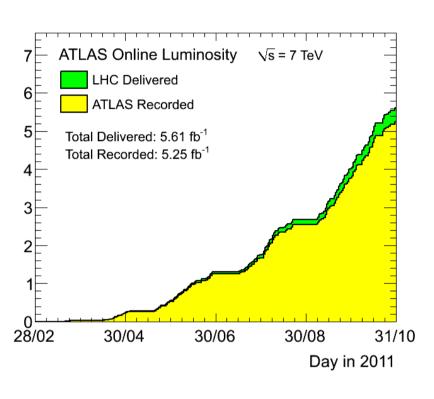
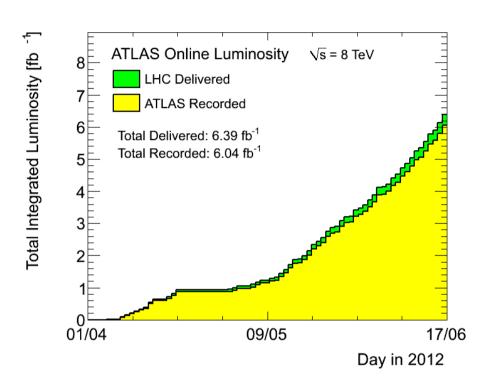


Recent results from the ATLAS experiment

A. Di Simone Università & INFN Roma Tor Vergata

On behalf of the ATLAS Collaboration

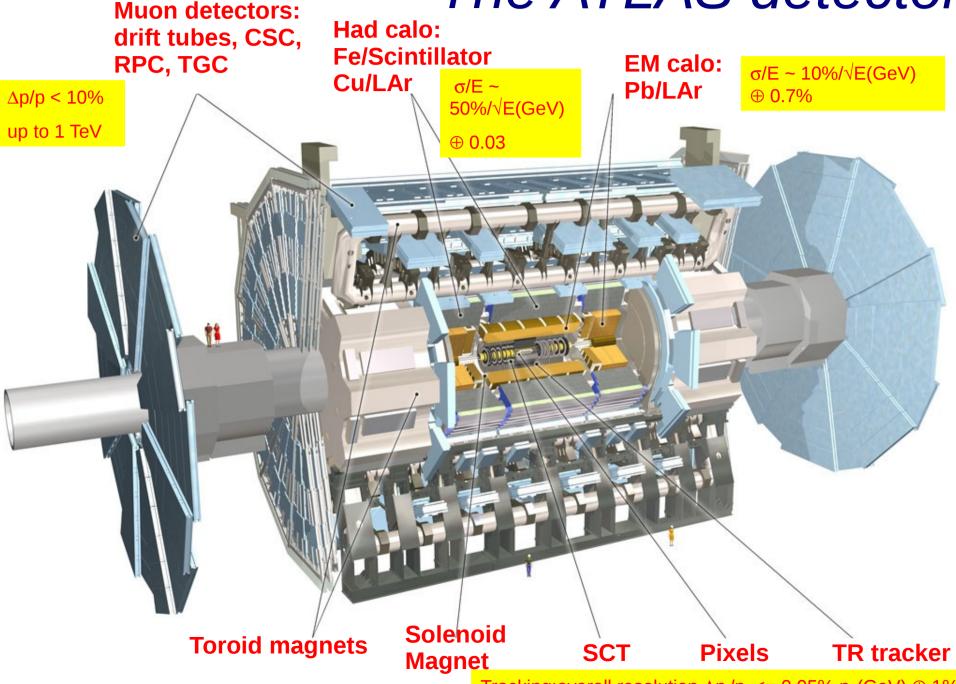




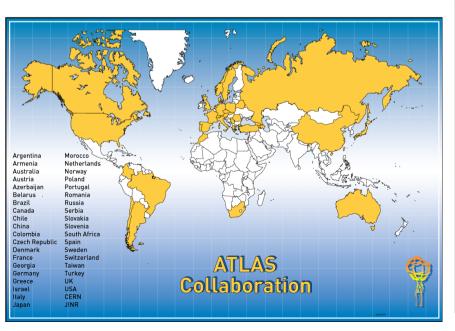
- Introduction
- The ATLAS detector
 - Operation
 - Performances
- Physics highlights
 - Standard Model
 - Higgs
 - High mass
 - Low mass
 - SUSY
 - Exotics
- Conclusions

Total Integrated Luminosity [fb

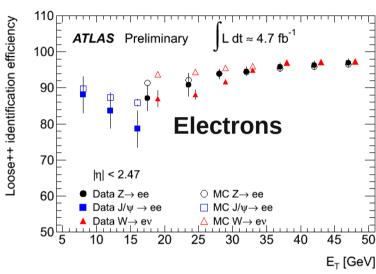
Introduction

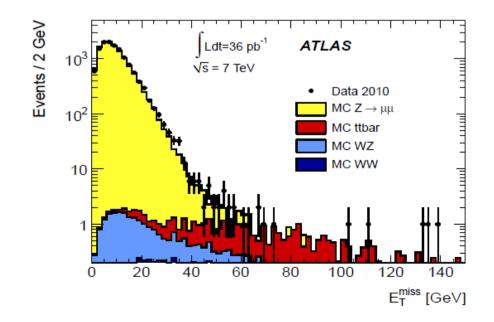


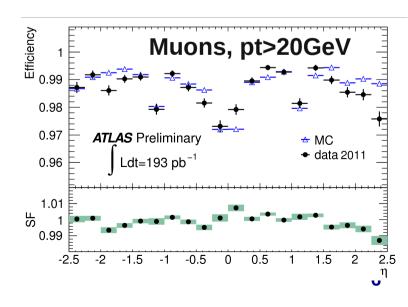
- Startling LHC performance in 2011
 - 5.61/fb @7TeV delivered, peak stable luminosity 3.65x10³³cm⁻²s⁻¹
- Very promising beginning of the 2012 run
 - 5.39/fb @ 8TeV delivered, peak stable luminosity 6.76x10³³cm⁻¹s⁻¹
- Data is processed promptly, and analyses are digesting it as fast as possible (while also studying detector performance, trigger efficiencies, ...)
 - A large amount of interesting results already presented/published
 - Will give here an overview of some of our latest public results (on 2011 data)


The ATLAS detector

The ATLAS detector (2)

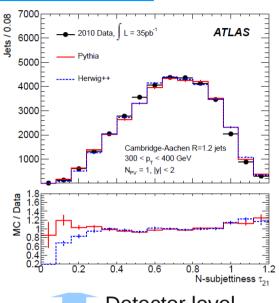

- The size of the detector is reflected in the size of the collaboration designing/building/operating it and analyzing its data
 - ~3000 scientists from ~170 institutes, from ~40 countries
- In spite of the intrinsic complexity, the detector is operating very well, with sub detectors operational status close to 100%, and data taking efficiency >90%



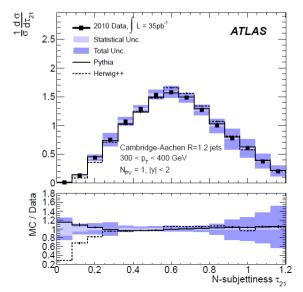

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	95.9%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	97.5%
LAr EM Calorimeter	170 k	99.9%
Tile calorimeter	9800	99.5%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	370 k	99.5%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	97.7%
RPC Barrel Muon Chambers	370 k	97.1%
TGC Endcap Muon Chambers	320 k	99.7%

Detector performance

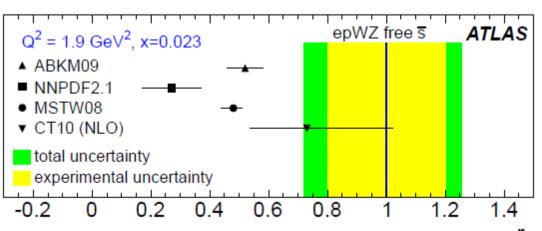
- Reconstruction and tracking efficiencies as measured from data are very close to their expected value from simulation
 - "Tag&Probe" exploits invariant mass constraints on particle pairs from resonances, together with two independent tracking systems, to measure the efficiency of one tracker wrt the other



