Pods and Workload Resources

Ahmad Alkhansa (ahmad.alkhansa@cnaf.infn.it)

The work is protected by copyright and/or other applicable law. Any use of the work other
than as authorized under this license or copyright law is prohibited. By exercising any rights

to the work provided here, you accept and agree to be bound by the terms of this license.

oS0

<R


mailto:ahmad.alkhansa@cnaf.infn.it

Pod

* A single or group of containers.
* Shared storage and network resources.

* A set of Linux namespaces, cgroups and
other isolation contexts.

* Managed by Kubelet at the highest level
within the machine.

Host Machine

Container

Pod A

Container

Pod B

Container
Container

Kernel

Pod C

Container

Container

<R



Modular Architecture

* Modular Provisioning Solutions
= Container Runtime Interface (CRI).
= Container Network Interface (CNI).
= Container Storage Interface (CSlI).

* Plethra of Solutions
= Containerd, CRI-O, etc. as container
runtime.
= Calico, Cilium, etc. as networking
solution.

= Longhorn, Ceph, etc. as storage
solution.

R

Storage
Plugin

Host Machine

Kubelet

Container runtime

Pod

Container
Container
Container

Kernel




Workflow

* Client performs an APl request
containing a YAML manifest.

* Control Plane schedules the Pod and
sends a create request to the Kubelet.

* Kubelet communicates with the
Interfaces (CRI, CNI & CSI) to provision
resources.

* Pod is spawned with its containers.

<R

API Request

Server Node

Pod
Create
Request

Container
Container
Container

Agent Node




QNEE

YAML

Data serialization Language.
SuperSet of Json.

Relies on indentation to

represent the data structure.

Quotation marks are mostly
not needed.

"clusterl” : [
"nodel",
"node2"
"node3"

]F

"cluster2": [
"nodeA",
"nodeB",
"nodeC"

"clusterl” : [

"nodel": {
"pods": [
"app-1A",
"app-1B",
"app-1C"
]

’
"volumes": [

"volume-1A",
"volume-1B",

"volume-1C"
]
}s
"node2": {
"pods": [
"app-2A",
"app-2B"
],
"volumes": [
"volume-2B"

clusterl:
- nodel
- node?
- node3
cluster?:
- nodeA
- nodeB
- nodeC

clusterl:

- nodel:

pods:

- app-1A
- app-1B
- app-1C
volumes:
- volume-
- volume-

- volume-
- nodel:

pods:

- app-2A

- app-2B

volumes:

- volume-




Payload Format

Resource Type

API Request

Resource Info

S

apiVersion: v1
kind: Pod

Resource
Properties

metadata:
name: nginx
namespace: default

a

spec:

containers:

- hame: nginx
image: nginx:1.14.2
ports:

- containerPort: 80

Master Node

Pod
Create
Request

BT

Pod

Worker Node




Data Structure

apiVersion & kind:

Kubernetes APl is divided into groups and the
pod is at the core level.

Kubernetes APl can be extended with custom
resources.

Metadata:

Namespace compartmentilize kubernetes
resources and abstractions.

Labels allow the addition of organizational
information into system resources.

Labels within pods are useful for network
configuration, scheduling and higher abstraction
functions.

apiVersion: vl
kind: Pod

metadata:
name: nginx
namespace: default
labels:
app: nginx
sticky-sessions: true

spec:
securityContext:

affinity:
nod eAffinity:

pod Affinity:

containers:

- name: nginx
image: nginx:1.14.2
securityContext:

resources:

env:

- name: ...
value: ...

- name: ...

valueFrom:
configMapKeyRef:

envFrom:
- configMapRef:

ports:
- containerPort: 80
volumeMounts:
- name: html-page
mountPath: /etc/nginx/html
volumes:
- name: html-page
configMap:
name: html-files

<R



T
Data Structure

Affinities Pod Level:

 Affinities/Antiaffinities to different nodes
and pods can be defined.

* Complex expressions that control the
labels of nodes and pods.

Secutiy Context Pod & Container Level

* Define user, group and other access level
for containers within a pod.

* Some parameters may be exclusive to a
certain context.




Data Structure

Resources Container Level:

* Defines container’s minimum CPU and
memroy request and their maximum

limits.

Environment Variables Container Level:

* Environment variables can be defined
within the specifications block.

* Referencing Configmaps and Secrets is
possible.

