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Abstract:
The angular distribution of this 4-body decay provides a wealth of angular observables that 
can be studied to unravel the short distance dynamics of BSM physics. Many observables 
have been studied, some better than others.

We show that:

There is a MINIMAL basis of OBSERVABLES, that encode ALL the INFORMATION present 
in the angular distribution in the MOST EFFICIENT WAY.

This basis is EXHAUSTIVE:   All known and unknown observables can be written as a 
function of this basis.  The theoretically clean observable sector is singled out. 
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+ Overview
- Kinematics & Angular Distribution
- Experiment: Past, Present, Future
- Theory: Heff, Matrix Elements & Form Factors, Spin Amplitudes

+ Angular Observables
- Properties of good observables
- Symmetries of the Angular Distribution
- Construction of an OPTIMAL BASIS OF (angular) OBSERVABLES
- Sensitivity study of the Primary Observables

+ Summary & Outlook: Massive case & Scalars
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+ EXTRA: MODEL INDEPENDENT CONSTRAINTS ON NP



A BIG MOTIVATION



OUR FRIEND, THE B→ K∗(→ Kπ)"+"− DECAY
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#  It is a            penguin process.b → s
#  LARGE number of angular observables available experimentally. 

#  Leptons can be electrons, muons or taus. Each has its own pheno. 

#  Also: CP Violation, Isospin asymmetry,... lepton polarizations (future?)
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This talk               Angular Observables



KINEMATICS

The kinematics of the 4 body decay                                  is descibed                              B→ K∗(→ Kπ)"+"−

by 4 kinematic variables: ,       ,         andq2 θ! θK φ

• 4m2
! < q2 < (MB −MK∗)2

• 0 < φ < 2πThe variables are constrained in: • 0 < θ!, θK < π

q2 ! 7 GeV2

14 GeV2 ! q2 ! 20 GeV2

Large Recoil

Low Recoil
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ANGULAR DISTRIBUTION

d4Γ
dq2 dcos θK dcos θl dφ

=
9

32π

[
J1s sin2 θK + J1c cos2 θK + (J2s sin2 θK + J2c cos2 θK) cos 2θl

+J3 sin2 θK sin2 θl cos 2φ + J4 sin 2θK sin 2θl cos φ + J5 sin 2θK sin θl cos φ

+(J6s sin2 θK + J6c cos2 θK) cos θl + J7 sin 2θK sin θl sinφ + J8 sin 2θK sin 2θl sinφ

+J9 sin2 θK sin2 θl sin 2φ
]

J i(q2)#  The coefficients           are functions of the         invariant mass squared q2!+!−

#  The J’s contain all the information available from the angular distribution. 

The angular distribution of the differential decay rate is                                                   

#  Partial information can also be obtain (better statistics).  Examples: 

+       integrated results.q2

+ partial angular integration:

[Kruger et.al. 2000]
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EXPERIMENT
#  Up to now, some     - dependent observables have been measuredq2

(from uni-angular distributions)

#  Future:  Full angular analysis with small      binning q2

(B→ K∗µ+µ−)



THEORY



THEORY

Matrix Elements and Form Factors

As: mb →∞ EK∗ →∞and (Heavy Quark limit + Large recoil)

FF′s −→ ξ‖(q2), ξ⊥(q2)

+ pertubative corrections in SCET

[Charles et.al. 1999]

[Beneke,Feldmann + Bauer et. al. 2001]



THEORY

Spin Amplitudes:

AL,R
⊥ =

√
2NmB(1− ŝ)

[
(C(eff)

9 + C ′(eff)
9 )∓ (C(eff)

10 + C ′(eff)
10 ) +

2m̂b

ŝ
(C(eff)

7 + C ′(eff)
7 )

]
ξ⊥(EK∗)

AL,R
‖ = −

√
2NmB(1− ŝ)

[
(C(eff)

9 − C ′(eff)
9 )∓ (C(eff)

10 − C ′(eff)
10 ) +

2m̂b

ŝ
(C(eff)

7 − C ′(eff)
7 )

]
ξ⊥(EK∗)

AL,R
0 = −NmB(1− ŝ)2

2m̂K∗

[
(C(eff)

9 − C ′(eff)
9 )∓ (C(eff)

10 − C ′(eff)
10 ) +

2m̂b

ŝ
(C(eff)

7 − C ′(eff)
7 )

]
ξ‖(EK∗)

At =
NmB(1− ŝ)2

2m̂K∗
√

ŝ

[
2(C(eff)

10 − C ′(eff)
10 ) +

q2

m!
(CP − C ′

P )
]
ξ‖(EK∗)