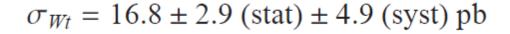
Standard Model


Jet substructure

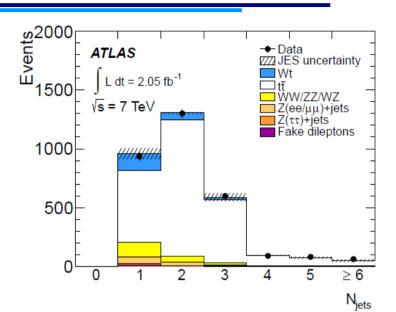
- Check if parton-shower describes correctly the inner structure of jets
 - Useful for decays of boosted heavy particles
- Split-and-filter procedure to identify jets with a relatively hard, symmetric substructure
- Observables include
 - Kt splitting scales: uses the kt distance of the final and penultimate clustering step to derive information about "hardness" of the decay and its symmetry
 - Can distinguish heavy particles from q/g splittings
 - N-subjettiness: how similar a given jet is to an aggregation of N subjets
 - Forces kt algorithm to look for N constituents, measures how well the jet constituents are collimated around the resulting subjet axes
- Challenge is the modeling of the calorimeter response
 - Scale uncertainties of each substructure variable are constrained in-situ using track-jets
 - Limits are ID tracking efficiency and MC modeling of neutral/charged jet components
 - Overall, scale uncertainties are in the range 3-6%
 - (conservative) resolution uncertainties taken from MC (10%-20%)

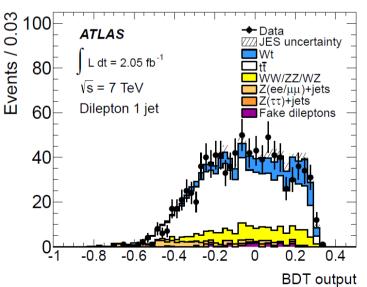

Dibosons in backup

- We have reached the point where we can start constraining the PDFs using our measurements
- Very interesting study on the s-quark PDF
 - Flavor SU(3) symmetry suggests light sea quark distributions to be equal
 - Still, larger mass may cause suppression of s quarks
- Ratio of W/Z cross sections in ATLAS sensitive to sea composition @ Q²~m²_{7.W} and 0.001<x<0.1
- Calculation performed at NNLO using ATLAS events plus DIS data from HERA
- Result favors s fraction close to d fraction in sea, i.e. larger than what most PDFs predict today


$$r_s = 0.5(s + \bar{s})/\bar{d}$$

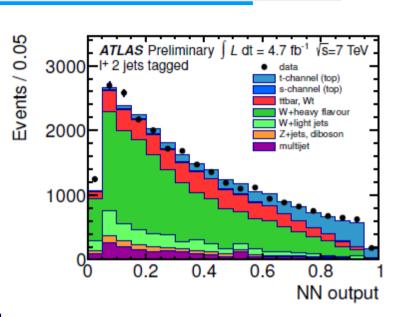
 $r_s = 1.00^{+0.25}_{-0.28}$

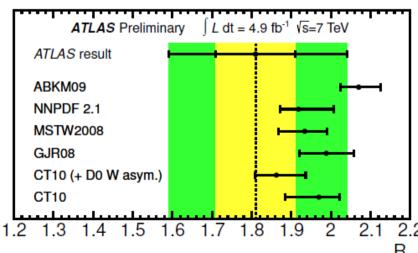




Wt production

- Direct probe of W-t-b coupling (|V_{tb}|)
- Final state with two Ws and one b
 - Signature is two opposite-sign, high-pt, isolated leptons, at least one jet, large Etmiss
 - Z-mass-veto on lepton pair, no b-tagging, bin results in number of jet
- Backgrounds
 - ttbar: MC-based, constrained by fit on data
 - Dibosons
 - Z+jets: data driven estimate, unc 10%-35%
 - Impact of fake leptons estimated from data. conservative unc of 100%
 - Z $\rightarrow \tau\tau$ MC prediction cross validated with data in CR (unc 60%)
- After selection, MV techniques (BDT) used to further discriminate signal from backgrounds
 - Template fit on MV output yields cross section measurement
- Main systematics: JES (~15%), parton shower (~15%), pileup (~8%)

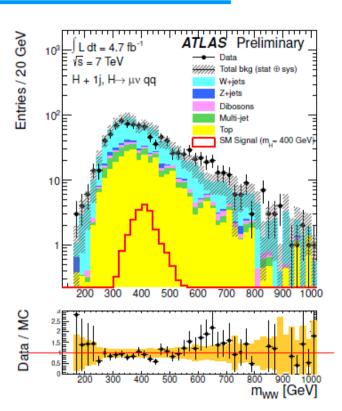

$$|V_{tb}| = 1.03^{+0.16}_{-0.19}$$

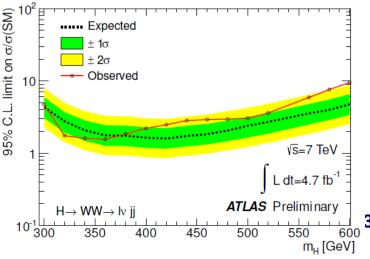

ttbar \rightarrow I+ τ_{had} +X in backup

- Look for single-top production in t channel
 - Production of top expected to be larger than anti-top, due to different u,d PDFs in proton
 - Ratio of the top/anti-top production cross sections sensitive to u,d PDFs in 0.02<x<0.05
- Final state is W+b+u/d
 - Signature is one high-pt, isolated lepton with large Etmiss from W decay, 2/3 hard hadronic jets
- Main background is W+jets, estimated from data using MC-based shapes. QCD multijets estimated using template fit with data-driven shapes. Other backgrounds from MC.
- After selection, MV technique used to further discriminate signal from backgrounds
- Main systematics for R_t are ISR/FSR (4.2%)
 multijet normalization (3.8%), JES (3.7%)

$$\sigma_t(t) = 53.2 \pm 1.7 \text{ (stat.)} \pm 10.6 \text{ (syst.)} \text{ pb} = 53.2 \pm 10.8 \text{ pb},$$

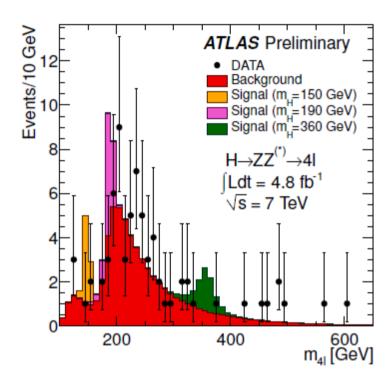
 $\sigma_t(\bar{t}) = 29.5 \pm 1.5 \text{ (stat.)} \pm 7.3 \text{ (syst.)} \text{ pb} = 29.5^{+7.4}_{-7.5} \text{ pb}$ and $R_t = 1.81 \pm 0.10 \text{ (stat.)} ^{+0.21}_{-0.20} \text{ (syst.)} = 1.81^{+0.23}_{-0.22}.$

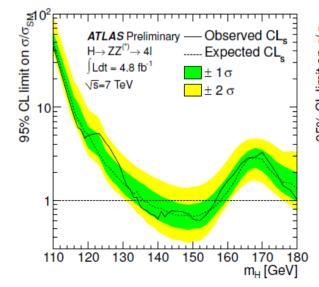



Higgs searches

$H \rightarrow WW \rightarrow Ivjj$

- Limited to $m_H>300GeV$ to better control backgrounds and to $m_H<600GeV$ to avoid overlap between the two jets
- Look for lepton/Etmiss from W, two (b-vetoed) jets from W; allow 0/1 (sensitive to ggF) or 2 (sensitive to VBF) additional jets
- Dominant background is W+jets, but the limit-setting procedure does not use MC
 - Data-driven parameterization of the smooth background shape is used
- Systematics driven by signal reconstruction uncertainties: jet scale/resolution (8%/10%), Etmiss (10%-16% mainly due to pileup), b-tagging (7%)

