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Pod

* A single or group of containers.
* Shared storage and network resources.

* A set of Linux namespaces, cgroups and
other isolation contexts.

* Managed by Kubelet at the highest level
within the machine.
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Modular Architecture

* Modular Provisioning Solutions
= Container Runtime Interface (CRI).
= Container Network Interface (CNI).
= Container Storage Interface (CSlI).

* Plethra of Solutions
= Containerd, CRI-O, etc. as container
runtime.
= Calico, Cilium, etc. as networking
solution.

= Longhorn, Ceph, etc. as storage
solution.

R

Storage
Plugin

Host Machine

Kubelet

Container runtime

Pod

Container
Container
Container

Kernel




Workflow

* Client performs an APl request
containing a YAML manifest.

* Control Plane schedules the Pod and
sends a create request to the Kubelet.

* Kubelet communicates with the
Interfaces (CRI, CNI & CSI) to provision
resources.

* Pod is spawned with its containers.
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QNEE

YAML

Data serialization Language.
SuperSet of Json.

Relies on indentation to

represent the data structure.

Quotation marks are mostly
not needed.

"clusterl” : [
"nodel",
"node2"
"node3"

]F

"cluster2": [
"nodeA",
"nodeB",
"nodeC"

"clusterl” : [

"nodel": {
"pods": [
"app-1A",
"app-1B",
"app-1C"
]

’
"volumes": [

"volume-1A",
"volume-1B",

"volume-1C"
]
}s
"node2": {
"pods": [
"app-2A",
"app-2B"
],
"volumes": [
"volume-2B"

clusterl:
- nodel
- node?
- node3
cluster?:
- nodeA
- nodeB
- nodeC

clusterl:

- nodel:

pods:

- app-1A
- app-1B
- app-1C
volumes:
- volume-
- volume-

- volume-
- nodel:

pods:

- app-2A

- app-2B

volumes:

- volume-




Payload Format

Resource Type

API Request

Resource Info

S

apiVersion: v1
kind: Pod

Resource
Properties

metadata:
name: nginx
namespace: default

a

spec:

containers:

- hame: nginx
image: nginx:1.14.2
ports:

- containerPort: 80
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Data Structure

apiVersion & kind:

Kubernetes APl is divided into groups and the
pod is at the core level.

Kubernetes APl can be extended with custom
resources.

Metadata:

Namespace compartmentilize kubernetes
resources and abstractions.

Labels allow the addition of organizational
information into system resources.

Labels within pods are useful for network
configuration, scheduling and higher abstraction
functions.

apiVersion: vl
kind: Pod

metadata:
name: nginx
namespace: default
labels:
app: nginx
sticky-sessions: true

spec:
securityContext:

affinity:
nod eAffinity:

pod Affinity:

containers:

- name: nginx
image: nginx:1.14.2
securityContext:

resources:

env:

- name: ...
value: ...

- name: ...

valueFrom:
configMapKeyRef:

envFrom:
- configMapRef:

ports:
- containerPort: 80
volumeMounts:
- name: html-page
mountPath: /etc/nginx/html
volumes:
- name: html-page
configMap:
name: html-files
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T
Data Structure

Affinities Pod Level:

 Affinities/Antiaffinities to different nodes
and pods can be defined.

* Complex expressions that control the
labels of nodes and pods.

Secutiy Context Pod & Container Level

* Define user, group and other access level
for containers within a pod.

* Some parameters may be exclusive to a
certain context.




Data Structure

Resources Container Level:

* Defines container’s minimum CPU and
memroy request and their maximum

limits.

Environment Variables Container Level:

* Environment variables can be defined
within the specifications block.

* Referencing Configmaps and Secrets is
possible.
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Data Structure

Volume Mounts Container Level:

* Defines the mount path and access mode to
the specified volume.

Volumes Pod Level:

* Different types of storage volumes can be
specified.

* Out-of-the-box solutions can be emptydir,
configmaps, secrets and host path.

* Different integrations with external storage
exist and can be mounting using persistent
volume claims.
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ConfigMaps and Secrets

<R

* Decouple application
configuration from its code.

* Key-value data structures.

