Results on the search for the SM Higgs Boson at CMS Francesco Fabozzi

INFN-Napoli & Università della Basilicata On behalf of the CMS collaboration

> *QCD* @ work *Lecce, 18 – 21 June 2012*

Outline

- This talk will be focused on the results from Standard Model (SM) Higgs boson searches at CMS
- Introduction
- Search channels of SM Higgs boson
- Analysis strategies and results
- Combination of channels

The CMS experiment @ LHC

The 2011 data sample

The 2012 p-p run @ 8 TeV

Developing a broad physics program

Establishing competitive measurements in many areas (just a few examples below)

SM Higgs production and decay at LHC

Low-mass channels

- Н > ү ү
- H→bb
- Η→ττ
- WH, H→ττ

$H \rightarrow \gamma \gamma$ channel

Backgrounds: prompt $\gamma\gamma$ production, γ +jet, jet-jet, Drell-Yan (DY \rightarrow ee)

$H \rightarrow \tau \tau$ channel

WH, $H \rightarrow \tau \tau$ channel

H→bb channel

- Favoured BR at low mass, but huge bkg in inclusive channel (di-jet QCD production)
- Associated VH production channel must be exploited
- Channels considered: VH, with V=Z, W; $Z \rightarrow \mu\mu$, ee, $\nu\nu$; $W \rightarrow \mu\nu$, $e\nu$

Main backgrounds: W/Z+jets, top, diboson, multijet

Signal selection: two high E_T jets passing b-tagging Requirements + leptons/MET from Z/W bosons

Exploited kinematics of the jj system and of V boson for bkg rejection

Limit extraction: counting events in the signal-region of a BDT discriminant Improves sensitivity w.r.t. signal region based on cut on m_{ij} only

H→WW channels

- H \rightarrow WW \rightarrow 2l2v
- H→WW→lvjj
- WH \rightarrow W(WW) \rightarrow 313v
- V→2j, H→WW

$H \rightarrow WW \rightarrow 212v$ channel

- *MVA-based and cut-based analyses*
- *Three channels:* μμ, ee, eμ
- Best sensitivity for $m_H \approx 2m_W$

Signature: two isolated, high p_T leptons of opposite sign; large missing transverse energy (MET) in the event

Backgrounds: non resonant WW, W+jets, DY, top, other diboson channels

- *MET is crucial for DY rejection*
- Use of projected MET to nearest lepton direction improves $DY \rightarrow \tau \tau$ rejection

Scalar boson + V-A decay => Small leptons opening angle

H→WW→2l2v results

The H→WW→lvjj channel

Signature: one isolated, high p_T lepton (l=e, μ); missing transverse energy (MET) in the event; two or three high E_T jets m_{ii} of leading jets consistent with W mass New! PAS HIG-12-003

Longitudinal component of neutrino momentum reconstructed from W mass constraint of the (l, v) system

The WH \rightarrow W(WW) \rightarrow 313v channel

Combination of the VH channels

H→ZZ channels

- $H \rightarrow ZZ \rightarrow 41$
- H \rightarrow ZZ \rightarrow 2l2 ν
- $H \rightarrow ZZ \rightarrow 212q$
- H \rightarrow ZZ \rightarrow 2l2 τ

$H \rightarrow ZZ \rightarrow 41$ channel

• *Three channels:* 4μ , 4e, $2e2\mu$

• Search performed in the 110-600 GeV mass range

Signature: two pairs of isolated, high p_T leptons of opposite sign; one Z bosons can be off-mass shell

Needs high lepton efficiency through all p_T range

Dominant backgrounds: non resonant ZZ, Z+jets

Signal extraction by shape analysis to m_{4l} distribution

- 2 lepton channels: $l = e, \mu$
- $BR \approx 6 BR(H \rightarrow 4l)$
- Most sensitive channel for $m_H > \sim 300 \text{ GeV}$

Signature: two isolated, high p_T leptons of opposite sign; m_{ll} compatible with Z boson; large missing transverse energy (MET) in the event

Backgrounds: ZZ, DY+jets, top, other diboson

Boosted Z kinematics exploited to reject ZZ bkg

Signal extraction by binned likelihood fit to the transverse mass of the (MET, dilepton) system

Observed exclusion intervals @95%CL: 270-440 GeV

$H \rightarrow ZZ \rightarrow 212q$ channel

- 2 lepton channels: $l = e, \mu$
- $BR \approx 20 BR(H->4l)$,
- 130-164, 200-600 GeV ranges explored

Signature: two isolated, high p_T leptons of opposite sign; m_{ll} compatible with Z boson (highmass search); two high E_T jets, m_{jj} mass compatible with Z boson

JHEP 04 (2012) 036

The H \rightarrow ZZ \rightarrow 2l2 τ channel

Combination of SM Higgs searches

Combination: other scenarios

SM with 4 fermions generations (SM4)

- SM extension with fourth fermion generation (SM4)
- Enhanced gg fusion production
- Also decay rates affected

Fermiophobic (FB) Higgs boson

- Suppressed coupling with fermions
- No gg fusion, no ttH production
- Enhancement of $H \rightarrow \gamma \gamma / WW / ZZ$

Conclusions

- Status of SM Higgs boson searches based on 2011 data sample reviewed
 - Almost 5 fb⁻¹ of data collected at 7 TeV
 - 11 search channels (total of 50 exclusive sub-channels)
 - Explored 110 600 GeV m_H mass range
- Combination of channels gives SM Higgs excluded in the range 127.5 – 600 GeV @ 95% CL
- Small excess of events at $\sim 125 \text{ GeV}$
 - Local significance of 2.8σ
 - Global significance is lower (2.1 σ in the range 110-145 GeV)
- Adding new 2012 data at 8 TeV should clarify the origin of the excess