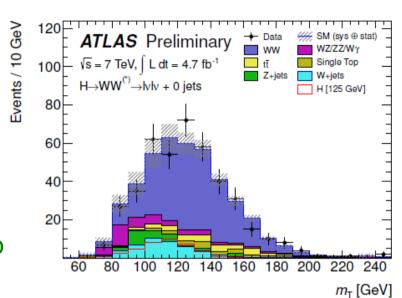


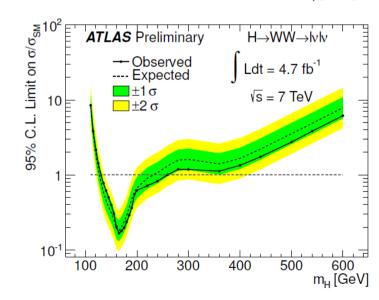



ZZ → llqq and llvv in backup

$H \rightarrow ZZ \rightarrow 4I$

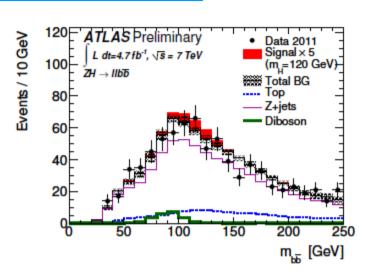
- Interesting over the whole mass range
- Main background is continuous ZZ(*) production
 - For m_H<180GeV, also ttbar and Z+jets become important
 - Z+bb for muons, Z+light jets for electrons
- ttbar normalized using different-flavour lepton pairs; ZZ(*) uses MC (15% syst unc); Z+jets normalized using data (45%-40% syst unc)
- Uncertainty on m₄₁ due to electron scale from 0.3% to 0.6%
- Theoretical uncertainty on signal is 15%-20% for ggF and 3%-9% for VBF
- Expected exclusion: 137-158
 GeV and 185-400GeV
 - Observed: 135-156GeV, 181-234GeV and 255-415 GeV
- Excess significance is
 2.1σ@125GeV, 2.3σ@244GeV,
 2.2σ@500GeV

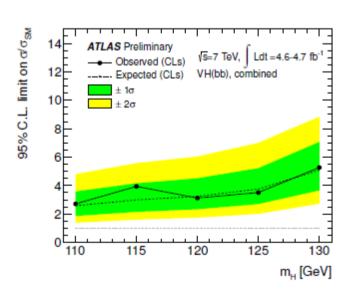




$H \rightarrow WW \rightarrow I \nu I \nu$

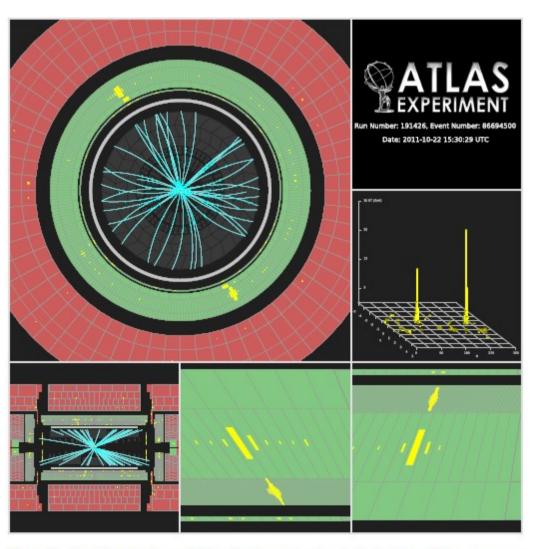
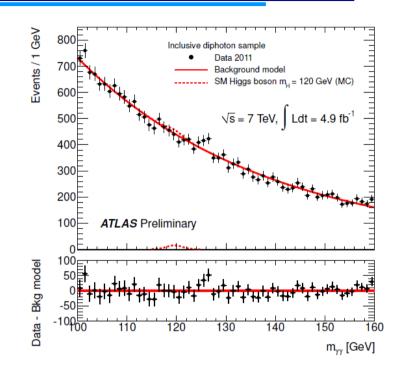
- Look for two opposite-charge, isolated, high-pT leptons, off from the Z peak
 - Relative angle is required to be small for low mass searches, to exploit H → WW spin correlations
- Require large Etmiss
 - actual cut is on the component perpendicular to the nearest hard jet/lepton
- Split the analysis in different channels depending on the number of additional jets (sensitive to ggF vs VBF); veto b-jets to suppress ttbar events
- Backgrounds estimated from data using control regions: WW (syst unc 10%-24%); Z+jets (25%-56%); top (23%-30%); W+jets(30%-50%)
- Expected exclusion: 127-234GeV
 - Observed: 130-260GeV

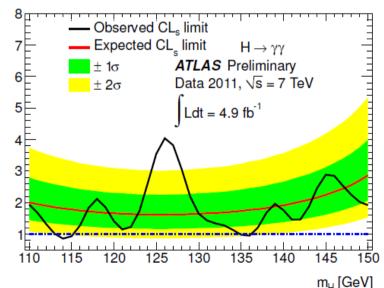




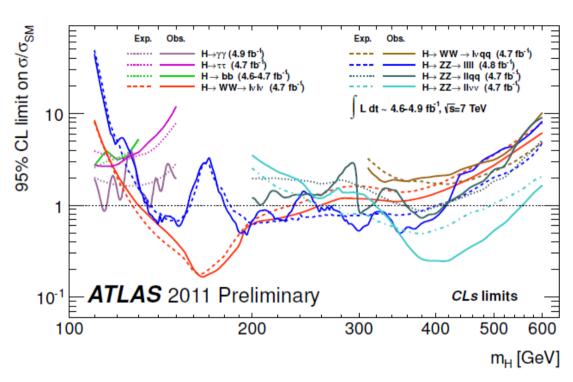
 $H \rightarrow \tau \tau$ in backup

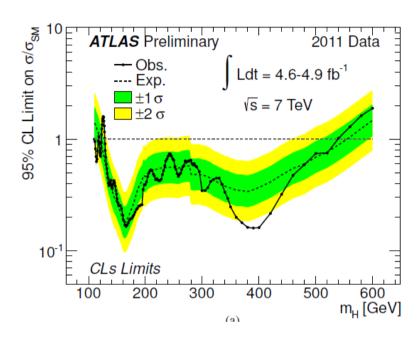
- Exploit large BR of H → bb in the low mass region
 - Require associated production with W/Z to suppress QCD background
- Channels are ZH → IIbb, WH → Ivbb and ZH → vvbb
- Analysis split in bins of pt of the vector boson
 - harder spectrum expected in signal than in bg
- Top, W+jets estimated normalizing MC shapes to data in control regions; QCD multijet uses templates from data
- Theory systematics are 5% for ZH and 11-13% for WH
 - due to QCD modeling of events with 3 or more jets
- Dominant experimental systematics on signal expectation are b-tagging (10%-20%) and JES/Etmiss (4%-11%)

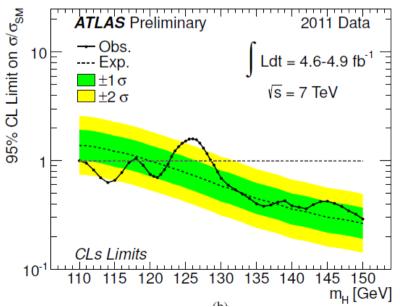




Figure 13: Event display of a candidate diphoton event where both photon candidates are unconverted. The event number is 86694500 and it was recorded during run 191426. The leading photon has E_T =64.2 GeV and η =-0.34. The subleading photon has E_T =61.4 GeV and η =-0.61. The measured diphoton mass is 126.6 GeV. The pT and pTt of the diphoton are 6.1 GeV and 5.4 GeV, respectively.

