
Installazione e amministrazione Kubernetes

1, 2, 3 Aprile 2025

Kubernetes in pillole

Alessandro Costantini

2

 Microservices
 Container Orchestration
 Kubernetes components
 Kubernetes fundamentals
 Kubernetes deployment steps

Overview

Alessandro Costantini

3

Container orcehstration

Alessandro Costantini

Microservices…
• Robert C. Martin coined the term single responsibility principle which

states “gather together those things that change for the same reason,
and separate those things that change for different reasons.”
https://it.wikipedia.org/wiki/Robert_Cecil_Martin

Loosely coupled services which can be developed, deployed, and
maintained independently. Each of these services is responsible for
discrete task and can communicate with other services through simple
APIs to solve a larger complex business problem.

• Suggested reading - The What, Why, and How of a Microservices Architecture
• https://medium.com/hashmapinc/the-what-why-and-how-of-a-microservices-architecture-

4179579423a9

Alessandro Costantini 4

https://en.wikipedia.org/wiki/Single_responsibility_principle

Microservices: architecture
• A microservices architecture consists of a collection of small,

autonomous services. Each service is self-contained and should
implement a single business capability within a bounded context. A
bounded context is a natural division within a business and provides
an explicit boundary within which a domain model exists.

Alessandro Costantini 5

Microservices: advantages
• Microservices are small, independent, and loosely coupled. A single

small team of developers can write and maintain a service.
• Each service is a separate codebase, which can be managed by a

small development team.
• Services can be deployed independently. A team can update an

existing service without rebuilding and redeploying the entire
application.

• Services communicate with each other by using well-defined APIs.
Internal implementation details of each service are hidden from
other services.

• Services don't need to share the same technology stack, libraries, or
frameworks.

Alessandro Costantini 6

Docker containers, microservices…
• Let’s recap things.
• Docker containers help to easily create and share applications

that are – as the name says – self-contained.
• On the other hand, we just saw that microservice architectures

are based on the composition of many independent (but
communicating) services. And that through some processes and
tools such as DevOps, we can write microservice-based
applications that are scalable, reliable and maintainable.

• Combining these two points, containers can greatly help with the
creation of a microservice architecture.

Alessandro Costantini 7

Alessandro Costantini 8

… and orchestration

• We therefore need to understand how to effectively
orchestrate many containers across multiple,
distributed hosts. This is called container
orchestration.

BDP2-2024

Alessandro Costantini 9

Docker Swarm

• Docker Swarm is a simple way of orchestrating
containers with Docker. Some of its main features:

• It is integrated with the Docker Engine: no other software
than Docker is needed.

• It has a decentralized design: this means that any node in a
Docker Swarm can assume any role (master, slave) at
runtime.

• It uses Docker’s overlay networks.

BDP2-2024

Alessandro Costantini 10

Docker Swarm architecture
BDP2-2024

Alessandro Costantini 11

Kubernetes

• Kubernetes, or k8s, is probably the most popular
container orchestration toolset in use today
(https://kubernetes.io/).

• Kubernetes [*] was initially developed at Google to
scale container applications over a Google-scale
infrastructure.

• Before coming to Kubernetes hands-on exercises, we
need to shortly describe its main concepts.

BDP2-2024

[*] Kubernetes: κυβερνήτης, Greek for “helmsman” or “pilot” or “governor” (https://en.wikipedia.org/wiki/Kubernetes)

https://kubernetes.io/
https://en.wiktionary.org/wiki/%CE%BA%CF%85%CE%B2%CE%B5%CF%81%CE%BD%CE%AE%CF%84%CE%B7%CF%82
https://en.wikipedia.org/wiki/Kubernetes

Alessandro Costantini 12

Kubernetes vs Docker Swarm

BDP2-2024

Installation and Setup

Installation process is straightforward. It seamlessly
integrates into existing Docker environments with
minimal configuration, making it ideal for teams
seeking quick deployment.

Installation and setup are complex, requiring a
deep understanding of its components and
configuration options to deploy a cluster
securely and efficiently

Alessandro Costantini 13

Kubernetes vs Docker Swarm
BDP2-2024

Deployment

Offers a more streamlined deployment process
with fewer configuration options. Its approach is
particularly suited to straightforward applications,
providing sufficient control for basic scaling and
management without the overhead and complexity
of Kubernetes.