<R



<R

Data Structure

Volume Mounts Container Level:

* Defines the mount path and access mode to
the specified volume.

Volumes Pod Level:

* Different types of storage volumes can be
specified.

* Out-of-the-box solutions can be emptydir,
configmaps, secrets and host path.

* Different integrations with external storage
exist and can be mounting using persistent
volume claims.

10




ConfigMaps and Secrets

<R

* Decouple application
configuration from its code.

* Key-value data structures.

* Stored within the control
plane database.

* Configmaps are intended for
non-confidential data.

* Secrets are used to store
credentials, private keys,
x509 certificates, etc.

type: kubernetes.io/dockerconfigjson

11




ConfigMaps and Secrets

APl Request

Master Node

Control Plane

Pod
ConfigMa p| Create
Request

Worker Node

12

<R



Pod Lifecycle

Node Level

* The control plane automatically reschudale
a pod after the node failure.

* There’s a grace period before determining
node failure.

Pod Level

* Phases report the current state of a pod
that can be Pending, Running, Succeeded,
Failed, Unknown.

* Conditions show PodScheduled,
PodReadyToStartContainers,
ContainersReady, Initialized, Ready.

Master Node

Node
Heartbeats

Pod Desired states

Conditions
and Phases

Diagnostics

Pod

Configmap
NGINX

Worker Node

13



Pod Lifecycle

Container Level

Containers have 3 states Waiting, Running
and Terminated.

Liveness, Readiness and Startup Probes
can be specified to instruct the kubelet to
perform checks.

Probe mechanisms can be exec, grpc,
httpGet and tcpSocket.

PostStart and PreStop can be determined
with the same mechanisms.

Init and side car containers start before the
main container.

apiVersion: vl
kind: Pod

metadata:
name: nginx
namespace: default
labels:
app: nginx
sticky-sessions: true

spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
restartPolicy: Always
readinessProbe:
httpGet:
path: /
port: 80
volumeMounts:
- name: html-page
mountPath: /etc/nginx/html
volumes:
- name: html-page
configMap:
name: html-files




Namespaces

* Environments to organize and
define access to cluster resources.

* Access Control can be handled
using roles and attributes.

* CPU, memory and storage
namespace limits can be defined
using Resource Quotas.

* Limit ranges are used to define
limits at the level of single
pod/container.

Namespace

Persistent
Volume Claim

Configmap

2

%

15

<R



o
Namespaces "¢ o Bk

2

. Kubernetes Universe

User \
Appcat'o\

. Namespaced Resource

. Cluster-wide Resource T



Scenario

Administrator creates all
namespaces and defines resource
qguotas and access control.

Administrator deploys the Cert
Manager application and creates
the cluster certificate issuer.

All teams send requests to the API
server of Kubernetes to create
certificates signed by the cluster
certificate issuer.

Cert Manager creates the
certificates in a form of TLS
secrets.

Apps A and B use the certificates to
authenticate with the message
broker.

Direct reference —»

Controller checks ——-»

Cert-manager
secret creation

Kubernetes Universe

Configmap TLS Secret

Certificate

Configmap TLS Secret

Certificate

Cluster
Certificate
Issuer

Pod

Configmap

Pod 1 Pod 2 Pod 3

TLS Secret Configmap

Certificate

17



Important Notes

* API of Kubernetes can be
Extended with custom resource
definitions.

* Cluster Certificate Issuer and
Certificate are custom
resources.

* Cluster Certificate Issuer and
Certificate are cluster-wide
resources.

* Cert Manager is a Kubernetes
controller.

* Cert Manager has a service
account with access level
defined by the administrator.

Direct reference —» Controller checks ---»

Cert-manager
secret creation

Kubernetes Universe

Configmap TLS Secret

Cluster
Certificate
Issuer

Certificate

Configmap TLS Secret

Certificate

Pod

Configmap

Pod 1 Pod 2 Pod 3

TLS Secret Configmap

Certificate

18



&

Workload Resources

* Different abstractions that define the statefuleness, distribution and
nature of the applications running on top of Kubernetes.

* Controllers with different mechanisms to maintain the desired state of a
workload.

* Deployment manages and scales stateless applications.

» StatefulSets provides stable network identity and persistent storage, and
ordered rolling update.

* DaemonSets are meant to exist within every Kubernetes node that meets
certain criteria.