 $H \rightarrow \gamma \gamma$

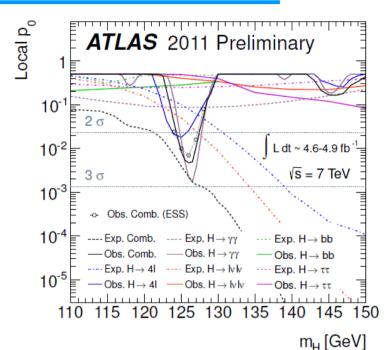

- Analysis uses both converted and unconverted photons, and different categories are defined for different detector regions
- Further split in bins of diphoton pt component transverse to diphoton thrust (better resolution wrt "plain" pt)
 - In total, analysis uses 9 categories
- Background modeled by single exponential, signal as Gaussian+Crystal Ball
- Main uncertainties on signal yield: 11% from photon reconstruction and identification; 4% from pileup; 5% from photon isolation; +15%/-11% from signal cross section; 12% from calorimeter resolution; 6% from energy calibration
- Observed exclusion: 114-115GeV and 135-136GeV
- Most significant excess is 2.8σ@126GeV
 - 1.5σ once LEE is taken into account

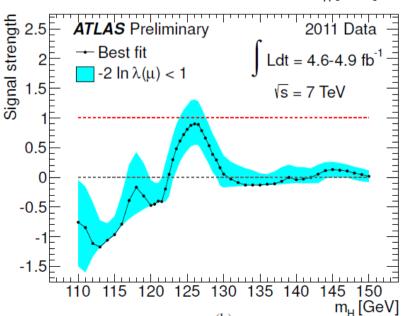




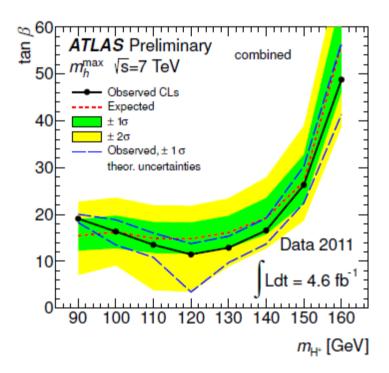
ATLAS Higgs combination

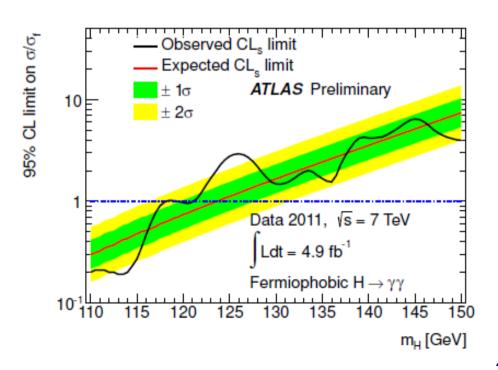
- Expected limits: 120-555GeV
- Observed 95% CL exclusion regions are
 - 110.0 GeV 117.5 GeV
 - 118.5 GeV 122.5 GeV
 - 129 GeV- 539 GeV





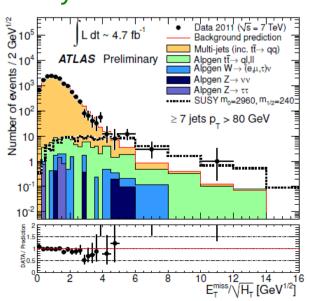
ATLAS Higgs combination (2)

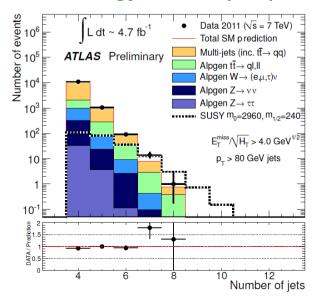

- An excess of events is observed in the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ(*) \rightarrow 4l$ channels @ ~126GeV
 - local significances of 2.8σ and 2.1σ respectively.
 - Expected sensitivities for SM H @ 126 GeV are 1.4σ for both channels.
- The local *ATLAS combined* significance is 2.5σ
 - expected significance for SM H @ 126 GeV is 2.9σ.
- How likely is such an excess to be observed (in the absence of a Higgs signal) in all the mass range under study?
 - preliminary estimate: ~30% from 100GeV to 600GeV; ~10% in the region not excluded @ 99%CL (from 110GeV to 146GeV)

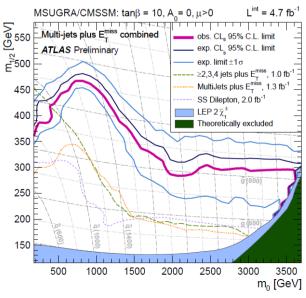


Bonus: BSM H

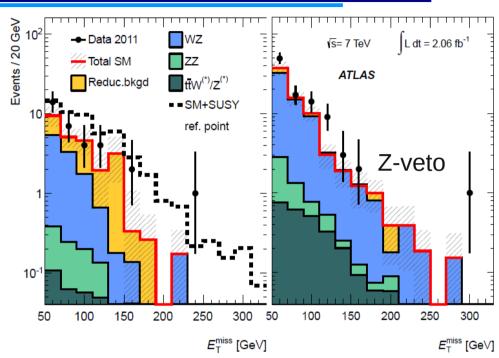
- Also actively looking for non-SM Higgs bosons
 - Charged H (t → bH → bτν)
 - Fermiophobic H ($\rightarrow \gamma \gamma$)

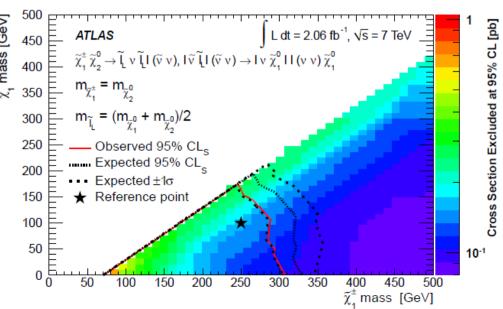

New Physics searches


I+jet+Etmiss in backup


SUSY: inclusive searches

- Many NP models predict spectacular decay chains, whose last link could be non-interacting
 - Analysis looks for excess of events with high jet multiplicities and large (significant) missing transverse energy
- Main background is multijet production (QCD, ttbar, W/Z+jets)
 - non-leptonic: use templates extracted from data in events with lower multiplicity and/or lower Etmiss. Main systematics come from template transfers from lower to higher jet multiplicities (15%-25%)
 - leptonic: use MC, normalized in ad-hoc, signal-depleted, control regions. Main systematics come from Jet Energy Scale (6%)

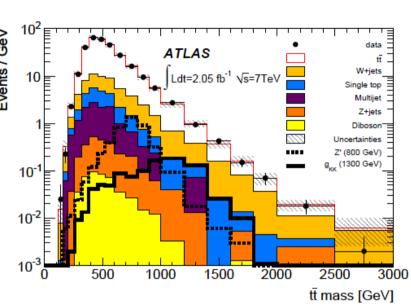


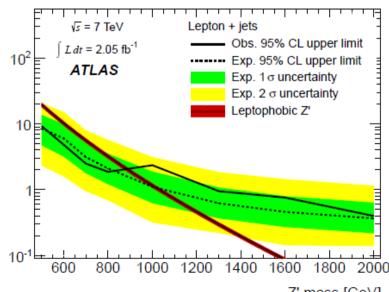


stop pair in backup

SUSY: 31+Etmiss

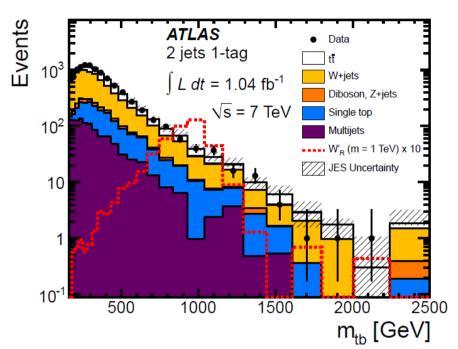
- Could signal leptonic decay of a gaugino pair
- Require three high-pt, isolated leptons, two of them same flavor opposite sign
 - Analysis with and without Z-veto
- Backgrounds
 - Irreducible: WZ(*), ZZ(*) and ttbar+W/Z(*) estimated from MC & Total unc. of 17%, dominated by PDFs
 - Reducible: top and Z+jets using partially data-driven method.
 Total unc. of 29%
- Signal cross section unc. is 10-15%

