Container e
virtualizzazione

INFN

CLOUD

Installazione e amministrazione Kubernetes

Alessandro Costantini

1, 2, 3 Aprile 2025

}l ICS

Centro Nazionale di Ricerca in HPC,

ell’'Universita
della Ricerca

Big Data and Quantum Computing

Overview INFN

> Containers
» Containers vs VMs
» Working with containers

» Management
> Best practices and security

Alessandro Costantini

Containers

INFN

Alessandro Costantini

Background

» Building a web service on a Ubuntu
machine

 Code works fine on local machine
e Moved to a remote server does not work

* Reasons:

e Different OS => missing libraries or files for the
runtime

* Incompatible version of software (python, java)

It is essential to find a solution to these problems

Alessandro Costantini

“WIIIIKS ON MY C|
. ‘! bz-n
BE o“' :

‘ i
OPS'PROBLEM NOW!
J makean‘leg\e.rg

INFN
The Challenge |

@ % User DB ° o
. . e e v
2 8 . :
g se Static website el s Queue Analytics DB 2 _5
96 nginx 1.5 + modsecurity + openssl + bootstrap 2 Redis + redis<entinel N@000P +hive + thrift + OpenJDK g % g
> o o
-)]
- 7 @ o 1S
= “® Background workers . Wk trontend §~a
=]) ! : Ruby + Rails + sass + Unicorn -~ g
= Python 3.0 + celery + pyredis + libcurl + ffmpeg + libopencv + nodejs + ‘..) 3
- phantomis se APl endpoint @

Python 2.7 + Flask + pyredis + celery + psycopg + postgresgl-client

. Development VM Public Cloud

QA server

Production Cluster

gt

ultiplicity of
hardware

Disaster recovery

Customer Data Center ' Contributor’s laptop .
y

environments

w
3 9
O =
9"—
> 3
s &
[+1]

= -~
o m

Production Servers

Q M

2
g

Alessandro Costantini 6

INFN

Cargo Transport Pre-1960

Do | worry about
how goods interact
(e.g. coffee beans
next to spices)

spooo jo Aypidiiniy

Can | transport quickly
and smoothly
(e.g. from boat to train
to truck)

Sunioys/3uijiodsueny
10) spoyiaw
jo Ayoipdiiniy

Alessandro Costantini

Multiplicity of

Multiplicity of Goods

methods for

Q.

8
-

Solution: Intermodal Shipping Container

A standard container that is
loaded with virtually any
goods, and stays sealed until
it reaches final delivery.
...in between, can be loaded and
unloaded, stacked, transported
20 efficiently over long distances,
= and transferred from one mode
@ of transport to another
£
=
(@]
&
c
&

Alessandro Costantini

(sa@21ds 03 3xau
sueaq 9902 '3'3)
1oBJI3UI Spo03 Moy

(¥onJ3 o3 uleny
011e0q woJij "3'9)
Ajyroows pue Apjainb
Jiodsuesy | ue)

noqe Aliom | 0Q

INFN

OK, not everything always goes as
planned...

ITAL FLORIDA
TRIESTE

Alessandro Costantini

Analogue solution: virtual containers INFN

ee Static websitt %® User DB ¢ Web frontend :f: Queue es Analytics DB

w
©
=]

=

O
©

b

w

—

(1%
<

-~J

...that can be manipulated using

An engine that enables any
payload to be encapsulated

Multiplicity of Stacks
JoRJIDIUI
sdde pue 82195 0(

as a lightweight, portable,
self-sufficient container...

el b standard operations and run §
>3 consistently on virtually any 8 o
S 2 E hardware platform 53
8T o < -
2 o = ——— o 3
= @ . [—] - . o 8

- T— 0

Development QA server Customer Data Public Cloud Production Contributor's =

VM Center Cluster laptop

Alessandro Costantini 10

Virtualization

e What is “Virtualization” in general?

* It is the creation of a virtual version
of something: an Operating System,
a storage device, a network resource: , software...
pretty much almost anything can be gl toiini
made virtual.

Operating System A new
layer of

* This is done through an abstraction,
that hides and simplifies the details
underneath.

