Iso-vector Form Factors of the Delta and Nucleon in QCD Sum Rules

A. Özpineci

Physics Department Middle East Technical University, Ankara, Turkey

> June 20, 2012 QCD@Work

Outline

- Motivation
- Form Factors in Light Cone Sum Rules
- Form Factors Presented:
 - Axial vector form factors of the nucleon,
 - Tensor form factors of the nucleon
 - Axial vector $\Delta \rightarrow$ Nucleon transition form factors
 - Axial vector Δ baryon form factors
- Sources of uncertainty

Outline

- Motivation
- Form Factors in Light Cone Sum Rules
- Form Factors Presented:
 - Axial vector form factors of the nucleon. G. Erkol, A.O. Phys.Rev. D83 (2011) 114022 for all octet, also by Aliev et al. (2007)
 - Tensor form factors of the nucleon.
 - G. Erkol, A.O., Phys. Lett. B704 (2011) 551-558
 - Axial vector Δ (Nucleon transition form to orsalso by T. Alie (N. Azizi, A.O. (2008)
 Axial vector Δ baryon form tagers
- Sources of uncertainty

Motivation

A peaceful one

Motivation

- Δ and N baryons are the lowest lying baryons that have spin-3/2 and 1/2 respectively.
- Form factors are important quantities describing hadrons (e.g. their shape and size)
- Axial vector form factors can be probed by e.g. ν 's or π
- Tensor form factors can be related to spin-dependent generalized parton distributions.
- They need to be calculated using non-perturbative methods
- In Light Cone QCD sum rules, the form factors can be expressed in terms of the distribution amplitudes of the corresponding hadron.

Form Factors in Light Cone QCD Sum Rules

Consider the correlation function

$$\Pi_{\Gamma}^{BB'}(p,q) = i \int d^4x e^{iqx} \langle 0|T[\eta_{B'}(0)A_{\Gamma}(x)]|B(p)\rangle,$$

Inserting a complete set of hadronic states, it becomes

$$\Pi_{\Gamma}^{BB'}(p,q) = \sum_{h} rac{\langle 0 | \eta_{B'} | h(p+q)
angle}{(p+q)^2 - m_h^2} \langle h(p+q) | A_{\Gamma} | B(q)
angle$$

• To calculate form factors describing the matrix element $\langle B'(p+q)|A_{\Gamma}|B(p)\rangle$, choose a current $\eta_{B'}$ such that $\langle 0|\eta_{B'}|B'(p+q)\rangle \neq 0$ (the larger this matrix element, the better it is)

In the case of axial-vector nucleon form factors

$$\begin{array}{rcl} A_{\mu} & = & \bar{q}\tau^{3}\gamma_{\mu}\gamma_{5}q \\ \\ \eta_{N} & = & 2\epsilon^{abc}\sum_{\ell=1}^{2}(u^{aT}(x)CJ_{1}^{\ell}d^{b}(x))J_{2}^{\ell}u^{c}(x) \\ \\ \langle 0|\eta_{N}|N(p')\rangle & = & \lambda_{N}u(p') \\ \\ \langle N(p')|A_{\mu}|N(p)\rangle & = & \bar{u}(p')\left[\gamma_{\mu}\gamma_{5}G_{A}(q^{2})+\frac{q^{\mu}}{2m_{N}}\gamma_{5}G_{P}(q^{2})\right]u(p), \end{array}$$

where $J_1^1 = I$, $J_1^2 = J_2^1 = \gamma_5$ and $J_2^2 = \beta$ is an arbitrary parameter.

• $\beta = -1$ corresponds to loffe current

 In terms of the form factors, the correlation function becomes:

$$\Pi = \lambda_N \frac{G_A}{m_N^2 - p'^2} \not q \gamma_\mu \gamma_5 u(p) + \lambda_N \frac{G_P}{m_N^2 - p'^2} q^\mu \not q \gamma_5 u(p) + \cdots$$

- The coefficients of the structures $\not q \gamma_{\mu} \gamma_{5}$ and $q^{\mu} \not q \gamma_{5}$ give us the form factors G_{A} and G_{P} respectively.
- The correlation function can also be calculated using holography (see talk by F. Bigazzi), lattice, or OPE.

• In terms of the QCD parameter, in the $p^2, p'^2 \to -\infty$ limit, the correlation function can be calculated using OPE:

$$\begin{split} &\Pi^{\mathcal{B}}_{\mu} = \frac{1}{2} \int d^4x e^{iqx} \sum_{\ell=1}^2 \\ &\left\{ c_1 (CJ_1^{\ell})_{\alpha\gamma} \left[J_2^{\ell} S(-x) \gamma_{\mu} \gamma_5 \right]_{\rho\beta} 4 \epsilon^{abc} \langle 0 | q_{1\alpha}^a(0) q_{2\beta}^b(x) q_{3\gamma}^c(0) | B \rangle \right. \\ &\left. + c_2 (J_2^{\ell})_{\rho\alpha} \left[(CJ_1^{\ell})^T S(-x) \gamma_{\mu} \gamma_5 \right]_{\gamma\beta} 4 \epsilon^{abc} \langle 0 | q_{1\alpha}^a(x) q_{2\beta}^b(0) q_{3\gamma}^c(0) | B \rangle \right. \\ &\left. + c_3 (J_2^{\ell})_{\rho\beta} \left[CJ_1^{\ell} S(-x) \gamma_{\mu} \gamma_5 \right]_{\alpha\gamma} 4 \epsilon^{abc} \langle 0 | q_{1\alpha}^a(0) q_{2\beta}^b(0) q_{3\gamma}^c(x) | B \rangle \right\}, \end{split}$$

where

$$\begin{split} &G_N:\{c_1=c_2=1,\ c_3=-1,\ q_1\to u,\ q_2\to u,\ q_3\to d\},\\ &G_\Sigma:\{c_1=c_2=1,\ c_3=0,\ q_1\to u,\ q_2\to u,\ q_3\to s\},\\ &G_\Xi:\{c_1=c_2=0,\ c_3=1,\ q_1\to s,\ q_2\to s,\ q_3\to d\}, \end{split}$$

• The matrix elements $4\epsilon^{abc}\langle 0|u_{\alpha}^{a}(a_{1}x)u_{\beta}^{b}(a_{2}x)d_{\gamma}^{c}(a_{3}x)|N\rangle$ are calculated by V. Braun, *et al.*. They can be written as:

$$= \mathcal{S}_{1} m_{N} C_{\alpha\beta} (\gamma_{5} N)_{\gamma} + \mathcal{S}_{2} m_{N}^{2} C_{\alpha\beta} (\cancel{x} \gamma_{5} N)_{\gamma} + \left(\mathcal{V}_{1} + \frac{x^{2} m_{N}^{2}}{4} \mathcal{V}_{1}^{M} \right) (\not p C)_{\alpha\beta} (\gamma_{5} N)_{\gamma} + \cdots$$

where $S_1 = \int \mathcal{D}x_i e^{-i\sum_i a_i x_i p \cdot x} S_1(x_i)$, etc.

• $S_1(x_i)$, etc. describe how the quarks are distributed in the nucleon

- Contributions of higher states and continuum are subtracted using quark hadron duality
- To eliminate unknown polynomials in the spectral representation and to suppress contributions of higher states and continuum, Borel transformation is applied

$$\frac{1}{m^2 - p'^2} \to e^{-m^2/M^2}$$

 Sum rules for the form factors can be obtained from the integral

$$\lambda_N f(Q^2) e^{-rac{m_N^2}{M^2}} = \int_0^{s_0} e^{-rac{s}{M^2}}
ho^{QCD}(s;Q^2)$$

where ρ^{QCD} can be expressed in terms of the QCD parameters only

Results

$$\beta = \tan \theta$$

Dependence of Form Factors on $\cos \theta$

Figure : $M^2 = 2 \ GeV^2$ and $s_0 = 2.25 \ GeV^2$

Dependence of Form Factors on Q2

Extrapolation

Extrapolation function used to extrapolate the predictions on g_A out of the validity region of sum rules:

$$G_{A,B} = g_{A,B}e^{-Q^2/m_{A,B}^2}$$

Neither dipole nor exponential fit function describes predictions well for g_P .

Fit parameters

Baryon	Fit Region (GeV ²)	$g_{A,B}$	m _{A,B} (GeV)	$g_{A,B}(Exp)$	$g_{A,B}(Lattice)$
	[1.0-10]	1.68	1.20		
Ν	[1.5-10]	1.24	1.33	1.2694(28)	1.280(15)
	[2.0-10]	0.97	1.42		
	[1.0-10]	1.11	1.32		
Σ	[1.5-10]	0.92	1.40		0.998(14)
	[2.0-10]	0.77	1.48		
	[1.0-10]	0.46	1.25		
_					
Ξ	[1.5-10]	0.41	1.29		0.282(6)
	[2.0-10]	0.35	1.35		

Nucleon Tensor Form Factors

• The tensor current is defined as:

$$T_{\mu\nu} = \bar{u}i\sigma_{\mu\nu}u - \bar{d}i\sigma_{\mu\nu}d$$

• The tensor form factors are:

$$\begin{split} \langle N(p')|T_{\mu\nu}|N(p)\rangle &= \bar{u}(p')\left[i\sigma_{\mu\nu}H_T(q^2)\right.\\ &+ \frac{\gamma_\mu q_\nu - \gamma_\nu q_\mu}{2m_N}E_T(q^2) + \frac{P_\mu q_\nu - P_\nu q_\mu}{2m_N^2}\tilde{H}_T(q^2)\right]u(p), \end{split}$$

where
$$P = p' + p$$
 and $q = p' - p$

Tensor Form Factors

Exponential Fit Parameters

Form Factor	Fit Region (GeV ²)	$F_T(0)$	m _T (GeV)
	[2.0-10]	1.15	1.35
H_T	[1.5-10]	1.52	1.25
	[1.0-10]	2.11	1.13
	[2.0-10]	0.96	1.11
E_T	[1.5-10]	1.33	1.03
	[1.0-10]	1.92	0.94
	[2.0-10]	0.43	1.10
$ ilde{\mathcal{H}}_{\mathcal{T}}$	[1.5-10]	0.63	1.01
	[1.0-10]	0.97	0.91