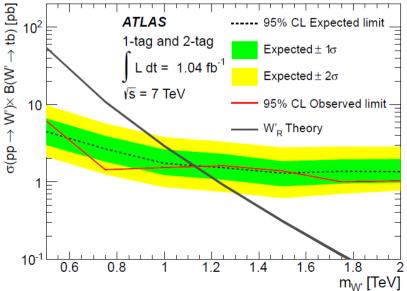




BSM: ttbar resonances

- Look for ttbar resonances in events where only one or both of the W bosons decays leptonically
 - Signature is one (two) high-pt, isolated leptons, large Etmiss, 3-4 high-pt jets (at least one b-tagged).
- Dominant backgrounds estimates:
 - MC-based shapes (ttbar and single top)
 - MC shapes with data-driven corrections (W+jets)
 - data control regions + MC extrapolation to signal region (Z+jets)
 - Templates from data (multijet)
- Main uncertainties on bg normalization are 76% on multijets and W+jet for the dilepton analysis and 50% on multijets for the lepton+jets analysis
- Other systematics on yields for lepton+jets channel include b-tagging (13% on bg, 17% on signal), jet energy scale (15% on bg, 4% on Z' signal)
- Uncertainties in the dilepton channel dominated by modeling of ISR and FSR (1%-5%), JES (2.5%-3%), PDFs (3.7%-0.6%)





I*, q*, Z' in backup

BSM: W' → tb → lvbb

- Competitive if leptonic decays suppressed
- Signature is one high-pt, isolated lepton, Etmiss, two jets (one or both b-tagged)
- Background estimates
 - W+jets: shapes from MC, flavor composition and overall normalization from data in signal free control region
 - Multijet: shapes from data in CR, normalization from Etmiss spectrum in data (unc. on yield of 50%-100%)
 - ttbar, single top, Z+jet and diboson: shape and normalization from MC (unc. on yield of 10% for top, 5% for diboson, 60% for Z+jet)

- LHC operation @ 7TeV provided a wealth of information
 - Being digested at a steady pace
 - we are producing many interesting results
- Standard Model physics is the very first benchmark
 - At an unexplored CM energy
- Searches for new physics ongoing
 - Limited statistics forces analyses to be as inclusive as possible
 - Model independent!
 - Exclusion of some models already possible, in regions of phase space not yet covered by Tevatron
- Update of analyses, including 2012 data @ 8TeV is ongoing
 - ... stay tuned!
- More from ATLAS today:
 - 15:20 "ATLAS measurements of soft particle production and diffraction", S. Todorova
 - 17:10 "Probing QCD with jets, photons and weak bosons at the LHC with ATLAS", B. Cooper

Further reading

Standard Model:

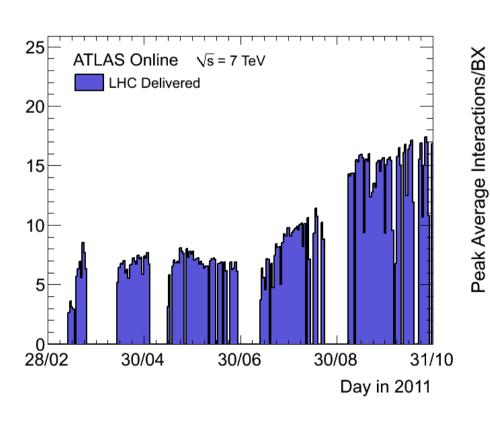
 arXiv:1205.2531, arXiv:1203.6232, arXiv:1203.4051, arXiv:1203.4606, arXiv:1205.2067, arXiv:1205.5764, ATLAS-CONF-2012-056

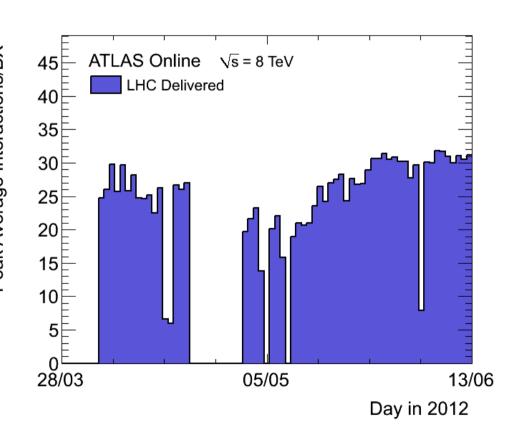
Higgs

 ATLAS-CONF-2012-018, ATLAS-CONF-2012-016, ATLAS-CONF-2012-017, ATLAS-CONF-2011-162, ATLAS-CONF-2012-012, ATLAS-CONF-2012-014, ATLAS-CONF-2012-015, ATLAS-CONF-2011-161, ATLAS-CONF-2012-019, ATLAS-CONF-2012-013, ATLAS-CONF-2012-011.

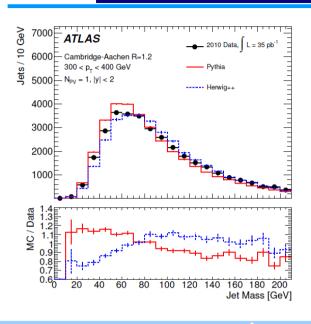
New Physics:

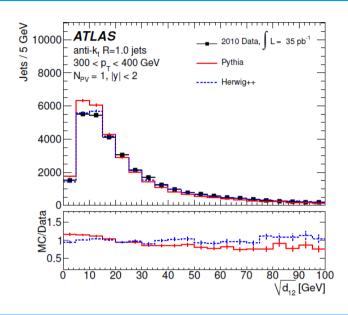
 ATLAS-CONF-2012-008, ATLAS-CONF-2012-038, ATLAS-CONF-2012-007, ATLAS-CONF-2012-037, ATLAS-CONF-2012-041, arXiv:1205.1016, arXiv:1205.5371, arXiv:1204.6736, arXiv:1204.5638

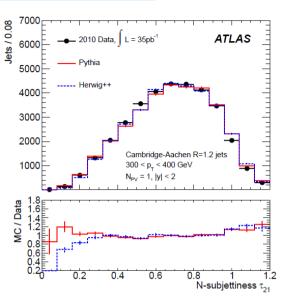




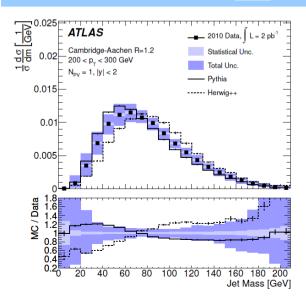
Pileup

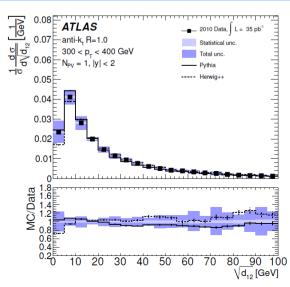


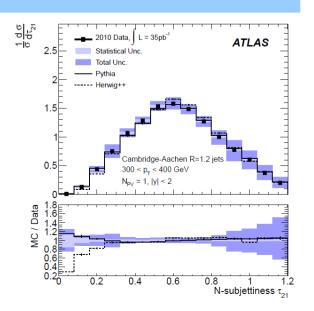



- Investigations and measurements in the realm of "old" physics are of paramount importance for the understanding of any new physics signal
- Precision measurements may actually allow us to catch a a glimpse of completely new phenomena
 - unexpected deviations
- A few highlights of our Standard Model programme
 - Jet mass and substructure
 - How well does parton-showering reproduce internal substructure of jets? Would we be able to resolve the decay of a (new) boosted heavy particle?
 - W/Z production cross sections
 - Direct insight on PDFs
 - Di-boson physics
 - aTGCs probe for BSM physics
 - Top physics
 - Wt, R,