Without VMs: Single OS owns
all hardware resources

Alessandro Costantini

Virtual Machine Monitor (VMM)
Physical Host Hardware

@ O LI E e

With VMs: Multiple OSes
share hardware resources

11

What are VMs? CINFN

 As server processing {Jower and capacity
increased, bare metal applications weren’t able to
exploit the new abundance in resources.
> Thus, VMs were born, designed by running software on

top of physical servers to emulate a particular Bins/Lib f{ Bins/Lib
hardware system.

> A h;épervisor (VMM) - > is software, firmware, or o
hardware that creates and runs VMs. =

> sits between the hardware and the virtual machine and is
necessary to virtualize the server.

« Within each VM runs a unique guest OS.

- VMs with different operating systems can run on the UiCal e dle
same physical server

App 2

App 3

Bins/Lib

Guest
0S

w
0
&
=
4

e
=5

Machine Virtualization

Alessandro Costantini 12

Note del presentatore
Note di presentazione
q

Going beyond Virtual Machines @

Virtual Machines (VMs) carry quite some overhead with them

App 1 App 2 App 3 Virtual Machine
o - o > Each virtualized application includes not only the
Bins/Libs Bins/Libs Bins/Libs . . .
— application — which may be only 10s of MB — and the
Suest 08 Suest 08 Suest 08 necessary blr.narles and Ilbraru.es, but also .an entire
guest operating system — which may weigh 10s of GB.
Hypervisor
Host Operating System
Infrastructure

Alessandro Costantini 13

What are containers? INFN

- Operating system (0S) virtualization has grown in
popularity over the last decade to enable software

to run predictably and well when moved from one

server environment to another. Sonaiio [ensin [s
ins/Lib Bins/Lib Bins/Lib
« containers provide a way to run these isolated systems
ontainer cngine

on a single server or host OS.
OS Infrastructure
« shares the host OS kernel, the binaries and libraries

« containers sit on top of a physical server and its host
« Shared components are read-only =>"light”

Containers
* reduce management overhead as they share a common OS S —

operating system

Alessandro Costantini 14

Going beyond Virtual Machines

Virtual Machines (VMs) carry quite some overhead with them

App 1 App 2 App 3 Virtual MaChine
o . o > Each virtualized application includes not only the
Bins/Libs Bins/Libs Bins/Libs . . .
— application — which may be only 10s of MB — and the

necessary binaries and libraries, but also an entire

Guest 0OS Guest 0OS Guest 0S .]]
guest operating system — which may weigh 10s of GB.
Hypervisor
Container
Host Operating System > comprises just the application and
Infrastructure App 1 App 2 App 3 |ts dependenCiES. It runs as an
o o o isolated process in userspace on
EIS/ELE SSHlE iElE the host operating system, sharing
. : . . Thus, it enjoys the resource
e Containers provide a way to virtualize an _
_ Host Operating System isolation and allocation benefits of
OS so that multiple workloads can run on a .
sinele OS instance VMs but is much more portable
g Infrastructure and efficient.

* VMs, the hardware is being virtualized to
run multiple OS instances Alessandro Costantini -

Containers Vs VMs @

A container is a standard unit of software that packages up code and

all its dependencies, so the application runs quicRly and reliably from
one computing environment to another

Containers are isolated,
but share OS and, where
appropriate, bins/libraries

..result is significantly faster deployment,
much less overhead, easier migration,
faster restart

VM —

Container —

Host OS5

Host OS

Server

Server

Source: http://goo.gl/4jh8cX

16

Alessandro Costantini

Note del presentatore
Note di presentazione
Definizione fornita da Docker

http://goo.gl/4jh8cX

Alessandro Costantini

Docker

INFN

17

“Lightweight”, in practice

® Containers require less resources: they start faster and run faster than VMs, and you
can fit many more containers in a given hardware than VMs.

® Very important: they provide enormous simplifications to software development and
deployment processes, because they allow to simply encapsulate applications in a
controlled and extensible way.

