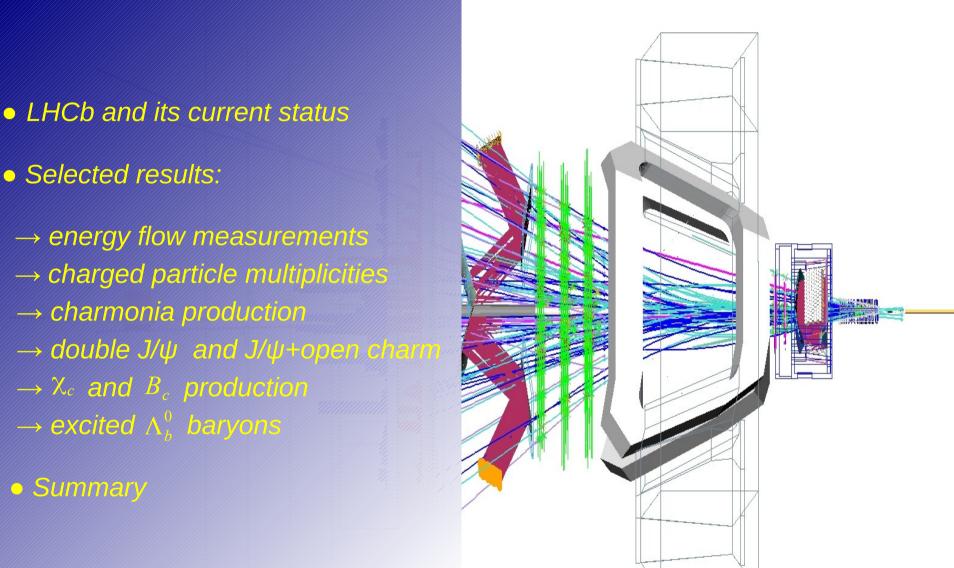


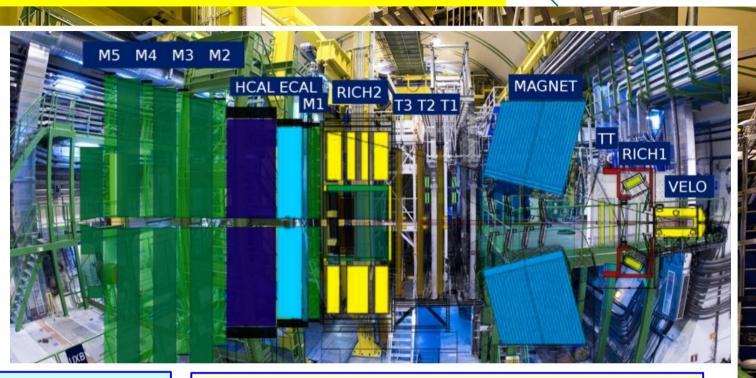
Soft QCD and onia production at LHCb


Dmytro Volyanskyy Max-Planck-Institut für Kernphysik (Heidelberg, Germany) on behalf of the LHCb collaboration

6th International Workshop on Quantum Chromodynamics – Theory and Experiment (QCD@Work 2012), 18–21 June 2012, Lecce, Italy

Outline

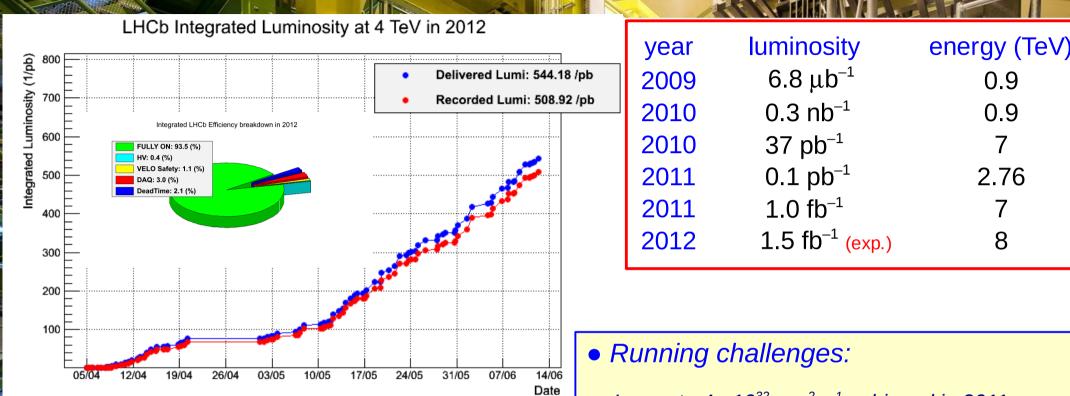
MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg



LHCb experiment

MAX-PLANCK-INSTITUT Für Kernphysik Heidelberg

- One of the 4 main detectors at the LHC:
- → CP violation, rare decays, New Physics searches
- Forward spectrometer with planar detectors:
- → B hadrons at the LHC are produced at low polar angles
- \rightarrow angular coverage: 2 < η < 5
- → combination of PID and tracking detectors covering the full acceptance: unique@LHC
- Excellent tracking performance:
- \rightarrow momentum resolution of long tracks traversing the full tracking setup $\delta p/p \sim 0.35-0.55\%$
- \rightarrow invariant mass resolution of ~10–20 MeV/c² depending on the B decay channel
- → precise vertex reconstruction: proper time resolution for B hadrons < 50 fs
- <u>Selective and flexible trigger system</u>


- High quality particle identification:
- → RICH system: efficient hadron ID over the wide momentum range unique@LHC
- \rightarrow SPD/PS: robust *e*/ γ and *e*/hadrons separation
- \rightarrow ECAL: *e*, γ energy measurements + trigger
- \rightarrow HCAL: hadron energies + trigger
- \rightarrow MUON: μ identification + trigger

more info in Antonio Pellegrino's talk tomorrow

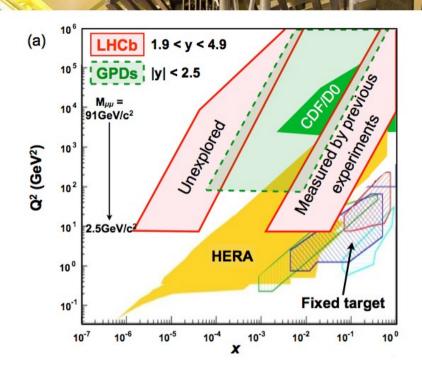
20.06.2012, QCD@Work2012, Lecce Soft QCD and onia production at LHCb by D.Volyanskyy

Data taking: 2009-2012

- Good quality of recorded data:
 → >95% of r/o channels are operational
- Data taking efficiency > 90%

- \rightarrow Lins up to 4× 10³² cm⁻² s⁻¹ achieved in 2011 and 2012
- \rightarrow LHCb design luminosity: Lins=2.0 × 10³² cm⁻² s⁻¹
- → Strong challenge for the trigger, offline reconstruction and data processing
- → <u>LHCb successfully copes with these extreme</u> <u>running conditions</u>

20.06.2012, QCD@Work2012, Lecce Soft QCD and onia production at LHCb by D.Volyanskyy


Max-Planck-Institut 🔪 für Kernphysik

LHCb THCp

LHCb Potential

• LHCb, due to its rapidity coverage, explores particle production in an unique kinematic range:

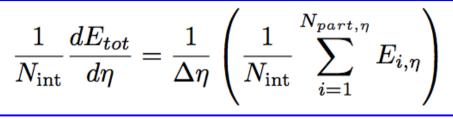
- \rightarrow probes of PDFs at very low and at high values of x and low-Q²
- Ability to study low-p_τ region (<0.5 GeV/c) at large η(>4)
 - → <u>the only one LHC experiment that can</u> <u>investigate this region of the phase space</u>
 - \rightarrow great potential to study soft QCD physics
- Minimum Bias (MB) data dominated by soft QCD processes:
 - → LHCb MB trigger: at least 1 track-segment in the detector – 100% efficient for the majority of physics processes of interest

- Onia production: Motivation
- → robust test of pQCD, Color Octet & Color Singlet production mechanisms and MC generators
- → combination of Color Octet and Color Singlet describes p_T and cross sections measured at Tevatron, but the polarization remains an issue
- → Double-charm and high mass onia production studies should help

20.06.2012, QCD@Work2012, Lecce Soft QCD and onia production at LHCb by D.Volyanskyy