Jet substructure

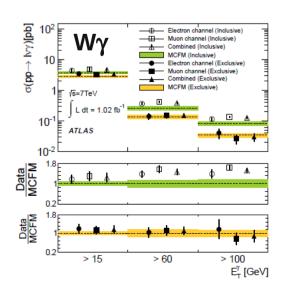


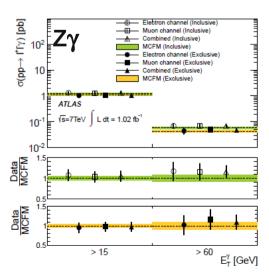


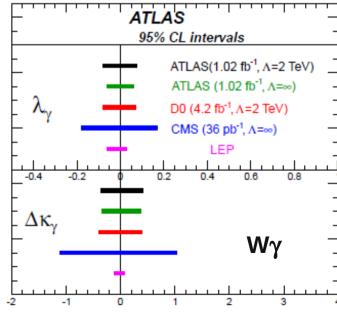


Detector Level

After unfolding detector effects and acceptance

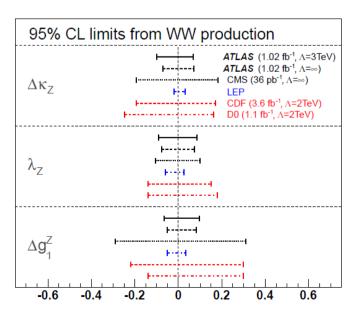






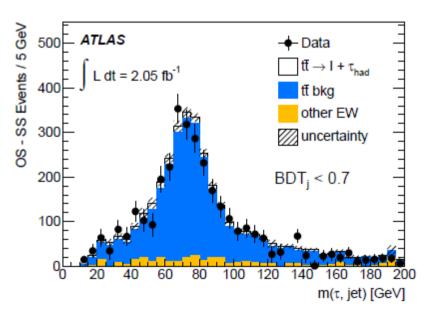
Dibosons: $W\gamma \rightarrow I\nu\gamma$, $Z\gamma \rightarrow II\gamma$

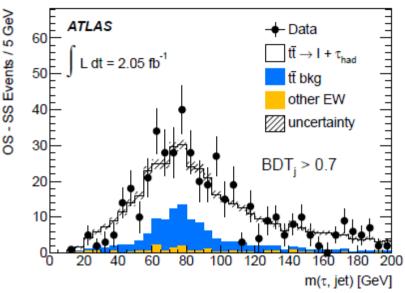
- Select high-pT, isolated leptons and photons, apply (transverse) mass cuts/vetoes
 - main background from W/Z+jets, with photons from jet fragmentation passing the selection criteria. For Wγ, γ+jets are also important, due to high-pT leptons arising from heavy-flavor decays
 - Both estimated using data driven methods
- Systematics on selection efficiencies between 8.3% and 12.5%, depending on the energy of the photon, dominated by photon identification efficiency and Jet energy scale
- Systematics on acceptance dominated by PDFs (<1%) and renormalization and factorization scale (1%-3.5%)
- Use results to constrain aTGCs



Dibosons: WW→IvIv

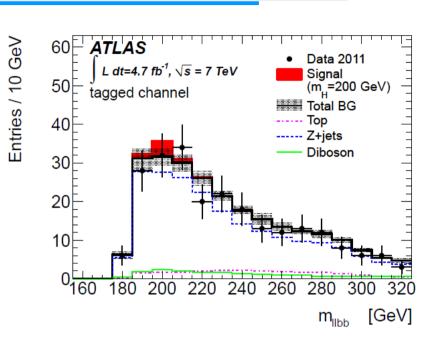
- Select high-pT leptons, large missing transverse energy, apply transverse mass cut, veto b-jets, veto Z boson
 - Main backgrounds from Drell-Yan dileptons with misreconstructed jets faking large missing Et, and top events
 - Bg is estimated using MC predictions, constrained using data in signal-free (or signal-depleted) control regions
- Uncertainties dominated by jet veto acceptance (~5%) and lepton efficiency/acceptance (2%-4%)

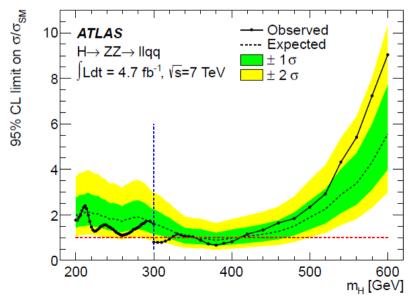

```
\sigma(pp \to WW) = 54.4 ± 4.0 (stat.) ± 3.9 (syst.) ± 2.0 (lumi.) pb,
```



ttbar $\rightarrow l + \tau_{had} + X$

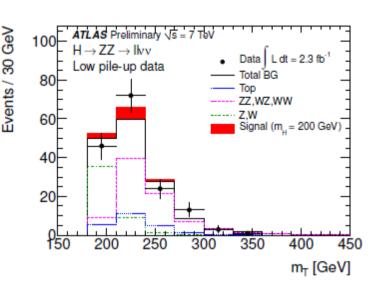
- Interesting probe of non-standard decay modes ($t \rightarrow bH^+ \rightarrow b\tau \nu$). Challenge is good control on τ identification performance
- Use MV techniques to identify τ , and to discriminate between true and fake τ (from e and jets)
- Opposite/same charge requirement on I and τ allow to suppress most the chargesymmetric backgrounds (fake τ from gluons, multijet, bbar)
 - Remaining light-quark τ fakes estimated from data using template fit on MV discriminant. Shape from data in signal-depleted control regions
- Main systematics are b-tagging (7.5%-9%) and modeling of ISR/FSR (3.5%-4.8%)

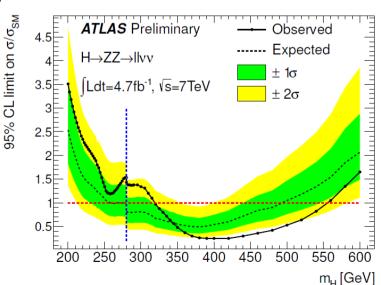



$$\sigma_{t\bar{t}} = 186 \pm 13 \text{ (stat.)} \pm 20 \text{ (syst.)} \pm 7 \text{ (lumi.)} \text{ pb}$$

$H \rightarrow ZZ \rightarrow IIqq$

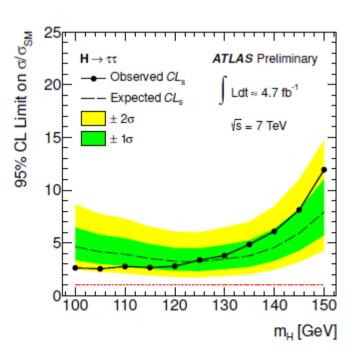
- Look for two leptons from Z, two well separated jets from Z, low Etmiss
- ZZ → Ilbb more likely than Z+jets → Ilbb, i.e. can use b-tagging to enhance signal contribution
- As in IIvv, use m_H-dependent cut on angle between leptons to improve signal sensitivity
- Main background is Z+jets and ttbar (for the btagged sample)
 - \bullet Shape from MC, normalized using sidebands in $m_{_{\rm Z}}$ spectrum
- Theory systematics on signal normalization are 15%-20% for ggF and 3-9% for VBF. Additional 3%-12% due to signal acceptance
- Z+jets uncertainty 2.1%-5.9%; dibosons 11%;
 QCD multijets 50%
- b-tagging: 14%; jet scale 4%
- Expected exclusion: 351-404GeV
 - Observed: 300-322GeV and 353-410GeV