Provides a highly configurable environment
supporting various workloads, including
stateless, stateful, and batch processes. It
offers detailed control over how applications
are deployed and scaled, enabling precise
management of containerized applications
across clusters.

Alessandro Costantini 14

Kubernetes vs Docker Swarm
BDP2-2024

Autoscaling

Offers basic scaling capabilities, Docker Swarm lacks
the same sophisticated autoscaling mechanisms in
Kubernetes. Its simpler model often requires
manual scaling decisions, potentially leading to
over-provisioning or under-utilizing resources.

Supports autoscaling, allowing applications to
dynamically adjust their size based on
performance metrics and predefined policies.
This feature ensures efficient utilization of
resources and optimal application
performance under varying loads.

Alessandro Costantini 15

Kubernetes vs Docker Swarm
BDP2-2024

Storage

Storage options are simpler, emphasizing ease of
use but offering fewer configurations and
integrations. While sufficient for many use cases,
Swarm may not cater to complex, stateful
applications requiring intricate storage setups.

Offers advanced storage capabilities,
supporting a range of storage backends and
configurations. This allows for persistent
storage, which is essential for stateful
applications, and has high flexibility and
control.

Alessandro Costantini 16

Kubernetes vs Docker Swarm
BDP2-2024

Security

Offers basic security features, Docker Swarm lacks
the depth and flexibility of Kubernetes’ security
model. Its more straightforward approach may
suffice for less complex environments but might not
meet the stringent security requirements of larger,
more complex deployments.

Provides comprehensive security features,
including role-based access control (RBAC),
secrets management, and network policies,
enabling fine-grained security configurations
tailored to specific application and
organization requirements.

Alessandro Costantini 17

Kubernetes vs Docker Swarm
BDP2-2024

Load Balancing

Provides simpler, effective load-balancing
mechanisms tightly integrated with Docker services.
While it covers the basic needs of containerized
applications, it may not offer the same level of
control and options as Kubernetes.

Is highly configurable. It supports both internal
and external traffic with advanced routing
capabilities. This allows for efficient traffic
distribution across services, enhancing
application performance and reliability.

Alessandro Costantini 18

Swarm vs. Kubernetes

• You can find online plenty of
comparisons between the two. See
for example this picture, taken
from
https://sensu.io/blog/kubernetes-
vs-docker-swarm.

• CNCF: Cloud Native Computing
Foundation https://www.cncf.io/

BDP2-2024

https://sensu.io/blog/kubernetes-vs-docker-swarm
https://sensu.io/blog/kubernetes-vs-docker-swarm
https://www.cncf.io/

19

Kubernetes components

Alessandro Costantini

Alessandro Costantini 20

Kubernetes
• Kubernetes coordinates a cluster of

computers that are connected to work as
a single unit.

• Applications that can run in Kubernetes
cluster have to be containerized.

• Kubernetes then efficiently automates
the distribution and scheduling of these
containerized applications across the
cluster.

• A Kubernetes cluster can be deployed on
either physical or virtual machines.

BDP2-2024

https://kubernetes.io

https://kubernetes.io/

Alessandro Costantini 21

Kubernetes clusters

• A Kubernetes cluster consists of two types of
resources:

• One or more Masters coordinate the cluster.
• Nodes are the workers that run containerized applications.

• The Master is responsible for managing the cluster.
• It coordinates all activities in the cluster, such as

scheduling applications, maintaining applications' desired
state, scaling applications and rolling out new updates.

• A Node is a VM or a physical computer that runs
containerized applications by special processes
called pods.

BDP2-2024

Alessandro Costantini 22

Kubernetes clusters
BDP2-2024

Alessandro Costantini 23

Kubernetes clusters: Master
BDP2-2024

● Kube-apiserver

● Etcd

● Kube-controller-manager

● Cloud-controller-manager

● Kube-scheduler

Alessandro Costantini 24

Kubernetes clusters: apiserver
BDP2-2024

Kube-apiserver

The apiserver provides a forward facing REST interface into the kubernetes
control plane and datastore.
All clients, including nodes, users and other applications interact with
kubernetes strictly through the API Server.

