
Kubernetes
Storage

Kubernetes Installation and Administration Course

Lisa Zangrando (lisa.zangrando@pd.infn.it)

Kubernetes and Storage:
beyond Cloud-Native
applications

• Kubernetes for Cloud-Native applications
• designed to manage distributed architectures,

dynamic scalability, and resilience.
• ideal for stateless workloads.

• The challenge of scientific applications
• scientific applications often require persistent and

reliable data access, especially for use cases like:
Data Analysis applications, logging systems,
databases

Why storage is essential in
Kubernetes?

1. Data persistence across Pod restarts
• Pods are temporary by design.
• Without persistent storage, data is lost when Pods are deleted or restarted.
• Persistent storage decouples the lifecycle of data from the lifecycle of

Pods, ensuring data survives infrastructure changes.

2. Data sharing between Pods
• Distributed applications often require multiple Pods to simultaneously

access the same data.
• Kubernetes supports shared volumes, enabling efficient and

straightforward data sharing.

3. Compatibility with Diverse Storage Backends
• Kubernetes supports a wide range of storage solutions to meet application

needs:
• Block Storage: high-performance storage for transactional databases.

• Shared File Systems: collaborative or distributed applications.

• Object Storage: scalable, long-term storage for big data systems.

Storage integration in Kubernetes

• Kubernetes simplifies storage management by providing native
integrations with various types of infrastructures:

• Local storage: directly using physical disks attached to cluster nodes.
• Network systems: solutions like NFS or Ceph, offering shared access

and scalability.
• Cloud-Native services: options such as Amazon EBS, Google

Persistent Disk, Azure Disk, and S3-like object storage services.

• Kubernetes supports custom storage plugins through the Container
Storage Interface (CSI).

• CSI allows developers to integrate any storage system:
• Commercial solutions
• Custom setups

• This makes Kubernetes a universal solution for:
• On-Premises
• Hybrid
• Cloud-Native Environments

A flexible architecture
based on Volumes

• The core of Kubernetes storage: Volumes
• Volumes are abstractions that allow containers to access storage resources without

being dependent on the underlying infrastructure.
• A Kubernetes Volume is essentially a directory mounted into containers within a Pod.

• Simplified data handling for applications
• Volumes provide Pods with a mechanism to read and write files, abstracting the

complexities of storage backend connections.
• Containers remain unaware of the complexity of the underlying storage.

• Volume usage in Pods
• Once created, a Volume is mounted into containers as a directory, becoming an

integral part of the container's filesystem.
• Enables data sharing between containers in the same Pod:

• Ideal for multi-container applications where one container generates data for another.

How Volumes work

• Volumes are defined in the pod spec (YAML).
• They are mounted into containers, making them shared and

accessible at specified paths.

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: container-1

 image: my-image

 volumeMounts:

 - name: my-volume

 mountPath: /mnt/data

 volumes:

 - name: my-volume

 <VOLUME DEFINITION>

Use cases

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: my-container

 image: busybox

 volumeMounts:

 - mountPath: /data

 name: my-volume-1

 - mountPath: /app

 name: my-volume-2

 volumes:

 - name: my-volume-1

 <VOLUME-DEFINITON>

 - name: my-volume-2

 <VOLUME-DEFINITON>

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: my-container-1

 image: busybox

 volumeMounts:

 - mountPath: /data

 name: my-volume

 - name: my-container-2

 image: busybox

 volumeMounts:

 - mountPath: /storage

 name: my-volume

 volumes:

 - name: my-volume

 <VOLUME-DEFINITON>

Types of Volumes

• Ephemeral Volumes:
• Temporary and tied to the lifecycle of the Pod.
• Commonly used for caching, temporary data,

or inter-container communication.

• Persistent Volumes (PVs):
• Designed for long-term storage, independent of

a Pod’s lifecycle.
• Ideal for applications requiring durable

storage, such as databases.
• Each type of volume serves distinct use cases,

addressing different levels of data persistence
and lifecycle requirements.

Ephemeral Volumes

• Ephemeral volumes in Kubernetes are temporary storage resources that are created and destroyed with the lifecycle of a pod. T hey are ideal for
storing data that is transient, such as application logs, temporary files, or caches. Once the pod is deleted, the data in ephemeral volumes is also
removed.