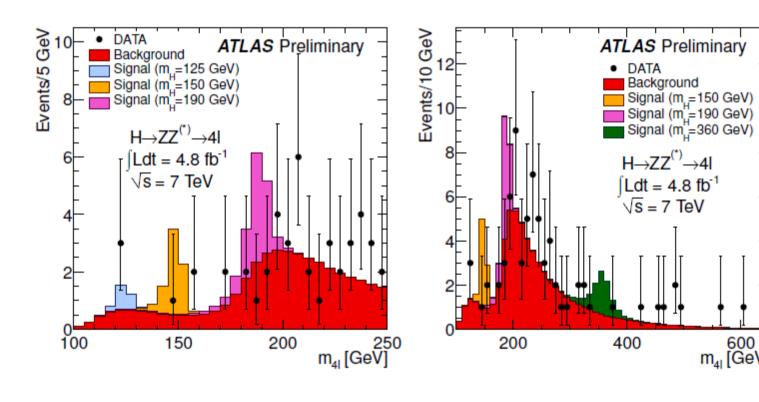


$H \rightarrow ZZ \rightarrow II \nu \nu$

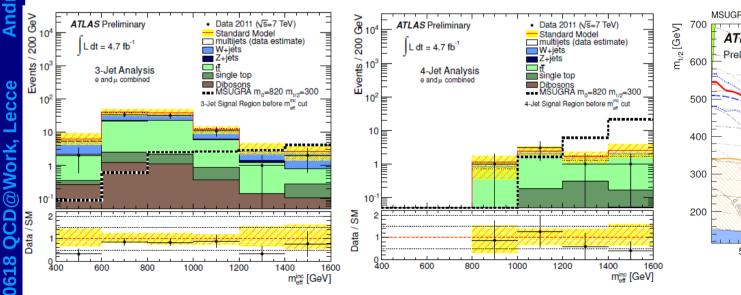
- Useful in the region 200-600GeV, thanks to large boost resulting in large Etmiss and lepton pt
 - Most sensitive channel above 300GeV
- Cuts on jets are used to suppress ttbar background and improve Etmiss quality
- m_H-dependent cut on angle between leptons to improve signal sensitivity
- Background estimated using MC, validated in signalfree control regions (e.g. e+μ events)
- Normalization uncertainties on signal and diboson bg from theory
 - ~12% ggF, 4% VBF, 11% diboson
- Uncertainties for other processes from data
 - Z 2.5%, top 9%, W 100%, QCD multijet 50%
- m_H-dependent acceptance uncertainty of 8.4% to 3.4%
- Expected exclusion: 260-490GeV
 - Observed: 320-560GeV

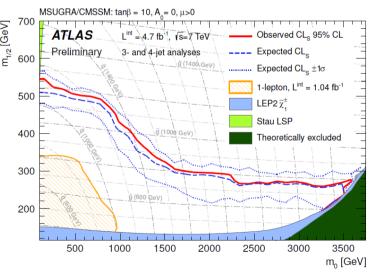


$$m_{\mathrm{T}}^2 \equiv \left[\sqrt{m_{\mathrm{Z}}^2 + |\vec{p}_{\mathrm{T}}^{\;\ell\ell}|^2} + \sqrt{m_{\mathrm{Z}}^2 + |\vec{p}_{\mathrm{T}}^{\;\mathrm{miss}}|^2}\right]^2 - \left[\vec{p}_{\mathrm{T}}^{\;\ell\ell} + \vec{p}_{\mathrm{T}}^{\;\mathrm{miss}}\right]^2$$


 $H \rightarrow \tau \tau$

- Complementary to other low-mass searches
- Sensitivity enhanced by requiring additional jets, i.e. boost of the H, i.e. larger Etmiss from neutrinos
- Analysis performed in fully leptonic, semi-leptonic and fully hadronic channels
- Main background is $Z \to \tau\tau$, modeled from data by embedding simulated τ in real $Z \to \mu\mu$ events and normalized in regions with low Etmiss.
 - resulting uncertainty is 6%-40%
 - Additional contribution from fake leptons, estimated from data using non-isolated leptons
 - Theory uncertainties on signal are 1% for ggF and 8%-25% for VBF; 4%-5% is assumed for singleand di-boson production, with a 24% relative added per additional jet
 - Detector uncertainties in the range 2%-5%


H4I, zoom


600 m₄₁ [GeV]

SUSY (2)

- Another possibility is to look for jets, leptons and missing Et
 - Lepton pT can be as low as 6GeV (requiring harder jets, though)
- Main backgrounds are ttbar (semi or fully-leptonic) and leptonic
 W+jets
 - Estimated using MC normalized to data in control regions with lower Etmiss, and extrapolating to signal region using simulation
 - Multijet background estimated from data using matrix method

m_{1/2} [GeV]

600

500

400

300

200

100

500

MSUGRA/CMSSM: $tan\beta = 10$, $A_0 = 0$, $\mu > 0$

ğ (1400)

1500

1000

2000

CL_s 95% C.L. limits

ATLAS-CONF-2012-033

ATLAS-CONF-2012-037

1-lepton, ≥ 3,4 jets ATLAS-CONF-2012-041

> LEP 2 $\widetilde{\chi}^{\pm}$ Stau LSP

0-lepton, ≥ 2-6 jets — Observed

0-lepton, ≥ 6-9 jets — Observed

Theoretically excluded

g (1000)

ğ (600)

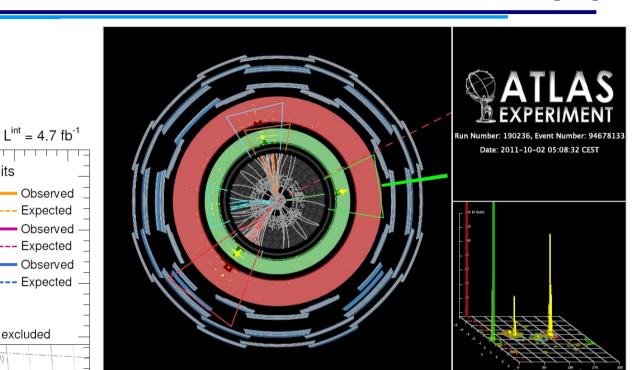
3000

2500

--- Expected

--- Expected Observed

--- Expected


3500

m₀ [GeV]

ATLAS Preliminary

SUSY (3)

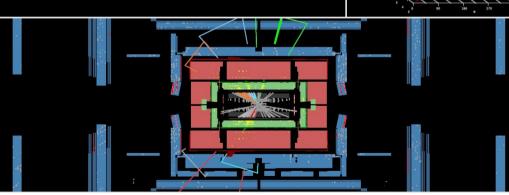
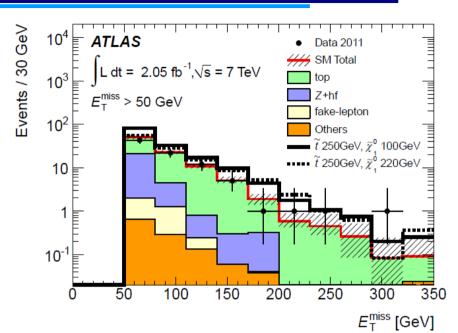
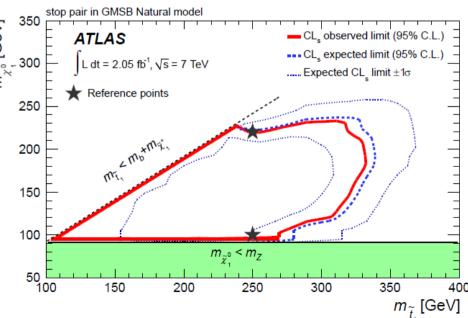


Figure 9: Event display of the electron event with the highest inclusive effective mass, passing the 4-jet selection. The $p_{\rm T}$ of the four leading jets are: 690, 254, 117 and 84 GeV. There is also a fifth jet with $p_{\rm T}$ = 36 GeV. The electron $p_{\rm T}$ is 265 GeV and $E_{\rm T}^{\rm miss}$ = 381 GeV. The inclusive effective mass is 1827 GeV.

