

$ kubectl describe svc nginx-nodeport

* Same example as before but using NodePort type to expose our . 10.105.120.195

nginx Port: <unset> 80/TCP
TargetPort: 80/TCP
NodePort: <unset> 30155/TCP
apiVersion: vl Endpoints: 10.244.1.3:80,10.244.1.4:80
kind: Service
metadata:
name: nginx-nodeport # Access the Service from outside the cluster using the IP of the node:
spec: # curl http://<NODE IP>:30155
type: NodePort B
selector: curl http://192.168.81.87:30155
app: nginx <html>
ports: <body>
- protocol: TCP <h1>Nginx 2</hl>
port: 80 </body>
targetPort: 80 </html>

nodePort: 30115 # port exposed on each node (optional)

LoadBalancer Service type

apiVersion: vl
kind: Service

metadata:
. . name: inx-nod t
* The LoadBalancer service type exposes a service to the spec: ngLnEmRodepor
outside world using an external load balancer resource. type: LoadBalancer
o Itautomatically provisions an external load balancer selector:
app: nginx
o integration with aload balancer provider is required. ports:
- protocol: TCP
* Cloud providers such as Google Cloud (GKE) and Amazon port: 80
Web Services (AWS) automatically provision cloud-based targetPort: 80

load balancers when you create a LoadBalancer service.

* For on-premises Kubernetes clusters, MetalLB offers a
similar load balancing functionality, allowing you to use
external IPs and distribute traffic across your cluster nodes,

* Difference from NodePort:

o NodePort exposes a service on a specific port across all
nodes in the cluster. However, external clients must know
the node’s IP and port to access the service.

o LoadBalance provides a single external IP that simplifies
access, and it automatically distributes traffic to the pods.

ExternalName Service type

 ExternalName is a Kubernetes Service type that acts as an
alias for an external DNS name instead of directing traffic to
internal Pods.

* Howitworks

o When aclient queries the Service, Kubernetes responds
with a CNAME record pointing to the external service.

o Usefulforintegrating external databases, APls, or legacy
services without exposing internal cluster details.

apiVersion: vl
kind: Service
metadata:
name: external-db
spec:
type: ExternalName
externalName: database.example.com

Pod accessing external-db willbe redirected to database.example.com
automatically.

Kube-proxy

* Whatis kube-proxy?
o A Kubernetes component running on each node.

o Handles network traffic to Pods associated with a Service.

o Uses iptables or IPVS to route and balance traffic.) [_______________________
+ Howdoes it work? -r_—_ET_'_'J
o PREROUTING: Intercepts incoming traffic to a Service and @
forwards it to a Pod. \I/
o POSTROUTING: Modifies the source IP to ensure correct kube-proxy i
communication between the node and the client.
Load Balancing: Distributes traffic across available Pods % * J
Dynamic Updates: reconfigures rules when Pods change. e [etho] [etﬁ“
* Example of iptables rules: Node 1
o iptables -t nat -A PREROUTING -p tcp -d

<Service-IP> --dport <Service-Port> -j DNAT --

[Cluster Network]7
to-destination <Pod-IP>:<Pod-Port>

o iptables -t nat -A POSTROUTING -p tcp -d <Pod-
IP> --dport <Pod-Port> -3 SNAT --to-source
<Node-IP>

Kubernetes DNS

Kubernetes DNS is a built-in service that enables name resolution
within a Kubernetes cluster. It facilitates communication between
pods and services using human-readable names instead of IP
addresses.

DNS records are automatically configured for all services and pods,
streamlining service discovery.

Service Discovery: automatically resolves service names to their
Cluster IPs, enabling seamless communication.

Support for Namespaces: uses Fully Qualified Domain Names
(FQDNSs) to uniquely identify services across namespaces.

o service-name.namespace.svc.cluster.local

CoreDNS Integration: Kubernetes uses CoreDNS as its default DNS
server for efficient and scalable name resolution.

Core

DNS

Kubernetes DNS

(example)

Assume our nginx-service is running in the default namespace, its
FQAN is: nginx-service.default.svc.cluster.local.

Inside a pod, use the following command to resolve the service
name: nslookup nginx-service.default.svc.cluster.local.

S kubectl get pods

NAME READY STATUS RESTARTS AGE IP NODE
nginxl 1/1 Running 0 65m 10.244.1.3 k8s-node
nginx2 1/1 Running 0 65m 10.244.1.4 k8s-node

$ kubectl get svc -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S) AGE SELECTOR
nginx-clusterip ClusterIP 10.103.197.222 <none> 80/TCP 46m app=nginx

$ kubectl describe svc nginx-clusterip

IPs: 10.103.197.222

Port: <unset> 80/TCP
TargetPort: 80/TCP
Endpoints: 10.244.1.3:80,10.244.1.4:80

#Access the Service from within the cluster (e.g., using another Pod):

kubectl exec -it dnsutils - sh
nslookup 10.103.197.222
222.197.103.10.in-addr.arpa name = nginx-service.default.svc.cluster.local.

curl nginx-service.default.svc.cluster.local.
<html>
<body>
<hl>Nginx 2</hl>
</body>
</html>

Client

Traffic

VKE Ingress Controller

g

Pods

¥ VULTR

Internet-to-Service

(Ingress)

g

i

Kubernetes Ingress is an advanced solution for managing external access

to services within a cluster, centralizing traffic routing, load balancing, and

Secure access.

