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Kubernetes and Storage: 
beyond Cloud-Native 
applications

• Kubernetes for Cloud-Native applications
• designed to manage distributed architectures, 

dynamic scalability, and resilience.
• ideal for stateless workloads.

• The challenge of scientific applications
• scientific applications often require persistent and 

reliable data access, especially for use cases like: 
Data Analysis applications, logging systems, 
databases



Why storage is essential in 
Kubernetes?

1. Data persistence across Pod restarts
• Pods are temporary by design.
• Without persistent storage, data is lost when Pods are deleted or restarted.
• Persistent storage decouples the lifecycle of data from the lifecycle of 

Pods, ensuring data survives infrastructure changes.

2. Data sharing between Pods
• Distributed applications often require multiple Pods to simultaneously 

access the same data.
• Kubernetes supports shared volumes, enabling efficient and 

straightforward data sharing.

3. Compatibility with Diverse Storage Backends
• Kubernetes supports a wide range of storage solutions to meet application 

needs:
• Block Storage: high-performance storage for transactional databases.

• Shared File Systems: collaborative or distributed applications.

• Object Storage: scalable, long-term storage for big data systems.



Storage integration in Kubernetes

• Kubernetes simplifies storage management by providing native 
integrations with various types of infrastructures:

• Local storage: directly using physical disks attached to cluster nodes.
• Network systems: solutions like NFS or Ceph, offering shared access 

and scalability.
• Cloud-Native services: options such as Amazon EBS, Google 

Persistent Disk, Azure Disk, and S3-like object storage services.

• Kubernetes supports custom storage plugins through the Container 
Storage Interface (CSI).

• CSI allows developers to integrate any storage system:
• Commercial solutions
• Custom setups

• This makes Kubernetes a universal solution for:
• On-Premises
• Hybrid
• Cloud-Native Environments



A flexible architecture 
based on Volumes

• The core of Kubernetes storage: Volumes
• Volumes are abstractions that allow containers to access storage resources without 

being dependent on the underlying infrastructure.
• A Kubernetes Volume is essentially a directory mounted into containers within a Pod.

• Simplified data handling for applications
• Volumes provide Pods with a mechanism to read and write files, abstracting the 

complexities of storage backend connections.
• Containers remain unaware of the complexity of the underlying storage.

• Volume usage in Pods
• Once created, a Volume is mounted into containers as a directory, becoming an 

integral part of the container's filesystem.
• Enables data sharing between containers in the same Pod:

• Ideal for multi-container applications where one container generates data for another.



How Volumes work

• Volumes are defined in the pod spec (YAML).
• They are mounted into containers, making them shared and 

accessible at specified paths.

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: container-1

 image: my-image

 volumeMounts:

 - name: my-volume

 mountPath: /mnt/data

 volumes:

 - name: my-volume

 <VOLUME DEFINITION>



Use cases

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: my-container

 image: busybox

 volumeMounts:

 - mountPath: /data

 name: my-volume-1

 - mountPath: /app

 name: my-volume-2

 volumes:

 - name: my-volume-1

 <VOLUME-DEFINITON>

 - name: my-volume-2

 <VOLUME-DEFINITON>

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: my-container-1

 image: busybox

 volumeMounts:

 - mountPath: /data

 name: my-volume

  - name: my-container-2

 image: busybox

 volumeMounts:

 - mountPath: /storage

 name: my-volume

 volumes:

 - name: my-volume

 <VOLUME-DEFINITON>



Types of Volumes

• Ephemeral Volumes:
• Temporary and tied to the lifecycle of the Pod.
• Commonly used for caching, temporary data, 

or inter-container communication.

• Persistent Volumes (PVs):
• Designed for long-term storage, independent of 

a Pod’s lifecycle.
• Ideal for applications requiring durable 

storage, such as databases.
• Each type of volume serves distinct use cases, 

addressing different levels of data persistence 
and lifecycle requirements.