It is the true core of Kubernetes acting as the gatekeeper to the cluster by
handlingauthentication andauthorization, request validation, and
admission control in addition to beingthe front-end to the datastore
(ETCD).

Alessandro Costantini 25

Kubernetes clusters: ETCD
BDP2-2024

ETCD

ETCD acts as the cluster datastore; providing a strong, consistent and highly
available key-value store used for persisting cluster state.

Alessandro Costantini 26

Kubernetes clusters: controller-
managers

BDP2-2024

Kube-controller-manager

The controller-manager is the primary daemon that manages all core
component control loops. It monitors the cluster state via the apiserver and
steers the cluster towards the desired state.

Alessandro Costantini 27

Kubernetes clusters: controller-
managers

BDP2-2024

Cloud-controller-manager

The cloud-controller-manager is a daemon that provides cloud-provider specific
knowledge and integration capability into the core control loop of Kubernetes. The
controllers include Node, Route, Service, and add an additional controller to handle
PersistentVolumeLabels

Alessandro Costantini 28

Kubernetes clusters: scheduler
BDP2-2024

Kube-scheduler

Kube-scheduler is a verbose policy-rich engine that evaluates workload
requirements and attempts to place it on a matching resource. These
requirements can include such things as general hardware reqs, affinity, anti-
affinity, and other custom resource requirements

Alessandro Costantini 29

Kubernetes clusters: node
BDP2-2024

● Kubelet
● Kube-proxy
● Container runtime engine

Alessandro Costantini 30

Kubernetes clusters: kubelet
BDP2-2024

Kubelet

Acts as the node agent responsible for managing pod lifecycle on its host.

The kubelet works in terms of a PodSpec. A PodSpec is a YAML or JSON
object that describes a pod. The kubelet takes a set of PodSpecs that are
provided through various mechanisms (primarily through the apiserver) and
ensures that the containers described in those PodSpecs are running and
healthy.

The kubelet doesn't manage containers which were not created by
Kubernetes.

Alessandro Costantini 31

Kubernetes clusters: kube-proxy
BDP2-2024

Kube-proxy

Manages the network rules on each node and performs connection
forwarding or load balancing for Kubernetes cluster services.

Available Proxy Modes:

● Userspace
● iptables
● ipvs (alpha in 1.8)

Alessandro Costantini 32

Kubernetes clusters: container runtime
BDP2-2024

Container Runtime

A container runtime is a CRI (Container Runtime Interface) compatible
application that executes and manages containers.

Container runtime supported by Kubernetes:

● Containerd (docker)
● Cri-o
● Rkt
● Kata (formerly clear and hyper)
● Virtlet (VM CRI compatible runtime)

Alessandro Costantini 33

Kubernetes clusters
BDP2-2024

Additional services

Kube-dns - Provides cluster wide DNS Services. Services are resolvable to
<service>.<namespace>.svc.cluster.local.

Heapster - Metrics Collector for kubernetes cluster, used by some resources such as the Horizontal Pod
Autoscaler. (required for kubedashboard metrics)

Kube-dashboard - A general purpose web based UI for kubernetes.

34

Kubernetes fundamentals

Alessandro Costantini

Alessandro Costantini 35

Kubernetes Pods

• A Pod is the basic building block of Kubernetes. It
represents a running process on your cluster.

• A Pod encapsulates:
• application containers;
• storage resources;
• a unique IP address;
• options that govern how the container(s)

should run.

BDP2-2024

Node

Alessandro Costantini 36

Kinds of Pods

• We may have two kinds of Pods:
• Pods running a single container. The “one-container-per-Pod” model is

the most common Kubernetes use case; in this case, you can think of a
Pod as a wrapper around a single container. Kubernetes manages the Pods
rather than the containers directly.

• Pods running multiple containers that need to work together. A Pod might
encapsulate an application composed of multiple co-located containers
that are tightly coupled and need to share resources. The Pod wraps these
containers and storage resources together as a single manageable entity.

Pod examples

Alessandro Costantini 37

Kubernetes Services

• A Kubernetes Service is an abstraction which defines a
logical set of Pods and a policy by which to access it.

• Although each Pod has a unique IP address, these IPs
are not exposed outside the cluster without a Service.
Therefore, you need Services to allow your
applications to receive traffic.