• Types of Ephemeral Volumes
• EmptyDir: A temporary directory for a pod that can be shared among containers within the same pod.
• ConfigMap: Allows injecting configuration data into containers, where the data is mounted as files.
• Secrets: A Kubernetes object used to store sensitive data, such as passwords, tokens, or SSH keys, which can be mounted as files or environment

variables.

• Use cases
• Logs storage: Temporary storage for logs or runtime data.
• Scratch space: For computation or intermediate data storage.
• Configuration storage: Injecting configuration or sensitive information into containers.
• Caching: speed up operations with local, short-term storage.

EmptyDir

• EmptyDir is an ephemeral volume that is created when a pod is
assigned to a node and is deleted when the pod is terminated. It
provides a temporary directory shared by all containers in the pod.

• Use cases:
• Sharing temporary data between containers in the same pod, such

as caches or intermediate computation results.
• Used for storing temporary files that do not need to persist beyond

the lifecycle of the pod.

apiVersion: v1

kind: Pod

metadata:

 name: ephemeral-example

spec:

 containers:

 - name: app-container

 image: nginx

 volumeMounts:

 - mountPath: "/usr/share/nginx/html"

 name: scratch-volume

 volumes:

 - name: scratch-volume

 EmptyDir:

 sizeLimit: 500Mi
 medium: Memory

Explanation:
• The emptyDir volume is created in memory when the pod starts.
• The size limit is 500Mb
• It mounts at /usr/share/nginx/html in the app-container.
• The volume is deleted when the pod is terminated.

ConfigMap (1/3)

• A ConfigMap is a type of ephemeral volume used to store non-
sensitive configuration data in the form of key-value pairs. It can be
mounted as a volume or exposed as environment variables in a
container.

• Each data item in the ConfigMap is represented by an individual file in
the volume.

• Key Features:
• Allows decoupling configuration from container images.
• Automatically updates when the ConfigMap changes (depending on

pod settings).
• Example:

• The ConfigMap example-config contains a simple HTML file.
• The pod mounts the ConfigMap as a volume (config-volume) at

/usr/share/nginx/html.
• When the pod runs, the NGINX server serves the content of the

index.html file from the ConfigMap.

apiVersion: v1

kind: ConfigMap

metadata:

 name: example-config

data:

 index.html: |

 <html>

 <head><title>Welcome</title></head>

 <body><h1>Hello, Kubernetes!</h1></body>

 </html>

apiVersion: v1

kind: Pod

metadata:

 name: configmap-example

spec:

 containers:

 - name: app-container

 image: nginx

 volumeMounts:

 - mountPath: "/usr/share/nginx/html"

 name: config-volume

 volumes:

 - name: config-volume

 configMap:

 name: example-config

ConfigMap (2/3)

• In this example a ConfigMap is exposed as environment variables in a
container.

• It defines a container environment variable with data from a single or
multiple ConfigMaps

apiVersion: v1

kind: ConfigMap

metadata:

 name: app-config

data:

 setting1: "true"

 setting2: "value"

apiVersion: v1

kind: Pod

metadata:

 name: configmap-env-example

spec:

 containers:

 - name: app-container

 image: nginx

 env:

 - name: SETTING1

 valueFrom:

 configMapKeyRef:

 name: app-config

 key: setting1

 - name: SETTING2

 valueFrom:

 configMapKeyRef:

 name: app-config

 key: setting2

ConfigMap (3/3)

• We can configure all key-value pairs in a ConfigMap as container
environment variables

• Use cases (recap):
• Storing configuration files and injecting them into containers via

volumes.
• Injecting configuration data as environment variables for easy

access by applications running inside containers.
• Useful for managing environment-specific settings without

rebuilding images.

apiVersion: v1

kind: ConfigMap

metadata:

 name: app-config

data:

 setting1: "true"

 setting2: "value"

apiVersion: v1

kind: Pod

metadata:

 name: configmap-env-example

spec:

 containers:

 - name: app-container

 image: nginx

 envFrom:

 - configMapRef:

 name: app-config

Secrets

• Secrets are used to store sensitive data, such as passwords, OAuth
tokens, or SSH keys.

• Secrets are not so secrets:
• Secrets are Base64 encoded: this encoding is used to store binary

data in a textual format, not for security purposes.
• Secret values are stored unencrypted in etcd by default but can be

configured to be encrypted.