Feature

OS5l Layer
External Exposure
S5L Management
Advanced Routing
Cost (Cloud)

Load Balancing

Ingress vs LoadBalancer Service type

Ingress

Layer 7 (HTTP/HTTPS)

Based on hostname and path
Centralized with certificates
Supported path-b

Maore cos ctive (1 shared IF)

LoadBalancer Service
Layer 4 (TCP/UDP)

Public IP assigned b

Must be managed manually

Mot supported

Maore isive (11P per service)

Ingress: fanout

* Afanout configuration routes traffic from a single IP address to more
than one Service, based onthe HTTP URI being requested.

cluster

A2 3 Service servicel:4200

i Ingress-managed]]
client ------- T -1 - E] Ingress, 178.91.123.132

IloElme 1 Service service2:8080

| |

\.H

apiVersion: networking.k8s.io/v1l
kind: Ingress
metadata:

name: simple-fanout-example
spec:

rules:

- host: foo.bar.com

http:

paths:

- path: /foo
pathType: Prefix
backend:

service:
name: servicel

port:
number: 4200

- path: /bar
pathType: Prefix
backend:

service:
name: service2

port:
number: 8080

Ingress: virtual hosting

* Name-based virtual hosts support routing HTTP traffic to multiple
host names at the same IP address.

cluster

/’H
&

R[N BB T Service service1:80

. Ingress-managed)
client O] el Er 1Y Ingress, 178.91.123.132

Host: bar.foo.com—p RSV H:{1]

o,

apiVersion: networking.k8s.io/v1l
kind: Ingress

metadata:
name: name-virtual-host-ingress
spec:
rules:
- host: foo.bar.com
http:
paths:
- pathType: Prefix
path: "/"
backend:
service:
name: servicel
port:

number: 80
- host: bar.foo.com

http:
paths:
- pathType: Prefix
path: "/"
backend:
service:
name: service2
port:

number: 80

Thanks!

References

* https://kubernetes.io/docs/concepts/cluster-
administration/networking/

* https://kubernetes.io/docs/concepts/services-
networking/

* https://kubernetes.io/docs/concepts/services-
networking/service/

* https://kubernetes.io/docs/concepts/services-
networking/ingress-controllers/

e https://k rnetes.io/ /con ts/servi -
networkin teway/

* https://medium.com/@extio/understanding-k rnetes-
n -to-n -communication-a- -dive-
e1d6a5ff87f3

e https:// rt.tools/ t/k rnetes-networking-
dive/

* https://docs.cilium.io/en/stable/network/concepts/routi
ng/

https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/services-networking/
https://kubernetes.io/docs/concepts/services-networking/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/gateway/
https://kubernetes.io/docs/concepts/services-networking/gateway/
https://medium.com/@extio/understanding-kubernetes-node-to-node-communication-a-deep-dive-e1d6a5ff87f3
https://medium.com/@extio/understanding-kubernetes-node-to-node-communication-a-deep-dive-e1d6a5ff87f3
https://medium.com/@extio/understanding-kubernetes-node-to-node-communication-a-deep-dive-e1d6a5ff87f3
https://support.tools/post/kubernetes-networking-deep-dive/
https://support.tools/post/kubernetes-networking-deep-dive/

	Slide 1: Kubernetes Networking
	Slide 2: Kubernetes Networking
	Slide 3: Kubernetes Networking model
	Slide 4: Kubernetes Networking model
	Slide 5: Container-to-Container networking
	Slide 6: Pod-to-Pod networking (same node)
	Slide 7: Pod-to-Pod networking (same node)
	Slide 8: Pod-to-Pod networking (different nodes)
	Slide 9: Pod-to-Pod networking (different nodes)
	Slide 10: Container Network Interface (CNI plugin)
	Slide 11: Overlay vs Underlay Network (CNI plugin)
	Slide 12: Common CNI plugins
	Slide 13: Pod-to-Service networking
	Slide 14: Defining a Service
	Slide 15: ClusterIP Service type
	Slide 16: NodePort Service type
	Slide 17: NodePort example
	Slide 18: LoadBalancer Service type
	Slide 19: ExternalName Service type
	Slide 20: Kube-proxy
	Slide 21: Kubernetes DNS
	Slide 22: Kubernetes DNS (example)
	Slide 23: Internet-to-Service (Ingress)
	Slide 24: Ingress: fanout
	Slide 25: Ingress: virtual hosting
	Slide 26: Thanks!