® Provide a uniformed wrapper around a software package:
> «Build, Ship and Run Any App, Anywhere»

“Similar to shipping containers: The container is always the same, regardless of the
contents and thus fits on all trucks, cranes, ships, ...”

=2

Develop an app using Docker containers with ~ Ship the “Dockerized” app and dependencies Scale to 1000s of nodes, move between data
any language and any toolchain. anywhere - to QA, teammates, or the cloud - centers and clouds, update with zero

without breaking anything. downtime and more. 18

Docker INFN

« Docker is an open-source platform that automates the development and deployment
of applications inside portable and self-sufficient software “containers”.

 Like virtualenv for Python
* Main components:

* Docker Engine

portable runtime and packaging system that gives standardized [Ciet)———— [pocKer_tosT) m—*
. T docker build --f- o — .
environments for the development and flexibility for workload ocker Uil 1/t | @ &%,
L) . docker pull -| ! - - = .
deployment so that it is not restricted by infrastructure J [Containers FESUN images % \
docker run —t7 \.H_ 6 ,'a NG
technology. = ’

* Docker Daemon (dockerd): The Docker daemon runs on the
host machine and is responsible for managing Docker objects,
such as images, containers, networks, and volumes.

0o
qi

* Docker Client: The Docker client is a command-line interface
(CLI) tool that allows users to interact with the Docker daemon
through commands. Users can build, run, stop, and manage

Docker containers using the Docker CLI.
Alessandro Costantini 19

Docker INFN

« Docker is an open-source platform that automates the development and deployment
of applications inside portable and self-sufficient software “containers”.

[Client } [DOCKER_HOST} @—*
A LI

docker build --q-- s

A ‘EE"
docker pull -| |/)
. /
* Main components: dockerrun B/ NGiMX

* Docker Images

Are the building blocks of containers. They are
read-only templates that contain the application
code, runtime, system tools, libraries, and other
dependencies. Docker images are created from
Dockerfiles, which are text files containing
instructions for building the image layer by layer.

Alessandro Costantini 20

Docker INFN

« Docker is an open-source platform that automates the development and deployment
of applications inside portable and self-sufficient software “containers”.

Client } [DOCKER_HOST}
docker build --{---d; v,
| e i
* Main components: docker pull = ’.’ '
° ..-""
® Docker Containers docker run -t NGiMX

Are runnable instances of Docker images.
They encapsulate the application and its
dependencies, providing an isolated
environment for execution. Containers can
be created, started, stopped, moved, and
deleted using Docker commands.

Alessandro Costantini 21

INFN

Docker

« Docker is an open-source platform that automates the development and deployment
of applications inside portable and self-sufficient software “containers”.

Client ', DOCKE I".,_HI:Z!ST,l
docker build - d; »
ocker bui - -’_.‘"l ?;!:‘_'4_
I dock 1 - |/ |
* Main components: — j
. docker run —t NGIMX
* Docker Registry

Is a centralized repository for storing and sharing
Docker images. The default public registry is
Docker Hub, where users can find a vast
collection of images. Organizations can also set
up private registries to store proprietary images
securely

Alessandro Costantini 22

INFN

Docker

« Docker is an open-source platform that automates the development and deployment
of applications inside portable and self-sufficient software “containers”.

. Client } DOCKER_HOST}
* Main components: “—Jd r buitd | L
ocker butld --4---d;

<112
Y

* Docker Compose docker pull | i

* isatool for defining and running multi-

a MG

docker run —f

container Docker applications.

 Docker Volumes

* are used for persisting data generated by and

used by Docker containers.

* Docker Networking

* provides networking capabilities for containers
to communicate with each other and with
external networks

Alessandro Costantini 23

Containers vs. Images

* “A container image is a lightweight,
standalone, executable package of software
that includes everything needed to run an
application: code, runtime, system tools,
system libraries, and settings.”

> A Docker image is an immutable (unchangeable)
file that contains the source code, libraries,
dependencies, tools, and other files needed for an
application to run.
> They are templates, read-only
> Container is a running image

Alessandro Costantini

image layer

image layer

image layer

24

Docker container

« From a container image, you can start a container based on it. Docker
containers are the way to execute that package of instructions in a runtime

environment

« Containers run until they fail and crash, stopped.
« does not change the image on which it is based

« Docker image = recipe for a cake
« and a container = cake you baked from it.