• Best practices
• Enable Secret encryption (encryption at rest)
• Restrict access to Secrets using RBAC
• Avoid exposing Secrets in environment variables
• Use external Secret management solutions (e.g., HashiCorp Vault,

Sealed Secrets)

• A Pod can reference the Secret in a variety of ways, such as in a
volume mount or as an environment variable.

apiVersion: v1

kind: Secret

metadata:

 name: db-password

data:

 password: cGFzc3dvcmQ= # base64 encoded password

apiVersion: v1

kind: Pod

metadata:

 name: secret-example

spec:

 containers:

 - name: app-container

 image: nginx

 volumeMounts:

 - mountPath: /etc/secret-volume

 name: secret-volume

 volumes:

 - name: secret-volume

 secret:

 secretName: db-password

https://kubernetes.io/docs/concepts/workloads/pods/

Persistent storage
• Kubernetes offers two primary methods for accessing persistent storage,

depending on how the storage is managed: at user or cluster level.

• User-Level Access (via Volumes):
Users can directly mount storage from external sources, such as an NFS
server, by specifying the volume in the pod configuration. This approach
allows users to connect to shared storage resources independently, without
requiring intervention from the cluster administrator.

• Cluster-Level Access (via PV and PVC):
When storage is managed at the cluster level, Kubernetes uses the
PersistentVolumes (PVs) and PersistentVolumeClaims (PVCs) mechanism to
separate storage provisioning from pod lifecycle management. In this setup,
the administrator defines PVs to represent the storage resources, while
users request storage through PVCs. Kubernetes then binds the appropriate
PVC to a suitable PV.

Feature Volumes PersistentVolumes (PV)

Management Defined at the pod level by the user
Provisioned at the cluster level by the
administrator

Persistence Guaranteed only while the pod is running
Data remains available even after
pod restarts or rescheduling

Scalability Requires manual creation
Can be dynamically provisioned
using StorageClasses

Storage
Backend

Supports multiple storage backends
(e.g., NFS, Ceph, AWS EBS)

Supports multiple storage backends
(e.g., NFS, Ceph, AWS EBS)

Flexibility Simple to use but tied to the pod
Decouples storage from pod
lifecycle, allowing long-term data
retention

User level persistent
storage

• Kubernetes allows users to directly access persistent storage at the
pod level. We provide three examples of how users can access
storage via different protocols: nfs, fibrechannel and cephfs

• NFS (Network File System):
Users can mount an NFS share directly into a pod, allowing multiple
pods to access the same shared storage across nodes.

• Fibre Channel:
Users can access high-performance storage via Fibre Channel, a low-
latency, block-level network technology used to connect storage
devices to servers.

• Ceph:
Ceph provides highly scalable and reliable distributed storage. Users
can mount Ceph volumes in a pod for block or object storage access.

<POD DEFINITION>

volumes:

 - name: nfs-data

 nfs:

 server: 10.64.56.102

 path: /data

 - name: fc-data

 fibreChannel:

 targetWWN: 20:00:00:00:00:00:00:00

 lun: 0

 fsType: ext4

 - name: ceph-data

 cephfs:

 monitors:

 - 10.64.56.101:6789

 path: /mnt/ceph

 user: admin

 secretRef:

 name: ceph-secret

Cluster level
persistent storage
• When storage is managed at the cluster level, Kubernetes leverages the

PersistentVolumes (PVs) and PersistentVolumeClaims (PVCs) mechanism to
decouple storage provisioning from pod lifecycle management.

• Persistent Volume (PV): A storage resource provisioned at the cluster level by
an administrator. A PV represents a physical storage resource that exists
independently of any specific pod.

o Decouples storage from pod lifecycle, ensuring data durability.

o Supports multiple storage backends, including NFS, Ceph, AWS EBS, and GCE Persistent Disk.

o Enables storage sharing across pods, depending on the access mode.

• PersistentVolumeClaim (PVC): A request for storage made by users or
applications. When a PVC is created, Kubernetes automatically searches for an
available PV that matches the specified requirements and binds them together.

How PV and
PVC work together

• Request and Provision: users create a PVC specifying their storage
requirements.

• Binding process: Kubernetes finds a suitable PV and binds it to the
PVC.

• Access: the PVC can then be used by pods to mount the storage
defined by the PV.