Ephemeral Volumes

• Ephemeral volumes in Kubernetes are temporary storage resources that are created and destroyed with the lifecycle of a pod. T hey are ideal for 
storing data that is transient, such as application logs, temporary files, or caches. Once the pod is deleted, the data in ephemeral volumes is also 
removed.

• Types of Ephemeral Volumes
• EmptyDir: A temporary directory for a pod that can be shared among containers within the same pod.
• ConfigMap: Allows injecting configuration data into containers, where the data is mounted as files.
• Secrets: A Kubernetes object used to store sensitive data, such as passwords, tokens, or SSH keys, which can be mounted as files or environment 

variables.

• Use cases
• Logs storage: Temporary storage for logs or runtime data.
• Scratch space: For computation or intermediate data storage.
• Configuration storage: Injecting configuration or sensitive information into containers.
• Caching: speed up operations with local, short-term storage.



EmptyDir

• EmptyDir is an ephemeral volume that is created when a pod is 
assigned to a node and is deleted when the pod is terminated. It 
provides a temporary directory shared by all containers in the pod.

• Use cases:
• Sharing temporary data between containers in the same pod, such 

as caches or intermediate computation results.
• Used for storing temporary files that do not need to persist beyond 

the lifecycle of the pod.

apiVersion: v1 

kind: Pod

metadata:

  name: ephemeral-example

spec:

 containers:

  - name: app-container

   image: nginx 

    volumeMounts:

   - mountPath: "/usr/share/nginx/html"

     name: scratch-volume

  volumes:

 - name: scratch-volume

   EmptyDir:

      sizeLimit: 500Mi
      medium: Memory

Explanation:
• The emptyDir volume is created in memory when the pod starts.
• The size limit is 500Mb
• It mounts at /usr/share/nginx/html in the app-container.
• The volume is deleted when the pod is terminated.



ConfigMap (1/3)

• A ConfigMap is a type of ephemeral volume used to store non-
sensitive configuration data in the form of key-value pairs. It can be 
mounted as a volume or exposed as environment variables in a 
container.

• Each data item in the ConfigMap is represented by an individual file in 
the volume.

• Key Features:
• Allows decoupling configuration from container images.
• Automatically updates when the ConfigMap changes (depending on 

pod settings).
• Example:

• The ConfigMap example-config contains a simple HTML file.
• The pod mounts the ConfigMap as a volume (config-volume) at 

/usr/share/nginx/html.
• When the pod runs, the NGINX server serves the content of the 

index.html file from the ConfigMap.

apiVersion: v1

kind: ConfigMap

metadata:

  name: example-config

data:

  index.html: |

   <html>

      <head><title>Welcome</title></head>

     <body><h1>Hello, Kubernetes!</h1></body>

    </html>

---

apiVersion: v1 

kind: Pod

metadata:

  name: configmap-example

spec:

 containers:

  - name: app-container

   image: nginx 

    volumeMounts:

   - mountPath: "/usr/share/nginx/html"

     name: config-volume

  volumes:

 - name: config-volume

   configMap: 

      name: example-config



ConfigMap (2/3)

• In this example a ConfigMap is exposed as environment variables in a 
container.

• It defines a container environment variable with data from a single or 
multiple ConfigMaps 

apiVersion: v1

kind: ConfigMap

metadata:

 name: app-config

data:

 setting1: "true"

 setting2: "value"

---

apiVersion: v1

kind: Pod

metadata:

 name: configmap-env-example

spec:

 containers:

 - name: app-container

 image: nginx

 env:

 - name: SETTING1

 valueFrom:

 configMapKeyRef:

 name: app-config

 key: setting1

 - name: SETTING2

 valueFrom:

 configMapKeyRef:

 name: app-config

 key: setting2



ConfigMap (3/3)

• We can configure all key-value pairs in a ConfigMap as container 
environment variables 

• Use cases (recap):
• Storing configuration files and injecting them into containers via 

volumes.
• Injecting configuration data as environment variables for easy 

access by applications running inside containers.
• Useful for managing environment-specific settings without 

rebuilding images.

apiVersion: v1

kind: ConfigMap

metadata:

 name: app-config

data:

 setting1: "true"

 setting2: "value"

---

apiVersion: v1

kind: Pod

metadata:

 name: configmap-env-example

spec:

 containers:

 - name: app-container

 image: nginx

 envFrom:

       - configMapRef:

           name: app-config



Secrets

• Secrets are used to store sensitive data, such as passwords, OAuth 
tokens, or SSH keys. 