Simple Cake Recipe - O O S
zzs 18 o) serf-raising

225q|80] oflb tw
. FoDm e mp
z:s l8 £} ¢

" baking powder.

Min IM nagredients well in 3 1arge bowl usin

whis:

Halve !N?!lu! re and pour imto 2 nom-stick 18:m (7 inch)

cake ting, q
Cook till golden birpwn |15-25 minutes| in 3 preheated pven %
A 180 deqrees cma mark 4).

Cool on A wire t-c ore serving add jam between

the two halves optionally top with butter cream,

Alessandro Costantini

A Docker image and containers

Thin R/W layer Thin R/W layer Thin R/W layer Thin R/W layer
(N /
7f9a633ff7ab 0B
28ede3717db9 278B
a3e59dae291a 113 MB
f23eflacb2el 2.6 MB
1e4467b07108 729 MB
Apache HTTPD Server image

25

Extend a docker container (1) @

* Suppose you need a command inside a container, but it is not
Installed in the image you pulled from Docker Hub. For example, you
would like to use the ping command but by default it's not available:

* $ docker run ubuntu ping www.google.com
docker: Error response from daemon: OCI runtime create failed:

container linux.go:345: starting container process caused "exec: \"ping\":
executable file not found in S$PATH": unknown.

* We can install it ourselves; it is in the package iputils-ping:

* S docker run ubuntu /bin/bash -c "apt update; apt -y install inetutils-ping"

e But it still doesn’t work!?

* $ docker run ubuntu ping www.google.com
docker: Error response from daemon: OCI runtime create failed:
container linux.go:345: starting container process caused "exec: \"ping\":
executable file not found in S$PATH": unknown.

Alessandro Costantini 26

http://www.google.com/
http://www.google.com/

Extend a docker container (2)

* Whenever you issue a docker run <container> command, a new container is started,
based on the original container image.

* If you modify a container and then want to reuse it (which is often the case!), you need
to save the container, creating a new image.

* So, install what you need to install (e.g. the iputiis-ping package), and then issue a
commit command like

$ docker commit xxxx ubuntu with ping

* This locally commits a container, creating an image with a proper name
(ubuntu with ping). Take xxxx from the container ID shown by the docker ps -a output.

* S docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu with ping latest 3e7a8818665f 11 minutes ago 97.2MB
ubuntu latest 7698£282e524 7 days ago 69.9MB

Alessandro Costantini 27

Docker Image INFN

e |t is a set of instructions that defines what should run inside a container.

« A Docker image typically specifies:

« Which external image to use as the basis for the

container, unless the container image is written Docker image

from scratch; TN NS L IR
- Commands to run when the container starts; T
- How to set up the file system within the s
container;and e
- Additional instructions, such as which ports to tttttttttttttttttttttttttttttttttttttt
open on the container, and how to import data
from the host system. 7

Alessandro Costantini 28

Dockerfile

Workshop on management of distributed resources for genomic

communities

INFN

29

Container Layers (INFR

« Dockerfile
A series of instruction for building

S cat Dockerfile

|mageS i FROM ubuntu

 Each Dockerfile command creates a ENV DEBIAN FRONTEND=noninteractive
Layer RUN apt update

- Only ADD, RUN and COPY influence the =~ VN 2Pt instal’ 7y inetutiisTping
size of the image This Dockerfile:

. * Starts from the Ubuntu container
* COntalner layers e Updates all installed packages
 From Image to contalner * Installs inetutils-ping