$\Delta \rightarrow N$ Axial Vector Form Factors

•
$$j^{\mu}_{\Delta} = \frac{1}{\sqrt{3}} \epsilon^{abc} [2(u^{aT}C\gamma_{\mu}d^b)u^c(x) + (u^{aT}C\gamma_{\mu}u^b)d^c]$$

• The form factors are defined as:

$$egin{aligned} \langle \Delta(p',s')|A_
u(x)|N(p,s)
angle &= i\overline{arphi}^\lambda(p',s') \ igg[\left\{rac{C_3^A(q^2)}{M_N}\gamma_\mu + rac{C_4^A(q^2)}{M_N^2}p'_\mu
ight\}(g_{\lambda
u}g_{
ho\mu} - g_{\lambda
ho}g_{\mu
u})q^
ho + \ C_5^A(q^2)g_{\lambda
u} + rac{C_6^A(q^2)}{M_N^2}q_\lambda q_
uigg]u(p) \end{aligned}$$

BUT.....

- $\langle 0|j_{\Delta}|s=\frac{1}{2}(p')\rangle \neq 0$, i.e. (lighter) spin-1/2 particles also contribute to the correlation function
- In general

$$\langle 0|j^{\mu}_{\Delta}|s=1/2(p')
angle=(Ap'^{\mu}+B\gamma^{\mu})u(p')$$

hence all the contribution from spin-1/2 baryons are either proportional to p'_μ or have γ^μ at the far left

 Other Dirac structures do not receive contributions from spin-1/2 baryons.

Monte Carlo Analysis of Uncertainties Due to Input Parameters

- Proposed by D. Leinweber 1995 (for mass sum rules)
- $\lambda_N f(Q^2) e^{-\frac{m_N^2}{M^2}} = \int_0^{s_0} e^{-\frac{s}{M^2}} \rho^{QCD}(s; Q^2)$
- For each value of Q^2 , choose a random value for the input parameters (normally distributed) within their uncertainties and obtain $f(Q^2)$
- Fit the distribution of $f(Q^2)$ to a normal distribution to obtain its mean and variation.
- M² and s₀ are randomly chosen (in the working region) with a flat distribution

 $\Delta \rightarrow N$ Axial Vector Form Factors Axial Vector Δ Form Factors

Nucleon Axial Vector Form Factors $\Delta \rightarrow N$ Axial Vector Form Factors Axial Vector Δ Form Factors

Fit Function

$$f(Q^2) = \frac{f(0)}{(1+Q^2/m^2)^2}$$

Fit Parameters

	f(0)	m(GeV)
<i>C</i> ₃	0.049	2.10
C_4	0.448	1.24
<i>C</i> ₅	1.11	1.52
<i>C</i> ₆	-1.66	1.40

The Axial Vector Δ baryon vertex is defined as:

$$\begin{split} \langle \Delta(p',s')|A_{\nu}(x)|\Delta(p,s)\rangle &= \\ \frac{-i}{2}\overline{\upsilon}^{\alpha}(p',s')\bigg[g_{\alpha\beta}\bigg(g_{1}(q^{2})\gamma_{\nu}\gamma_{5} + g_{3}(q^{2})\frac{q_{\nu}\gamma_{5}}{2M_{\Delta}}\bigg) \\ &+ \frac{q^{\alpha}q^{\beta}}{4M_{\Delta}^{2}}\bigg(h_{1}(q^{2})\gamma_{\nu}\gamma_{5} + h_{3}(q^{2})\frac{q_{\nu}\gamma_{5}}{2M_{\Delta}}\bigg)\bigg]\upsilon^{\beta}(p,s) \end{split}$$

- Only the leading twist distribution amplitudes of the Δ baryon are calculated (C.E. Carlson and J. L. Poor, 1988)
- Leading twist is not enough to calculate h₁ and h₃ form factors due to additional factors of q in their coefficients.
- Calculation of $\Delta \to N$ form factors using Δ distribution amplitudes can give an idea on how well the leading twist DA describes the Δ baryon.

Fit Function:

$$f(Q^2) = \frac{f(0)}{\left(1 + \frac{Q^2}{m^2}\right)^2}$$

Fit Parameters

	f(0)	m (GeV)
<i>g</i> ₁	-5.45	0.85
<i>g</i> ₃	-24.21	0.81

Conclusions

- Nucleon and Delta isovector form factors are presented
- Baryon mass corrections are important.
- Need more information of Δ baryon DAs.
- Uncertainties due to the input parameters, fit region are analyzed
- Using M^2 dependent s_0 might reduce the uncertainty? (to be done, see next talk)