• Secrets are not so secrets:
• Secrets are Base64 encoded: this encoding is used to store binary 

data in a textual format, not for security purposes. 
• Secret values are stored unencrypted in etcd by default but can be 

configured to be encrypted.

• Best practices
• Enable Secret encryption (encryption at rest)
• Restrict access to Secrets using RBAC
• Avoid exposing Secrets in environment variables
• Use external Secret management solutions (e.g., HashiCorp Vault, 

Sealed Secrets)

• A Pod can reference the Secret in a variety of ways, such as in a 
volume mount or as an environment variable.

apiVersion: v1

kind: Secret

metadata:

 name: db-password

data:

 password: cGFzc3dvcmQ=  # base64 encoded password

---

apiVersion: v1

kind: Pod

metadata:

 name: secret-example

spec:

 containers:

 - name: app-container

 image: nginx

 volumeMounts:

 - mountPath: /etc/secret-volume

 name: secret-volume

 volumes:

 - name: secret-volume

 secret:

 secretName: db-password

https://kubernetes.io/docs/concepts/workloads/pods/


Persistent storage
• Kubernetes offers two primary methods for accessing persistent storage, 

depending on how the storage is managed: at user or cluster level.

• User-Level Access (via Volumes):
Users can directly mount storage from external sources, such as an NFS 
server, by specifying the volume in the pod configuration. This approach 
allows users to connect to shared storage resources independently, without 
requiring intervention from the cluster administrator.

• Cluster-Level Access (via PV and PVC):
When storage is managed at the cluster level, Kubernetes uses the 
PersistentVolumes (PVs) and PersistentVolumeClaims (PVCs) mechanism to 
separate storage provisioning from pod lifecycle management. In this setup, 
the administrator defines PVs to represent the storage resources, while 
users request storage through PVCs. Kubernetes then binds the appropriate 
PVC to a suitable PV.

Feature Volumes PersistentVolumes (PV)

Management Defined at the pod level by the user
Provisioned at the cluster level by the 
administrator

Persistence Guaranteed only while the pod is running
Data remains available even after 
pod restarts or rescheduling

Scalability Requires manual creation
Can be dynamically provisioned 
using StorageClasses

Storage 
Backend

Supports multiple storage backends 
(e.g., NFS, Ceph, AWS EBS)

Supports multiple storage backends 
(e.g., NFS, Ceph, AWS EBS)

Flexibility Simple to use but tied to the pod
Decouples storage from pod 
lifecycle, allowing long-term data 
retention



User level persistent 
storage

• Kubernetes allows users to directly access persistent storage at the 
pod level. We provide three examples of how users can access 
storage via different protocols: nfs, fibrechannel and cephfs

• NFS (Network File System):
Users can mount an NFS share directly into a pod, allowing multiple 
pods to access the same shared storage across nodes.

• Fibre Channel:
Users can access high-performance storage via Fibre Channel, a low-
latency, block-level network technology used to connect storage 
devices to servers.

• Ceph:
Ceph provides highly scalable and reliable distributed storage. Users 
can mount Ceph volumes in a pod for block or object storage access.

<POD DEFINITION>

volumes:

 - name: nfs-data

  nfs:

   server: 10.64.56.102

   path: /data

  - name: fc-data

    fibreChannel:

     targetWWN: 20:00:00:00:00:00:00:00

     lun: 0

      fsType: ext4

  - name: ceph-data

    cephfs:

     monitors:

       - 10.64.56.101:6789

      path: /mnt/ceph

     user: admin

     secretRef:

       name: ceph-secret



Cluster level    
persistent storage
• When storage is managed at the cluster level, Kubernetes leverages the 

PersistentVolumes (PVs) and PersistentVolumeClaims (PVCs) mechanism to 
decouple storage provisioning from pod lifecycle management.