"
3 read-only container layers

30

Image building process

$ docker build -t ubuntu ping

[+] Building 13.6s (7/7) FINISHED docker:default
=> [internal] load build definition from Dockerfile 0.6s
=> => transferring dockerfile: 133B 0.0s
=> [internal] load metadata for docker.io/library/ubuntu:latest 0.0s
=> [internal] load .dockerignore 0.8s
=> => transferring context: 2B 0.0s
=> [1/3] FROM docker.io/library/ubuntu:latest 0.0s
=> [2/3] RUN apt update 5.6s
=> [3/3] RUN apt install -y inetutils-ping 4.9s
=> exporting to image 0.7s
=> => exporting layers 0.6s
=> => writing image sha256:58aefl02ecafal6e65541bf7446aa8ac24c8edf61079f£79990£f54%ad9%cafl3d5b1 0.0s
=> => naming to docker.io/library/ubuntu_ping 0.0s

31

Inspect image building

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu ping latest 58aefl02eafa 5 minutes ago 121MB
ubuntu latest 26b77e58432b 2 weeks ago 78.1MB
hello-world latest dlle5£221234 6 weeks ago 13.3kB

$ docker history 58aefl02eafa

IMAGE CREATED CREATED BY SIZE COMMENT

58aefl02eafa 3 minutes ago RUN /bin/sh -c apt install -y inetutils-ping.. 1.02MB buildkit.dockerfile.vO0
<missing> 3 minutes ago RUN /bin/sh -c apt update # buildkit 42 .1MB buildkit.dockerfile.v0
<missing> 3 minutes ago ENV DEBIAN FRONTEND=noninteractive 0B buildkit.dockerfile.v0
<missing> 2 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B

<missing> 2 weeks ago /bin/sh -c # (nop) ADD file:34dc4f3ab7a69%4ecd.. 78.1MB

<missing> 2 weeks ago /bin/sh -c #(nop) LABEL org.opencontainers... 0B

<missing> 2 weeks ago /bin/sh -c #(nop) LABEL org.opencontainers... 0B

<missing> 2 weeks ago /bin/sh -c #(nop) ARG LAUNCHPAD BUILD ARCH OB

<missing> 2 weeks ago /bin/sh -c # (nop) ARG RELEASE 0B

32

Reduce Layers CINFN

« More layers mean a larger image
« The larger the image, the longer that it takes to build, push and pull

« Smaller images mean faster builds and deploys

 How reduce layers
» Use shared base images (where possible)
« Limit the data written on the container layers
« Chain RUN statemets

« Some links
e https://dzone.com/articles/docker-layers-explained

* https://stackoverflow.com/questions/32738262/whats-the-
differences-between-layer-and-image-in-docker

33

https://dzone.com/articles/docker-layers-explained
https://stackoverflow.com/questions/32738262/whats-the-differences-between-layer-and-image-in-docker
https://stackoverflow.com/questions/32738262/whats-the-differences-between-layer-and-image-in-docker

Best practices and security

INFN

34

Alessandro Costantini

Some best practices for building

containers

Container Container

1. Put a single application per container. For example, do not vt sroness erent sronmes 1
run an application and a database used by the application ehild process 1 tcmd SEeEe O
in the same Container. tchild process 1.1 child process 1.2

child process 1.2 parent process 2
2. DO nOt Confuse RUN Wlth CMD. clll_ild process 2 child process 2.1
« RUN runs a command and commits the result; chiid process 2.1 chitd process 2.2

+ CMD does not execute anything at build time, it specifies the intended command for the image.

3. If in @ Dockerfile you have layers that change often, FROM debian? FROM debian?
put them at the bottom of the Dockerfile. This way, you o .
speed up the process of building the image. STEP3 STEP3

4, Keep it small: use the smallest base image possible, remove unnecessary tools, install only
what is needed. FROM debian:9 FROM debian:9

. . . . STEP 1 STEP 1

5. Properly tag your images, so that it is clear which version STEP2 STEP2

of a software it refers to. e s

6. Do you really want / can you use a public image?
Think about possible vulnerabilities, but also about More (and more detailed) information available at
potential license issues. https://bit.ly/2Zr6Hyq

7. Passwords, certificates, encryption keys, etc.
Do not embed them into the containers, and do not store them e.g. in GitHub repositories!
Alessandro Costantini 35

https://bit.ly/2Zr6Hyq

Alessandro Costantini

Working with images

INFN

36

Search, pull, run (NN

- Search for a container image at Docker Hub:

« S dockfr search ubuntu (or e.g. docker search rhel - what would
this do?