MAX-PLANCK-INSTITUT V für Kernphysik

Heidelberg



Forward Energy Flow: outline

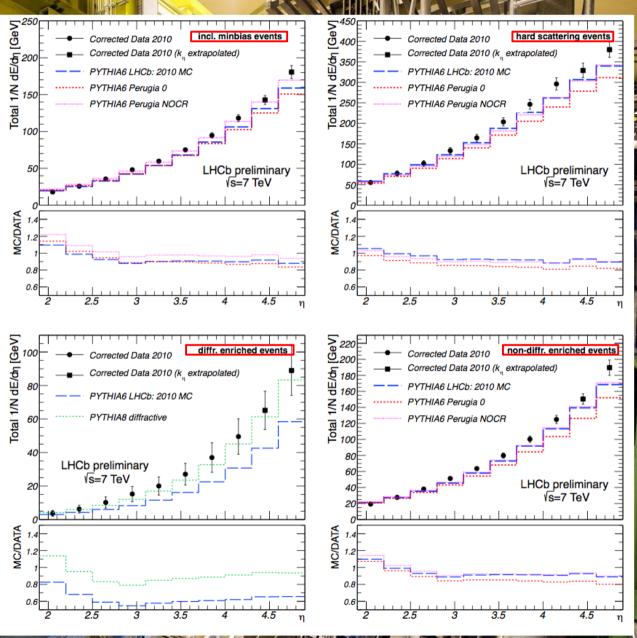
Energy Flow (EF) :

CERN-LHCb-CONF-2012-012

average energy created in a particular η interval per inelastic pp interaction and normalized to the η bin size

- EF directly sensitive to the amount of parton radiation and multi-parton interactions (MPI) at large η
- → MPI features are still not well known: strongly needed for a precise description of the UE
- → possibility to discriminate between MPI models and determine important parameters
- \rightarrow great input for MC tuning
- *improve the existing constraints on ultra high energy cosmic-ray interaction models:*
 - → LHC provides first possibility to compare cosmic-ray showering models at Elab of up to ~10¹⁷eV
- *it has never been measured at a hadron collider in the pre-LHC era*

- EF is measured in 1.9<η<4.9 with low pile-up pp MB data at 7 TeV for the following event classes:
 - → inclusive MB: at least 1 long track in $1.9 < \eta < 4.9$ with p > 2 GeV/c
 - \rightarrow hard scattering: at least 1 long track in 1.9< η <4.9 with p_T > 3 GeV/c
 - \rightarrow diffractive enriched: inclusive MB with no backward tracks in -3.5< η <-1.5
 - \rightarrow non-diffractive enriched: inclusive MB with at least 1 backward track in -3.5< η <-1.5
- Data corrected for detector effects & compared to the generator level predictions (PYTHIA-based and cosmic-ray models)
- Systematic effects: tracking related factors, model dependency, pile-up contamination

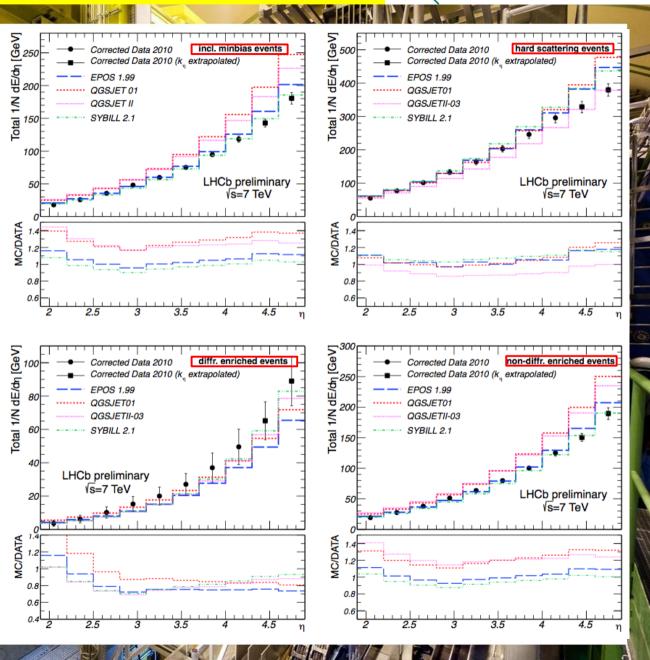


Total EF vs PYTHIA tunes

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

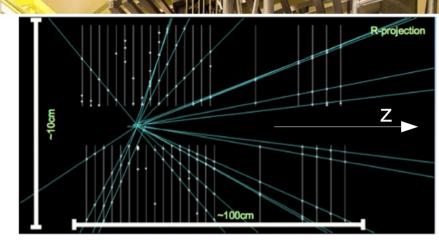
- EF increases with the momentum transfer in an underlying pp process: EFhard > EFnon-diffr > EFincl > EFdiffr
- PYTHIA tunes reproduce the EF evolution as a function of $\boldsymbol{\eta}$
- PYTHIA-based models underestimate EF at large η and overestimate it at low η in case of all event classes:
- PYTHIA LHCb tune and Perugia NOCR predictions for the selected inclusive and non-diffractive enriched events are similar
- Perugia 0 significantly underestimates EF at large η in case of all event classes
- PYTHIA8 describes the diffractive enriched EF much better than PYTHIA6