PV provisioning methods

• Kubernetes supports two methods for provisioning Persistent
Volumes (PVs), depending on the storage management approach:

• Static Provisioning
• The administrator manually creates PVs in advance.
• Each PV is configured with specific capacity, access modes, and

storage backend.
• Users create PersistentVolumeClaims (PVCs) that Kubernetes binds

to an existing PV matching the request.

• Dynamic Provisioning
• Kubernetes automatically provisions storage on demand using a

StorageClass.
• Users request storage through a PVC, specifying the required

StorageClass.
• Kubernetes creates a PV dynamically, ensuring flexibility and

efficient resource allocation.

• This approach allows predefined storage (static) when control is
needed and automated provisioning (dynamic) for scalability and
ease of management.

Understanding PV

• Let's look at an example of a statically provisioned PV.

• Each PV contains a spec and status, which is the specification and
status of the volume.

• Key elements:

o capacity: Defines the storage size (e.g., 10Gi)

o volumeMode (optional): Filesystem (default) and Block

o accessModes: Access modes for the volume (ReadWriteOnce,

ReadWriteOncePod, ReadWriteMany, ReadOnlyMany).

o persistentVolumeReclaimPolicy: Policy when PVC is deleted

(Retain/Delete/Reclaim).

o StorageClassName (optional): Associates the PV with a storage

class (optional).

o hostPath: Path on the physical node (development and testing

only). In production use NFS, AWS EBS, Ceph, etc.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: static-pv

spec:

 capacity:

 storage: 10Gi

 volumeMode: Filesystem

 accessModes:

 - ReadWriteOncePod

 persistentVolumeReclaimPolicy: Retain

 storageClassName: manual

 hostPath:

 path: /data/static-pv

• A static hostPath volume is created, with 10Gi of storage and access mode
ReadWriteOncePod.

• The volume is created on a node at the path /data/static-pv.

kubectl get pv static-pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM SC

static-pv 10Gi RWOP Retain Available manual

Example NFS PV

• This PV configuration defines a network storage resource, using an
NFS (Network File System) backend. The PV allows multiple nodes
to read and write data simultaneously.

• Capacity: the PV provides 20Gi of storage.

• Access Mode: set to ReadWriteMany (RWX), meaning multiple
pods across different nodes can access and write to the volume.

• Reclaim Policy: configured as Delete, ensuring that the data is
deletedwhen the PV is released.

• Storage Backend: uses NFS with the server at nfs-
server.example.com, and the storage path is /mnt/data.

• This configuration is ideal for applications that require shared
storage, such as distributed workloads or shared data repositories.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: nfs-pv

spec:

 capacity:

 storage: 20Gi

 accessModes:

 - ReadWriteMany

 persistentVolumeReclaimPolicy: Delete

 nfs:

 path: /mnt/data

 server: nfs-server.example.com

Understanding PVC
apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: static-pvc

spec:

 accessModes:

 - ReadWriteOncePod

 resources:

 requests:

 storage: 10Gi

 storageClassName: manual

kubectl get pv static-pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM SC

static-pv 10Gi RWOP Retain Bound static-pvc manual

kubectl get pvc static-pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES SC

static-pvc Bound static-pv 10Gi RWOP manual

• A PVC is a request for storage made by a user or application.

• Key elements:

o accessModes: Should match the access modes defined in the PV.

o resources.requests.storage: The amount of storage requested.

o storageClassName: Must match the PV’s storage class for proper

binding (if defined!).

How to mount PVC as
Volumes

apiVersion: v1

kind: Pod

metadata:

 name: mypod

spec:

 containers:

 - name: myfrontend

 image: nginx

 volumeMounts:

 - mountPath: "/var/www/html"

 name: my-vol

 volumes:

 - name: my-vol

 persistentVolumeClaim:

 claimName: static-pvc

• Pods access storage by using the claim as a volume.
• Claims must exist in the same namespace as the Pod using the

claim.
• The cluster finds the claim in the Pod's namespace and uses it to

get the PersistentVolume backing the claim.
• The volume is then mounted to the host and into the Pod.

StorageClass
(dynamic provisioning)

• A StorageClass defines the storage provisioning strategy in
Kubernetes.

• It is a Kubernetes abstraction that defines the characteristics of
dynamic storage.