AS = −Nm2
B(1− ŝ)2

m̂K∗
√

ŝ

[
CS − C ′

S

]
ξ‖(EK∗)

(Heavy Quark limit + Large recoil)

+ massive terms:

+ scalar operators:
ŝ ≡ q2/m2

B

m̂i ≡ mi/mB

N = Normalization



THEORY

The coefficients      can be written in terms of the Spin Amplitudes:Ji



OBSERVABLES

From the Theory point of view we look for observables that:

1. Do not suffer from large hadronic uncertainties.

2. Have an enhanced sensitivity to the presence of physics BSM.

3. Can be extracted from the angular distribution.



OBSERVABLES

1. Do not suffer from large hadronic uncertainties.

Build Observables that do NOT depend on the Soft Form Factors ξ‖, ξ⊥

Examples:

∝ ξ‖, ξ⊥

∝ ξ⊥/ξ‖

∝ ξ⊥/ξ⊥ = 1

∝ ξ⊥/ξ⊥ = 1 [Melikhov et.al. 1998]

[Kruger, Matias 2005]
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OBSERVABLES

1. Do not suffer from large hadronic uncertainties.

Build Observables that do NOT depend on the Soft Form Factors ξ‖, ξ⊥

Examples:
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∝ ξ⊥/ξ‖
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[Kruger, Matias 2005]

2. Enhanced sensitivity to RH currents....



OBSERVABLES

3. Can be extracted from the angular distribution.

J3 =
1
2
β!(|A⊥|2 − |A‖|2)

J2s =
1
4
β!(|A⊥|2 + |A‖|2)

A(2)
T =

J3

2J2s
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Can’t we just invert the equations J(A) and write this obs. in terms of the J’s ?



OBSERVABLES

3. Can be extracted from the angular distribution.

J3 =
1
2
β!(|A⊥|2 − |A‖|2)

J2s =
1
4
β!(|A⊥|2 + |A‖|2)

A(2)
T =

J3

2J2s

How can we know ?
Can’t we just invert the equations J(A) and write this obs. in terms of the J’s ?

NO
There are transformations (SYMMETRIES) 

among the A’s that leave invariant the 
angular distribution

[Egede, Hurth, Matias, Ramón, Reece 2008]



OBSERVABLES

For example the tranformation:

Leaves invariant the angular distribution: J ′
i = Ji

BUT: A(1)
T → A(1)′

T =
−2Re(A′

‖A′∗
⊥)

|A′
⊥|2 + |A′

‖|2
=

−2Re(A‖A∗
⊥)

|A⊥|2 + |A‖|2
−

4Re(AL
‖ AR

⊥ − AR
‖ AL

⊥)

|A⊥|2 + |A‖|2
θ + · · ·

A(2)
T =

J3

2J2s
On the other hand,

A(1)
T cannot be extracted from the angular distribution

CAN be extracted from the A.D.



SYMMETRIES and EXPERIMENTAL d.o.f.

Suppose there are: 

transformations among the A’s (symmetries) that leave invariant the J’s.ns

complex spin amplitudes (         real theoretical parameters )nA 2nA

The number of independent experimental degrees of freedom is:

nexp = 2nA − ns

Corollary:

nexp independent observables

If the number         of coefficients J i(q2)nJ is greater than nexp

then the coefficients are NOT independent:

nexp = 2nA − ns nJ= − nr

where: nr - number of relationships between the J’s



 SYMMETRIES   (massless case)

There are              symmetries, which can be written as:ns = 4
- complex vectors:

- Symmetries:

There are              complex amplitudes.nA = 6
nexp = 12 − 4 = 12 − nrnexp = 2nA − ns nJ= − nr

Conclusions:

- There are                  independent angular observables.nexp = 8
- There are                relationships between thenr = 4 J i(q2)

Questions:

What are the 4 relationships between the J’s ?

What is the best choice for the 8 independent observables ?



 SYMMETRIES   (massless case)
4 Relationships between the J’s β! → 1(massless:              )
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 SYMMETRIES   (massless case)
4 Relationships between the J’s

J6c = 0 J1c = −J2cJ1s = 3J2s

Where’s the 4th relationship ??

β! → 1(massless:              )



We construct the following products:

 SYMMETRIES   (massless case)

These 9 quantities respect the symmetries of the angular distribution.

These relations can be inverted [easy to find J(n.n)]

Three complex vectors                 ALWAYS satisfy the equation:n0, n‖, n⊥



We construct the following products:

 SYMMETRIES   (massless case)

These 9 quantities respect the symmetries of the angular distribution.