• Persistent Volume (PV): A storage resource provisioned at the cluster level by 
an administrator. A PV represents a physical storage resource that exists 
independently of any specific pod.

o Decouples storage from pod lifecycle, ensuring data durability.

o Supports multiple storage backends, including NFS, Ceph, AWS EBS, and GCE Persistent Disk.

o Enables storage sharing across pods, depending on the access mode.

• PersistentVolumeClaim (PVC): A request for storage made by users or 
applications. When a PVC is created, Kubernetes automatically searches for an 
available PV that matches the specified requirements and binds them together.



How PV and 
PVC work together

• Request and Provision: users create a PVC specifying their storage 
requirements.

• Binding process: Kubernetes finds a suitable PV and binds it to the 
PVC.

• Access: the PVC can then be used by pods to mount the storage 
defined by the PV.



PV provisioning methods

• Kubernetes supports two methods for provisioning Persistent 
Volumes (PVs), depending on the storage management approach:

• Static Provisioning
• The administrator manually creates PVs in advance.
• Each PV is configured with specific capacity, access modes, and 

storage backend.
• Users create PersistentVolumeClaims (PVCs) that Kubernetes binds 

to an existing PV matching the request.

• Dynamic Provisioning
• Kubernetes automatically provisions storage on demand using a 

StorageClass.
• Users request storage through a PVC, specifying the required 

StorageClass.
• Kubernetes creates a PV dynamically, ensuring flexibility and 

efficient resource allocation.

• This approach allows predefined storage (static) when control is 
needed and automated provisioning (dynamic) for scalability and 
ease of management.



Understanding PV

• Let's look at an example of a statically provisioned PV.

• Each PV contains a spec and status, which is the specification and 
status of the volume. 

• Key elements:

o capacity: Defines the storage size (e.g., 10Gi)

o volumeMode (optional):  Filesystem (default) and Block

o accessModes: Access modes for the volume (ReadWriteOnce, 

ReadWriteOncePod, ReadWriteMany, ReadOnlyMany).

o persistentVolumeReclaimPolicy: Policy when PVC is deleted 

(Retain/Delete/Reclaim).

o StorageClassName (optional): Associates the PV with a storage 

class (optional).

o hostPath: Path on the physical node (development and testing 

only). In production use NFS, AWS EBS, Ceph, etc.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: static-pv

spec:

 capacity:

 storage: 10Gi

  volumeMode: Filesystem

 accessModes:

 - ReadWriteOncePod

 persistentVolumeReclaimPolicy: Retain

 storageClassName: manual

 hostPath:

 path: /data/static-pv

• A static hostPath volume is created, with 10Gi of storage and access mode 
ReadWriteOncePod.

• The volume is created on a node at the path /data/static-pv.

# kubectl get pv static-pv

NAME  CAPACITY  ACCESS MODES  RECLAIM POLICY  STATUS CLAIM  SC

static-pv  10Gi  RWOP  Retain  Available     manual



Example NFS PV

• This PV configuration defines a network storage resource, using an 
NFS (Network File System) backend. The PV allows multiple nodes 
to read and write data simultaneously.

• Capacity: the PV provides 20Gi of storage.

• Access Mode: set to ReadWriteMany (RWX), meaning multiple 
pods across different nodes can access and write to the volume.

• Reclaim Policy: configured as Delete, ensuring that the data is 
deletedwhen the PV is released.

• Storage Backend: uses NFS with the server at nfs-
server.example.com, and the storage path is /mnt/data.