* Stored within the control
plane database.

* Configmaps are intended for
non-confidential data.

* Secrets are used to store
credentials, private keys,
x509 certificates, etc.

type: kubernetes.io/dockerconfigjson
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ConfigMaps and Secrets
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Pod Lifecycle

Node Level

* The control plane automatically reschudale
a pod after the node failure.

* There’s a grace period before determining
node failure.

Pod Level

* Phases report the current state of a pod
that can be Pending, Running, Succeeded,
Failed, Unknown.

* Conditions show PodScheduled,
PodReadyToStartContainers,
ContainersReady, Initialized, Ready.
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Pod Lifecycle

Container Level

Containers have 3 states Waiting, Running
and Terminated.

Liveness, Readiness and Startup Probes
can be specified to instruct the kubelet to
perform checks.

Probe mechanisms can be exec, grpc,
httpGet and tcpSocket.

PostStart and PreStop can be determined
with the same mechanisms.

Init and side car containers start before the
main container.

apiVersion: vl
kind: Pod

metadata:
name: nginx
namespace: default
labels:
app: nginx
sticky-sessions: true

spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
restartPolicy: Always
readinessProbe:
httpGet:
path: /
port: 80
volumeMounts:
- name: html-page
mountPath: /etc/nginx/html
volumes:
- name: html-page
configMap:
name: html-files




Namespaces

* Environments to organize and
define access to cluster resources.

* Access Control can be handled
using roles and attributes.

* CPU, memory and storage
namespace limits can be defined
using Resource Quotas.

* Limit ranges are used to define
limits at the level of single
pod/container.
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Scenario

Administrator creates all
namespaces and defines resource
qguotas and access control.

Administrator deploys the Cert
Manager application and creates
the cluster certificate issuer.

All teams send requests to the API
server of Kubernetes to create
certificates signed by the cluster
certificate issuer.

Cert Manager creates the
certificates in a form of TLS
secrets.

Apps A and B use the certificates to
authenticate with the message
broker.

Direct reference —»

Controller checks ——-»

Cert-manager
secret creation

Kubernetes Universe
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Important Notes

* API of Kubernetes can be
Extended with custom resource
definitions.

* Cluster Certificate Issuer and
Certificate are custom
resources.

* Cluster Certificate Issuer and
Certificate are cluster-wide
resources.

* Cert Manager is a Kubernetes
controller.

* Cert Manager has a service
account with access level
defined by the administrator.

Direct reference —» Controller checks ---»

Cert-manager
secret creation

Kubernetes Universe

Configmap TLS Secret
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Certificate
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Workload Resources

* Different abstractions that define the statefuleness, distribution and
nature of the applications running on top of Kubernetes.

* Controllers with different mechanisms to maintain the desired state of a
workload.

* Deployment manages and scales stateless applications.

» StatefulSets provides stable network identity and persistent storage, and
ordered rolling update.

* DaemonSets are meant to exist within every Kubernetes node that meets
certain criteria.

* Job and CronlJob are abstractions for executing tasks that run till
completion.
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Deployment

* Based on a pod template.

* Scaling pods to several
replicas.

* Stores versions of
deployment instances.

* Rollout and rollback features.
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Resource Hierarchy And Ownership

Rolling update and

D
SRS — Versioning
ReplicaSet ReplicaSet ReplicaSet ) Pod Scaling
Workload (e Pod Pod Pod
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StatefulSet

* Pods’ name consist of the
StatefulSet name + ordinal.

* The pod derives its hosthame
from the pod name.

* Possibility to reach a single pod
by it’'s name from anywhere in
the cluster using Headless
Service.

* Each Replica can be mounted
with a separate persistent
volume claims using Claim
Template.




DaemonSet

* Pods deployed within every possible
node.

* In case of node affinities and
selection, scheduling all matching
nodes.

* Possibility for rollout and rollback.

* Commonly used for Node Plugins.
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Jobs and CronlJobs

* Jobs are containers that run
until completion.

* Possibility to create fine-
grained pod failure/success

policy.
* Ability to define parallelism.

* CronJobs run periodically and
use Jobs as templates.
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