* Job and CronlJob are abstractions for executing tasks that run till
completion.

19

<R



Deployment

* Based on a pod template.

* Scaling pods to several
replicas.

* Stores versions of
deployment instances.

* Rollout and rollback features.

<R

20




&

Resource Hierarchy And Ownership

Rolling update and

D
SRS — Versioning
ReplicaSet ReplicaSet ReplicaSet ) Pod Scaling
Workload (e Pod Pod Pod

21

<R



Deployment Master Node

. API Request > Control Plane

- apiVersion: apps/v1 Pod Pod Pod
kind: Deployment Create Create Create
Request Request Request

apiVersion: v1 - - -
it EeriT e ConfigMap ConfigMa p| ConfigMap

Pod Pod Pod

Configmap Configmap Configmap

NGINX NGINX NGINX

Worker Node Worker Node Worker Node

22



StatefulSet

* Pods’ name consist of the
StatefulSet name + ordinal.

* The pod derives its hosthame
from the pod name.

* Possibility to reach a single pod
by it’'s name from anywhere in
the cluster using Headless
Service.

* Each Replica can be mounted
with a separate persistent
volume claims using Claim
Template.




DaemonSet

* Pods deployed within every possible
node.

* In case of node affinities and
selection, scheduling all matching
nodes.

* Possibility for rollout and rollback.

* Commonly used for Node Plugins.

Worker Node

Worker Node

A

Worker Node

A

\ 4

Master Node

DaemonSet

A

<
«

Worker Node

Worker Node

Worker Node

24




Jobs and CronlJobs

* Jobs are containers that run
until completion.

* Possibility to create fine-
grained pod failure/success

policy.
* Ability to define parallelism.

* CronJobs run periodically and
use Jobs as templates.

Job Pod

Job Pod

Main

Application
Pod

Job Pod

Job Pod

25



References

Pod - https://kubernetes.io/docs/concepts/workloads/pods/

Kuberentes components - _
https://kubernetes.io/docs/concepts/overview/components/

CRI - https://kubernetes.io/docs/concepts/architecture/cri/

CSI - https://kubernetes-csi.github.io/docs/introduction.html

CNI - https://github.com/containernetworking/cni

YAML - https://www.ibm.com/topics/yaml|

JSON - https://www.json.org/json-en.html|

ConfigMaps - https://kubernetes.io/docs/concepts/configuration/configmap/

Secrets - https://kubernetes.io/docs/concepts/configuration/secret/

Pod Lifecycle - https://kubernetes.io/docs/concepts/workloads/pods/pod-
lifecycle/

26


https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/architecture/cri/
https://kubernetes-csi.github.io/docs/introduction.html
https://github.com/containernetworking/cni
https://www.ibm.com/topics/yaml
https://www.json.org/json-en.html
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/

References

Namespaces - https://kubernetes.io/docs/concepts/overview/working-with-
objects/namespaces/

Cert-manager - https://cert-manager.io/docs/concepts/issuer/

Custom resources - https://kubernetes.io/docs/concepts/extend-kubernetes/api-
extension/custom-resources/

Workloads - https://kubernetes.io/docs/concepts/workloads/

Deployment - https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
ReplicaSet - https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
StatefulSet - https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
DaemonSet - https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
Job - https://kubernetes.io/docs/concepts/workloads/controllers/job/

AP| reference - https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.24/

27


https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://cert-manager.io/docs/concepts/issuer/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/workloads/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.24/

	Slide 1: Pods and Workload Resources
	Slide 2: Pod
	Slide 3: Modular Architecture
	Slide 4: Workflow
	Slide 5: YAML
	Slide 6: Payload Format
	Slide 7: Data Structure
	Slide 8: Data Structure
	Slide 9: Data Structure
	Slide 10: Data Structure
	Slide 11: ConfigMaps and Secrets
	Slide 12: ConfigMaps and Secrets
	Slide 13: Pod Lifecycle
	Slide 14: Pod Lifecycle
	Slide 15: Namespaces
	Slide 16: Namespaces
	Slide 17: Scenario
	Slide 18: Important Notes
	Slide 19: Workload Resources
	Slide 20: Deployment
	Slide 21: Resource Hierarchy And Ownership
	Slide 22: Deployment
	Slide 23: StatefulSet
	Slide 24: DaemonSet
	Slide 25: Jobs and CronJobs
	Slide 26: References
	Slide 27: References