• Services match a set of Pods using labels and
selectors, allowing to group and operate on objects in
Kubernetes. Labels are key/value pairs attached to
objects and can be used in multiple ways. For
instance:

• To designate objects for development, test, and production
• To embed version tags
• To classify objects using tags

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels

38

Kubernetes deployment
steps

Alessandro Costantini

Alessandro Costantini 39

Kubernetes deployment
BDP2-2024

Pods published,
enter ‘Pending’
phase

M
as

te
r

Note del presentatore
Note di presentazione
Kubectl performs client side validation on manifest (linting).
Manifest is prepared and serialized creating a JSON payload.
Kubectl authenticates to apiserver via x509, jwt, http auth proxy, other plugins, or http-basic auth.
Authorization iterates over available AuthZ sources: Node, ABAC, RBAC, or webhook.
AdmissionControl checks resource quotas, other security related checks etc.
Request is stored in etcd.
Initializers are given opportunity to mutate request before the object is published.
Request is published on apiserver.
Deployment Controller is notified of the new Deployment via callback.
Deployment Controller evaluates cluster state and reconciles the desired vs current state and forms a request for the new ReplicaSet.
apiserver request loop evaluates Deployment Controller request.
ReplicaSet is published.
ReplicaSet Controller is notified of the new ReplicaSet via callback.
ReplicaSet Controller evaluates cluster state and reconciles the desired vs current state and forms a request for the desired amount of pods.
apiserver request loop evaluates ReplicaSet Controller request.
Pods published, and enter ‘Pending’ phase.

Alessandro Costantini 40

Kubernetes deployment
BDP2-2024

Pod
Scheduled

M
as

te
r

N
od

e

Note del presentatore
Note di presentazione
Scheduler monitors published pods with no ‘NodeName’ assigned.
Applies scheduling rules and filters to find a suitable node to host the Pod.
Scheduler creates a binding of Pod to Node and POSTs to apiserver.
apiserver request loop evaluates POST request.
Pod status is updated with node binding and sets status to ‘PodScheduled’.
The kubelet daemon on every node polls the apiserver filtering for pods matching its own ‘NodeName’; checking its current state with the desired state published through the apiserver.
Kubelet will then move through a series of internal processes to prepare the pod environment. This includes pulling secrets, provisioning storage, applying AppArmor profiles and other various scaffolding. During this period, it will asynchronously be POST’ing the ‘PodStatus’ to the apiserver through the standard apiserver request loop.
Kubelet then provisions a ‘pause’ container via the CRI (Container Runtime Interface). The pause container acts as the parent container for the Pod.
The network is plumbed to the Pod via the CNI (Container Network Interface), creating a veth pair attached to the pause container and to a container bridge (cbr0).
IPAM handled by the CNI plugin assigns an IP to the pause container.
Kubelet pulls the container Images.
Kubelet first creates and starts any init containers.
Once the optional init containers complete, the primary pod containers are started.
If there are any liveless/readiness probes, these are executed before the PodStatus is updated.
If all complete successfully, PodStatus is set to ready and the container has started successfully.

	Kubernetes in pillole
	Overview
	Container orcehstration
	Microservices…
	Microservices: architecture
	Microservices: advantages
	Docker containers, microservices…
	… and orchestration
	Docker Swarm
	Docker Swarm architecture
	Kubernetes
	Kubernetes vs Docker Swarm
	Kubernetes vs Docker Swarm
	Kubernetes vs Docker Swarm
	Kubernetes vs Docker Swarm
	Kubernetes vs Docker Swarm
	Kubernetes vs Docker Swarm
	Swarm vs. Kubernetes
	Kubernetes components
	Kubernetes
	Kubernetes clusters
	Kubernetes clusters
	Kubernetes clusters: Master
	Kubernetes clusters: apiserver
	Kubernetes clusters: ETCD
	Kubernetes clusters: controller-managers
	Kubernetes clusters: controller-managers
	Kubernetes clusters: scheduler
	Kubernetes clusters: node
	Kubernetes clusters: kubelet
	Kubernetes clusters: kube-proxy
	Kubernetes clusters: container runtime
	Kubernetes clusters
	Kubernetes fundamentals
	Kubernetes Pods
	Kinds of Pods
	Kubernetes Services
	Kubernetes deployment steps
	Kubernetes deployment
	Kubernetes deployment