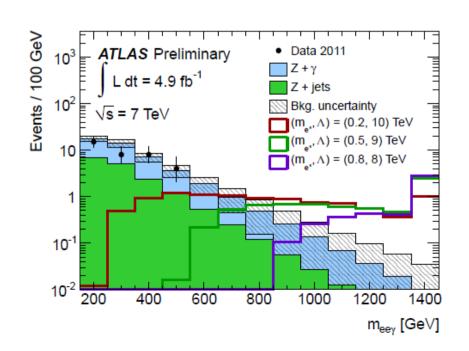


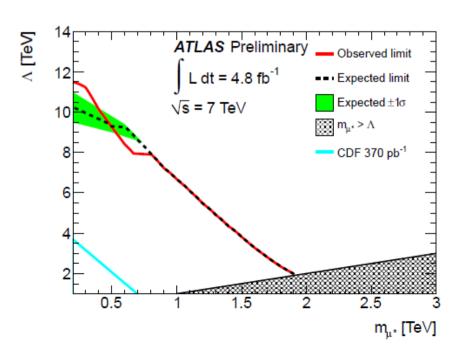

SUSY: stop pair

- Look for two leptons from Z decay, Etmiss, jets (at least one b-tagged)
 - In GMSB models with gravitino as LSP and neutralino as NLSP, this would signal stop pair production, each decaying in b+chargino or t+neutralino

Main backgrounds:

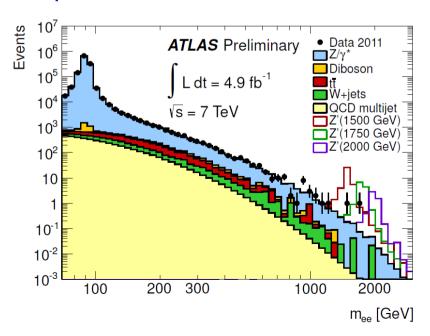
- Top: use signal-free control regions in data, extrapolate to signal region using MC. Unc. are 11%-13% from MC shapes and ~4% experimental (b-tagging, JES, lepton ID)
- Z+heavy flavor: estimate from MC, validated in blow Etmiss region in data. Unc. from production cross section 55% plus 24% relative per additional jet. 25%-35% experimental uncertainty (b-tagging, JES, lepton ID)
- Data-driven estimate of W+jets and multijet.
 Unc. 50%-60%
- MC estimate for diboson, Zttbar, Wttbar and ttbar+bbar. Unc. 100%

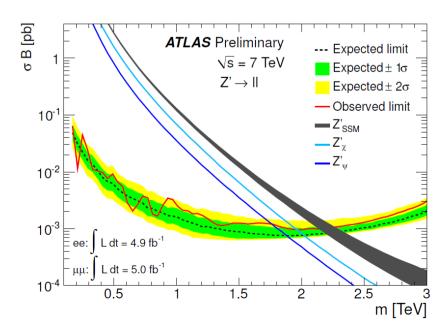




BSM: excited leptons

- Look for the decay $I^* \rightarrow I\gamma$ in processes $qq \rightarrow I^*I^*$ or $qq \rightarrow II^*$
 - Signature is Ilγ, all high energetic, well isolated/separated
- Dominant backgrounds are DY ($Z+\gamma$) and Z+jets, with one jet misidentified as a photon
 - Estimates use MC, normalized to data in control regions (m_{||}<110GeV)
- Main observable is the mass of the Ilγ system

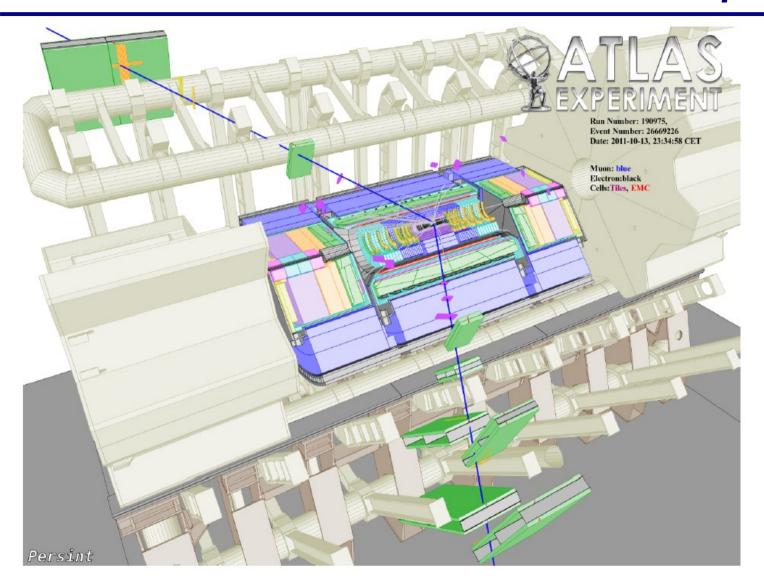
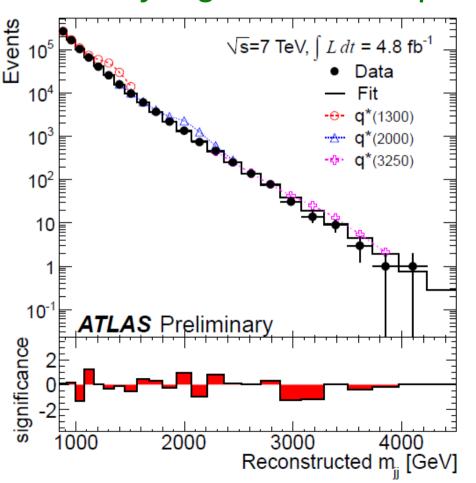


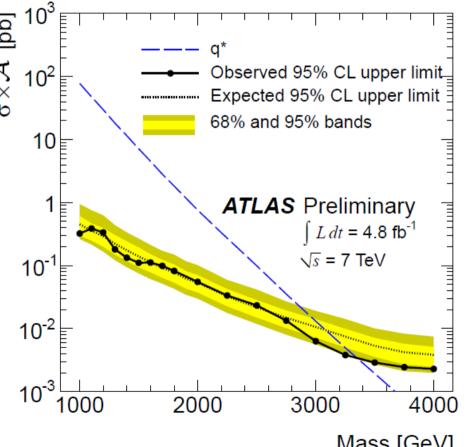


BSM: dilepton

- Clean signal
 - Look for high-mass resonances decaying in lepton pairs
- Background comes from DY processes and leptons from heavy quark jets, as well as QCD jets being misidentified as electrons
 - The latter is estimated using templates from data in signal-free regions (reversing lepton ID cuts)
- Theory uncertainties on bg dominated by PDFs, α_s and scale variations (20% @ 2TeV)
- Experimental uncertainties are of the order of 6%

BSM: dilepton


Figure 8: Event display for the dimuon candidate with the highest reconstructed invariant mass $(m_{\mu\mu}=1.25 \text{ TeV})$. The muon with highest momentum has a p_T of 648 GeV and an (η, ϕ) of (-0.75, 0.49). The subleading muon has a p_T of 583 GeV and an (η, ϕ) of (-0.36, -2.60). The event missing transverse energy is 67 GeV, with a ϕ_{MET} of -2.83.

BSM: dijet

- Select dijet events, look for bumps in invariant mass spectrum
 - May signal excited quarks, quantum black holes, ...