• This configuration is ideal for applications that require shared 
storage, such as distributed workloads or shared data repositories.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: nfs-pv

spec:

 capacity:

 storage: 20Gi

 accessModes:

 - ReadWriteMany

 persistentVolumeReclaimPolicy: Delete

 nfs:

 path: /mnt/data

 server: nfs-server.example.com



Understanding PVC
apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: static-pvc

spec:

 accessModes:

 - ReadWriteOncePod

 resources:

 requests:

 storage: 10Gi

 storageClassName: manual

# kubectl get pv static-pv

NAME  CAPACITY  ACCESS MODES  RECLAIM POLICY  STATUS CLAIM      SC

static-pv  10Gi  RWOP  Retain  Bound static-pvc  manual

# kubectl get pvc static-pvc

NAME  STATUS  VOLUME  CAPACITY  ACCESS MODES  SC

static-pvc  Bound  static-pv  10Gi  RWOP  manual  

• A PVC is a request for storage made by a user or application.

• Key elements:

o accessModes: Should match the access modes defined in the PV.

o resources.requests.storage: The amount of storage requested.

o storageClassName: Must match the PV’s storage class for proper 

binding (if defined!).



How to mount PVC as 
Volumes

apiVersion: v1

kind: Pod

metadata:

  name: mypod

spec:

  containers:

    - name: myfrontend

      image: nginx

      volumeMounts:

      - mountPath: "/var/www/html"

        name: my-vol

  volumes:

    - name: my-vol

      persistentVolumeClaim:

        claimName: static-pvc

• Pods access storage by using the claim as a volume. 
• Claims must exist in the same namespace as the Pod using the 

claim. 
• The cluster finds the claim in the Pod's namespace and uses it to 

get the PersistentVolume backing the claim. 
• The volume is then mounted to the host and into the Pod.



StorageClass
(dynamic provisioning)

• A StorageClass defines the storage provisioning strategy in 
Kubernetes.

• It is a Kubernetes abstraction that defines the characteristics of 
dynamic storage.

• It allows dynamic provisioning of PVs based on demand.

• Each StorageClass uses a provisioner (e.g., AWS EBS, GCE PD, 
NFS, Ceph, etc.) and its options.



StorageClass example
apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: aws-ebs

 annotations:

    storageclass.kubernetes.io/is-default-class: "true"

provisioner: kubernetes.io/aws-ebs #deprecated

parameters:

 type: gp2

  fsType: ext4

reclaimPolicy: Retain # or Delete, Recycle

volumeBindingMode: Immediate # or WaitForFirstConsumer

allowVolumeExpansion: true

---

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: my-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 10Gi

 storageClassName: aws-ebs

• The provided StorageClass example defines the use of AWS 
EBS (via the provisioner kubernetes.io/aws-ebs), specifically 
using the gp2 storage type.

• This StorageClass is set as the default, meaning it will be 
automatically selected for PVCs that do not explicitly specify a 
storageClassName.

• The reclaimPolicy is set to Retain, ensuring that the volume will 
remain even if the associated PVC is deleted.

• The volumeBindingMode is set to Immediate, meaning the 
volume is bound to the PVC as soon as the PVC is created, 
without any delay.

• Additionally, volume expansion is enabled, allowing the volume 
size to be adjusted as needed, offering flexibility for storage 
requirements over time.



In-tree drivers

• Kubernetes supports various types of PV, each with 
different characteristics and use cases. 

• Kubernetes manages the two kind of storage plugins 
(drivers) that handle these PVs: in-tree and out-of-tree

• In-tree drivers
• Integrated directly into Kubernetes' source code.
• Each driver is part of the core system, meaning 

updates and modifications depend on Kubernetes 
release cycles.

• Examples: awsElasticBlockStore, 
gcePersistentDisk, azureDisk.

• Almost all deprecated or in the process of removal

• Migration to out-of-tree (CSI) drivers is strongly 
recommended!



Out-of-tree drivers
• Out-of-tree drivers are implemented using CSI (Container 

Storage Interface), which has become the standard for storage 
integrations in Kubernetes. 

• These drivers are maintained separately from Kubernetes and 
provide better flexibility, security, and compatibility with modern 
storage solutions.

• Updates independent of Kubernetes release cycles.

• Each CSI driver has specific installation steps. Check the official 
documentation for the correct YAML manifests, Helm charts, or 
operator-based deployments.



Thanks!
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