• It allows dynamic provisioning of PVs based on demand.

• Each StorageClass uses a provisioner (e.g., AWS EBS, GCE PD,
NFS, Ceph, etc.) and its options.

StorageClass example
apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: aws-ebs

 annotations:

 storageclass.kubernetes.io/is-default-class: "true"

provisioner: kubernetes.io/aws-ebs #deprecated

parameters:

 type: gp2

 fsType: ext4

reclaimPolicy: Retain # or Delete, Recycle

volumeBindingMode: Immediate # or WaitForFirstConsumer

allowVolumeExpansion: true

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: my-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 10Gi

 storageClassName: aws-ebs

• The provided StorageClass example defines the use of AWS
EBS (via the provisioner kubernetes.io/aws-ebs), specifically
using the gp2 storage type.

• This StorageClass is set as the default, meaning it will be
automatically selected for PVCs that do not explicitly specify a
storageClassName.

• The reclaimPolicy is set to Retain, ensuring that the volume will
remain even if the associated PVC is deleted.

• The volumeBindingMode is set to Immediate, meaning the
volume is bound to the PVC as soon as the PVC is created,
without any delay.

• Additionally, volume expansion is enabled, allowing the volume
size to be adjusted as needed, offering flexibility for storage
requirements over time.

In-tree drivers

• Kubernetes supports various types of PV, each with
different characteristics and use cases.

• Kubernetes manages the two kind of storage plugins
(drivers) that handle these PVs: in-tree and out-of-tree

• In-tree drivers
• Integrated directly into Kubernetes' source code.
• Each driver is part of the core system, meaning

updates and modifications depend on Kubernetes
release cycles.

• Examples: awsElasticBlockStore,
gcePersistentDisk, azureDisk.

• Almost all deprecated or in the process of removal

• Migration to out-of-tree (CSI) drivers is strongly
recommended!

Out-of-tree drivers
• Out-of-tree drivers are implemented using CSI (Container

Storage Interface), which has become the standard for storage
integrations in Kubernetes.

• These drivers are maintained separately from Kubernetes and
provide better flexibility, security, and compatibility with modern
storage solutions.

• Updates independent of Kubernetes release cycles.

• Each CSI driver has specific installation steps. Check the official
documentation for the correct YAML manifests, Helm charts, or
operator-based deployments.

Thanks!

References

• https://kubernetes.io/docs/concepts/storage/volumes/
• https://kubernetes.io/docs/concepts/storage/persistent-

volumes/
• https://kubernetes.io/docs/concepts/storage/ephemeral-

volumes/
• https://kubernetes.io/docs/concepts/storage/storage-classes/
• https://kubernetes.io/docs/concepts/storage/dynamic-

provisioning/
• https://medium.com/geekculture/storage-kubernetes-

92eb3d027282
• https://kubernetes.io/docs/concepts/security/secrets-good-

practices/
• https://kubernetes.io/docs/tasks/administer-cluster/encrypt-

data/#ensure-all-secrets-are-encrypted
• https://medium.com/@martin.hodges/adding-persistent-

storage-to-your-kubernetes-cluster-5e12adb81592

	Slide 1: Kubernetes Storage
	Slide 2: Kubernetes and Storage: beyond Cloud-Native applications
	Slide 3: Why storage is essential in Kubernetes?
	Slide 4: Storage integration in Kubernetes
	Slide 5: A flexible architecture based on Volumes
	Slide 6: How Volumes work
	Slide 7: Use cases
	Slide 8: Types of Volumes
	Slide 9: Ephemeral Volumes
	Slide 10: EmptyDir
	Slide 11: ConfigMap (1/3)
	Slide 12: ConfigMap (2/3)
	Slide 13: ConfigMap (3/3)
	Slide 14: Secrets
	Slide 15: Persistent storage
	Slide 16: User level persistent storage
	Slide 17: Cluster level persistent storage
	Slide 18: How PV and PVC work together
	Slide 19: PV provisioning methods
	Slide 20: Understanding PV
	Slide 21: Example NFS PV
	Slide 22: Understanding PVC
	Slide 23: How to mount PVC as Volumes
	Slide 24: StorageClass (dynamic provisioning)
	Slide 25: StorageClass example
	Slide 26: In-tree drivers
	Slide 27: Out-of-tree drivers
	Slide 28: Thanks!