Backup slides

The CMS experiment @ LHC

$H{\rightarrow}\gamma\gamma$

Signal mass region: [m_H-10, m_H+10 GeV]

Expected signal and data events in $m_H = 120$ GeV signal region

$m_{\rm H}$ =120 GeV	class 0	class 1	class 2	class 3	Dijet class
Total signal expected events	3.4	19.3	18.7	33.0	2.8
Data (events/GeV)	4.5	55.1	81.3	229.1	2.1
resolution FWHM/2.35 (%)	0.9	0.9	1.2	1.7	1.1

Events classification in independent 4+1 categories of different sensitivities
4 categories based on output of di-photon BDT discriminant + 1 VBF-category (S/B ~ 1/3)
Di-photon BDT exploits signallike kinematics, di-photon mass resolution, photon BDT identification

MVA Analysis improvement ~ 20 % w.r.t. cut analysis

$H{\rightarrow}\tau\tau$

Η→ττ

WH, $H \rightarrow \tau \tau$

Final yields and bkg expectations after full selection

Channel	$\mu\mu\tau$	$e\mu\tau$
Fakes	3.09 ± 1.03	5.64 ± 1.80
WZ	2.13 ± 0.35	2.12 ± 0.35
$\mathbf{Z}\mathbf{Z}$	0.17 ± 0.07	0.18 ± 0.07
Triboson	0.20 ± 0.20	0.20 ± 0.20
Backgrounds	5.60 ± 1.11	8.15 ± 1.84
Observed	5	4
VH $(m_H = 120 \text{ G})$	eV) 0.40	0.38

$H \rightarrow \tau(\mu)\tau(\mu)$

Final yields and bkg expectations in $(m_{\mu\mu}, m_{\tau\tau})$ bins for $m_H = 120 \text{ GeV}$

VBF			, jeije v v	Boost	ed				
m _{µµ}	$m_{\tau\tau}$	S×10	B	Data	$m_{\mu\mu}$	$m_{\tau\tau}$	S×10	B	Data
0 - 75	0 - 100	0.26	4.11	4	0 - 80	0 - 105	1.24	23.7	21
0 - 75	100 - 120	1.84	1.04	0	0 - 80	105 - 125	1.76	8.12	4
0 - 75	120 - 150	2.13	1.88	5	0 - 80	125 - 150	1.71	2.13	1
75 - 105	100 - 120	0.06	2.69	4	0 - 80	150 - 200	0.07	1.08	2
75 - 105	120 - 150	0.05	4.89	1	80 - 100	0 - 105	0.05	1.81	0

H→bb

Data-driven estimates of the dominant bkg yields (V+jets, top)

$H \rightarrow WW \rightarrow 212v$

BDT output for different event categories

Events classification in independent 0-, 1-, 2-jet (VBF) exclusive categories Selection optimized for the different categories

$H \rightarrow ZZ \rightarrow 41$ channel

Channel	4 <i>e</i>	4μ	2e2µ	
ZZ continuum	12.27 ± 1.16	19.11 ± 1.75	30.25 ± 2.78	
Z+X	1.67 ± 0.55	1.13 ± 0.55	2.71 ± 0.96	
All background	13.94 ± 1.28	20.24 ± 1.83	32.96 ± 2.94	
$m_{\rm H} = 120 {\rm GeV}/c^2$	0.25	0.62	0.68	
$m_{\rm H} = 140 {\rm GeV}/c^2$	1.32	2.48	3.37	
$m_{\rm H} = 350 {\rm GeV}/c^2$	1.95	2.61	4.64	
Observed	12	23	37	

- *DY*+*jets bkg extrapolated from sideband sample*
- ZZ bkg determined from simulation (small statistics available in data); estimate crosschecked by extrapolation from measured inclusive Z rate in data

Main systematics:

- Luminosity determination, lepton ID
- theoretical uncertainty on Higgs cross section

$H \rightarrow ZZ \rightarrow 212\nu$

Both counting analysis and shape analysis (better sensitivity -> used for final result) Shape analysis: Signal extraction by binned likelihood fit to the transverse mass of the (MET, dilepton) system

$$M_{\rm T}^2 = \left(\sqrt{p_{\rm T}(\ell\ell)^2 + M(\ell\ell)^2} + \sqrt{E_{\rm T}^{
m miss}^2 + M(\ell\ell)^2}
ight)^2 - (ec{p}_T(\ell\ell) + ec{E}_T^{
m miss})^2$$

- *DY*+*jets MET distribution from* γ+*jets control sample*
- Non-resonant bkg normalization from eµ control sample
- Diboson bkg determined from simulation (small statistics available in data)

$H \rightarrow ZZ \rightarrow 212q$

- *Kinematics described in terms of 5 angles with known distributions*
- Angular variables are combined in a likelihood discriminant

Events classification in exclusive categories (2 b-jet, 1 b-jet, 0 b-jet)

Example of systematics uncertainties

Systematics are, of course, channel and analysis dependent The following table summarizes sources and uncertainties in a typical search analysis

	Table from $H \rightarrow bb$ analysis
Source	Range
Luminosity	4.5% Now improved to 2.2 %
Lepton efficiency and trigger (per lept	ton) 3%
$Z(\nu\nu)H$ triggers	2%
Jet energy scale	2–3%
Jet energy resolution	3–6%
Missing transverse energy	3%
b-Tagging	3–15%
Signal cross section (scale and PDF)	4%
Signal cross section (p_T boost, EWK/Q	<u>2</u> CD) 5–10%/10%
Signal Monte Carlo statistics	1–5% Limited statistics of
Backgrounds (data estimate)	10–35% the control samples
Diboson and single-top (simulation es	stimate) 30%