These relations can be inverted [easy to find J(n.n)]

Three complex vectors                 ALWAYS satisfy the equation:n0, n‖, n⊥

J2c = −6
(2J2s + J3)

(
4J2

4 + β2
! J2

7

)
+ (2J2s − J3)

(
β2

! J2
5 + 4J2

8

)

16J2
2s − 3

(
4J2

3 + β2
! J2

6s + 4J2
9

)

+12
β2

! J6s(J4J5 + J7J8) + J9(β2
! J5J7 − 4J4J8)

16J2
2s − 3

(
4J2

3 + β2
! J2

6s + 4J2
9

)

Translated to the J’s, we find the 4th RELATIONSHIP:

This relationship is PRESERVED in the massive case. [Egede, Hurth, Matias, Ramón, Reece 2010]



OPTIMAL SET of OBSERVABLES  (massless case)
Recapitulation:

1. A complete set of independent observables contains EXACTLY 8 observables (a basis).

3. These observables should be THEORETICALLY CLEAN.
Cancellation of soft form factors at LO

2. These observables should be extracted from the angular distribution.

Expressible in terms of the Jʼs (respect the symmetries)
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Prescription:

1. BUILD THE OBSERVABLES IN TERMS OF THE QUANTITIES n†
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2. TAKE RATIOS WITH SFF CANCELLATION ACCORDING TO:

n0 ∝ ξ‖ and n‖, n⊥ ∝ ξ⊥

3. FROM THE 8 OBSERVABLES, 2 CARRY THE BURDEN OF              and 6 are CLEAN.ξ‖,⊥
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OPTIMAL SET of OBSERVABLES  (massless case)

PRIMARY OBSERVABLES:

- These primary observables satisfy all the requirements for good observables
- This set is COMPLETE: Any good observable is a function of the Pʼs



REDISCOVERING KNOWN OBSERVABLES

1. Many theoretically unpleasant observables have been studied:

AF B, dΓ/dq2, FL, FT , Ji, . . .

2. All these can be expressed in terms of the 8 observables



REDISCOVERING KNOWN OBSERVABLES

1. Many theoretically unpleasant observables have been studied:

AF B, dΓ/dq2, FL, FT , Ji, . . .

2. All these can be expressed in terms of the 8 observables

3. Many excellent observables have been studied:

A(2,3,4,5)
T , A(re,im)

T , H(1,2,3)
T , . . .

[Kruger, Matias 2005, Egede et.al. 2008,2010,
Becirevic,Schneider 2011, Bobeth, et.al, 2010]

4. All these can be expressed in terms of the 6 primary observables



THE FULL DISTRIBUTION FROM THE BASIS

4th rel.

J8



NP SENSITIVITY of the PRIMARY OBSERVABLES
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SUMMARY (Symmetries)

1. The angular distribution of the 4-body decay                                    is described by B→ K∗(→ Kπ)"+"−

a number                      of coefficients          nJ = 12 J i(q2)

2. The theoretical and experimental degrees of freedom have to match:

nexp = 2nA − ns nJ= − nr

3. This equation specifies the exact number of independent observables that can be extracted
from the angular distribution.

4. Good observables must satisfy 3 requirements: 1) Small hadronic uncertainties
2) Sensitivity to NP and 3) Respect the symmetries of the angular distribution.

5.The best one can do is                    theoretically clean observables. nexp − 2

6. There is a prescription to construct such observables:

Massless case: 

7. The same can be done to include masses and scalars. 



MODEL-INDEPENDENT CONSTRAINTS

ON:  C7, C7ʼ, C9, C10, C9ʼ, C10ʼ



MODEL-INDEPENDENT CONSTRAINTS

1. Constraints on C7, C7ʼ (all other NP to zero).

B(B → Xsγ)

SK∗γ

AI(K∗γ)

〈AFB〉[1,6]

〈FL〉[1,6]

B(B → Xsµ
+µ−)

decays are COMPLEMENTARY to radiative B decaysb → s !+!−



MODEL-INDEPENDENT CONSTRAINTS

2. Constraints on C7, C7ʼ, C9, C10 (all other NP to zero).

Flipped-sign solution for C7 recovers statistical significance.
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MODEL-INDEPENDENT CONSTRAINTS

3. Constraints on C7, C7ʼ, C9ʼ, C10ʼ (all other NP to zero).

Flipped-sign solution for C7 low statistical significance.
One benchmark point.



MODEL-INDEPENDENT CONSTRAINTS

Examples: benchmark points (C7, C7ʼ, C9, C10, C9ʼ, C10ʼ)

C7, C7ʼ C7, C7ʼ, C9, C10

C7, C7ʼ, C9, C10, C9ʼ, C10ʼ

C7, C7ʼ, C9ʼ, C10ʼ



MODEL-INDEPENDENT CONSTRAINTS

To be continued.....
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