- Fetch (pull) a Docker image (in this case, an Ubuntu container image):
« S docker pull ubuntu

- List images
- S docker images

. Execute (run) a docker container:
- Run the “echo” command inside a container and then exit:

« S docker run ubuntu echo "hello from the container”
hello from the container

. Run a container in interactive mode:
« S docker run -it ubuntu /bin/bash

Alessandro Costantini 37

How efficient is docker? @

$ docker images

REPOSITORY TAG IMAGE ID CREATED STIZE
ubuntu latest 7698£282e524 2 weeks ago 72 .9MB

=> the latest Ubuntu image takes about 70MB of disk space as a container. If you
had just to download a full Ubuntu (server) distribution, it would be more in the
range of 900MB.

S time docker run ubuntu echo “hello from the container”
hello from the container

real Oml.384s
user Om0.069s
Sys OmO0.106s

=> The total time it takes on this system (not a really powerful one) to start a
container, execute a command inside it and exit from the container is about
half a second.

Alessandro Costantini 38

Recap of Containers

We covered the basic concepts about Containers, comparing
them to Virtual Machines.

We see how to execute some basic command like list docker
Images and extend them to create new containers.

We then saw how to build an image via Dockerfiles.

We then discussed about some Docker limitations, in particular
with regard to security

Alessandro Costantini

CINF

39

Container terminology

Container:

« In Linux, containers are an operating system virtualization technology used to package applications and their dependencies and run them in isolated environments.

Container Image:
- Container images are static files that define the filesystem and behavior of specific container configurations. Container images are used as a template to create
containers.
Docker:
» Docker was the first technology to successfully popularize the idea Linux containers.
« Among others, Docker's ecosystem of tools includes docker, a container runtime with extensive container and image management features, docker-compose, a system
for defining and running multi-container applications, and Docker Hub, a container image registry.
Linux cgroups:
« or control groups, are a kernel feature that bundles processes together and determines their access to resources. Containers in Linux are implemented using cgroups
in order to manage resources and separate processes.
Linux namespaces:

« akernel feature designed to limit the visibility for a process or cgroup to the rest of the system. Containers in Linux use namespaces to help isolate the workloads and
their resources from other processes running on the system.

LXC:

e LXCis aform of Linux containerization that predates Docker and many other technologies while relying on many of the same kernel technologies. Compared to Docker,
LXC usually virtualizes an entire operating system rather than just the processes required to run an application, which can seem more similar to a virtual machine.

Virtual Machines:

« Virtual machines, or VMs, are a hardware virtualization technology that emulates a full computer. A full operating system is installed within the virtual machine to
manage the internal components and access the computing resources of the virtual machine.

Alessandro Costantini 40

https://hub.docker.com/

Docker for different OS @

Supported OS:

- https://docs.docker.com/engine/install/
* Windows: https://docs.docker.com/desktop/install/windows-install/
* Linux:
» for RedHat see https://docs.docker.com/engine/install/centos/
* MacOS: https://docs.docker.com/desktop/install/mac-install/

Alessandro Costantini 41

https://docs.docker.com/engine/install/

	Container e virtualizzazione
	Overview
	Containers
	Diapositiva numero 4
	Background
	Diapositiva numero 6
	Diapositiva numero 7
	Diapositiva numero 8
	OK, not everything always goes as planned…
	Analogue solution: virtual containers
	Virtualization
	What are VMs?
	Going beyond …. Virtual Machines
	What are containers?
	Going beyond …. Virtual Machines
	Containers Vs VMs
	Docker
	“Lightweight”, in practice
	Docker
	Docker
	Docker
	Docker
	Docker
	Containers vs. Images
	Docker container
	Extend a docker container (1)
	Extend a docker container (2)
	Docker Image
	Dockerfile
	Container Layers
	Image building process
	Inspect image building
	Reduce Layers
	Best practices and security
	Some best practices for building containers
	Working with images

	Search, pull, run
	How efficient is docker?
	Recap of Containers
	Container terminology
	Docker for different OS