CERN-LHCb-CONF-2012-012



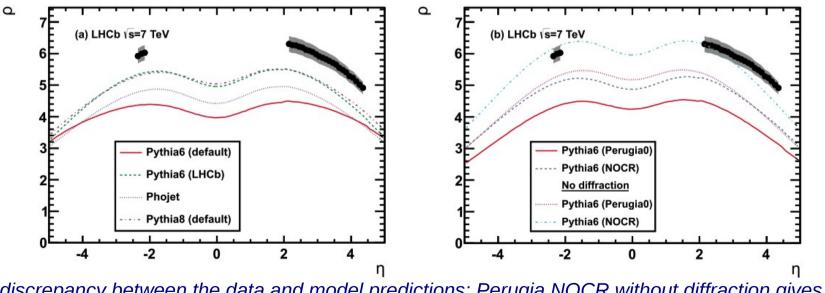
Total EF vs cosmic-ray models

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg


- EPOS 1.99, SYBILL 2.1, QGSJET01, QGSJETII cosmic ray interaction models
 - → soft processes via Pomeron exchanges (Gribov's Reggeon Field Theory)
 - → hard processes: pQCD or exchanges of semi-hard Pomerons
 - \rightarrow models are not tuned to LHC data
- Good agreement between the data and QGSJETII prediction for the hard scattering EF at large η
- SYBILL 2.1 gives the best description of the inclusive and non-diffractive EF
- None of the models are able to describe the EF measurements for all event classes:
- → valuable input for MC tuning and MPI/UE models

CERN-LHCb-CONF-2012-012

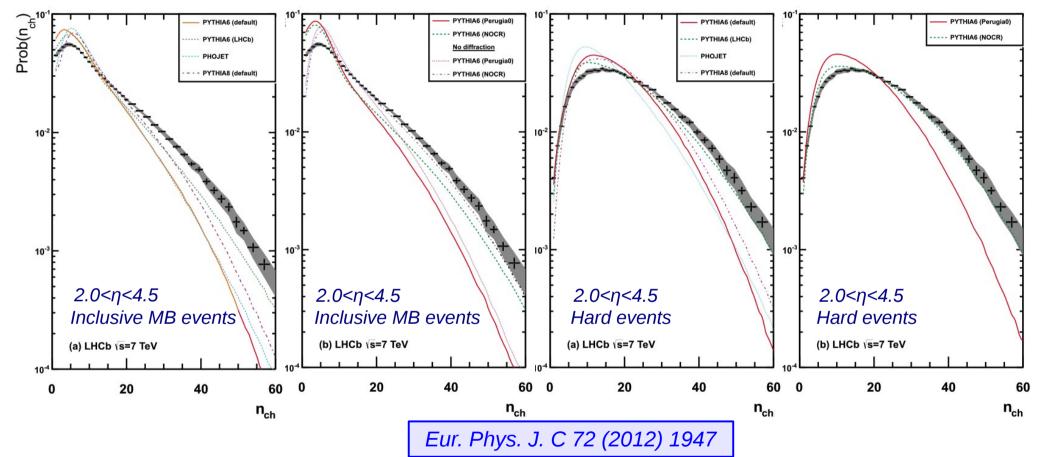
20.06.2012, QCD@Work2012, Lecce Soft QCD and onia production at LHCb by D.Volyanskyy


Charged Particle Multiplicities (1)

Eur. Phys. J. C 72 (2012) 1947

- Measurement of the charged particle multiplicities :
 - \rightarrow sensitivity to the underlying QCD dynamics
 - → charged particles counted using reconstructed tracks in the LHCb VELO:
 - high detection efficiency for 2.0< η <4.5 and –2.5< η <–2.0
 - tracks are straight lines in the VELO as no magnetic field there – no momentum measurements
 - \rightarrow measurements with inclusive MB and hard QCD (at least 1 long track with pT>1 GeV/c) events
- Charged particle density per event vs η for the data and models:

 \rightarrow normalized to events with at least 1 charged particle in the forward acceptance


→ large discrepancy between the data and model predictions: Perugia NOCR without diffraction gives the best description of the measurements

20.06.2012, QCD@Work2012, Lecce Soft QCD and onia production at LHCb by D.Volyanskyy

Max-Planck-Institut > für Kernphysik

Charged Particle Multiplicities (2)

• multiplicity distributions for inclusive MB and hard events vs generator level predictions:

• none of the generators are fully able to describe the multiplicity distributions or the charged density distribution as a function of η in the LHCb acceptance

• models underestimate the charged particle production in the forward region

 \rightarrow valuable input for MC tuning and UE models

Max-Planck-Institut 🔪 für Kernphysik

LHCS Other results on soft QCD: Highlights

- Prompt Ks production in pp collisions at 0.9 TeV
 - \rightarrow differential cross-section measured for 2.5<y<4 and 0<pt<1.6 GeV/c
 - \rightarrow performed with 2009 data
 - \rightarrow reasonable consistency with the predictions given by the PYTHIA-based models
- Inclusive Φ cross-section in pp collisions at 7 TeV
- \rightarrow differential cross-section measured for 2.44<y<4.06 and 0.6<pt<5.0 GeV/c
- \rightarrow cross-section is significantly underestimated by the PYTHIA tunes across the entire phase space !
- V0 production ratios in pp collisions at 0.9 and 7 TeV
 - $\rightarrow\,$ ratios measured for 2.0<y<4.5 and 0.15<p_{T}<2.5 GeV/c
 - Jarge discrepancy between the data and PYTHIA-based models
- Prompt hadron production ratios in pp collisions at 7 TeV
 - \rightarrow ratios measured for 2.5<y<4.5 and p_T<1.2 GeV/c

LHCb-PAPER-2011-037 (in preparation)

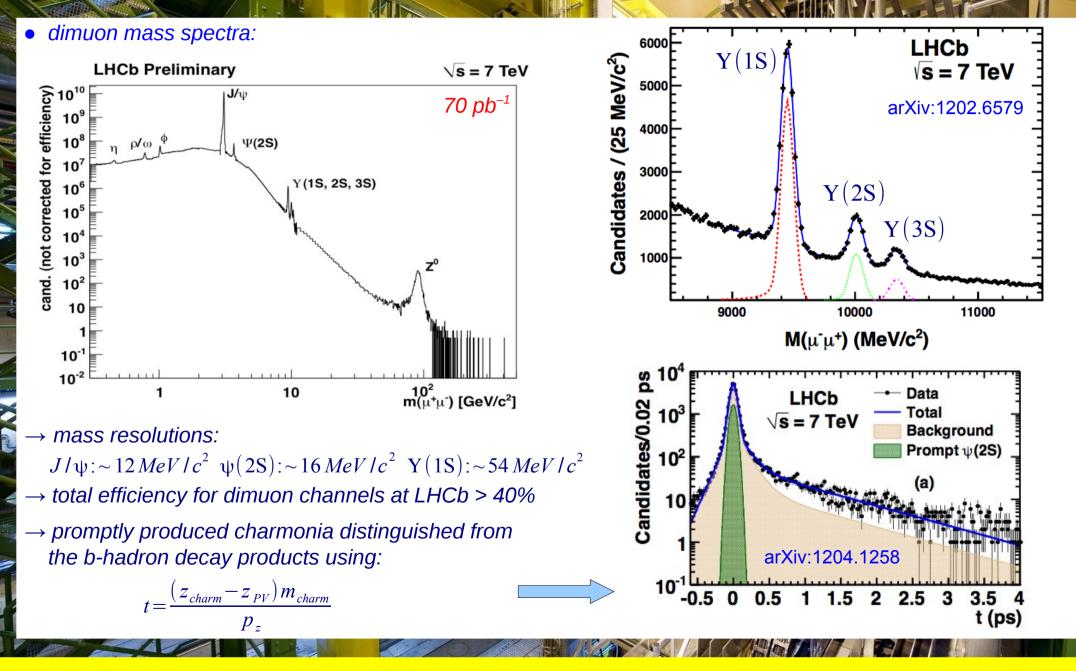
J. High Energy Phys. 08 (2011) 034

 \rightarrow none of the PYTHIA-based models are able to describe all the measurements

20.06.2012, QCD@Work2012, Lecce Soft QCD and onia production at LHCb by D.Volyanskyy

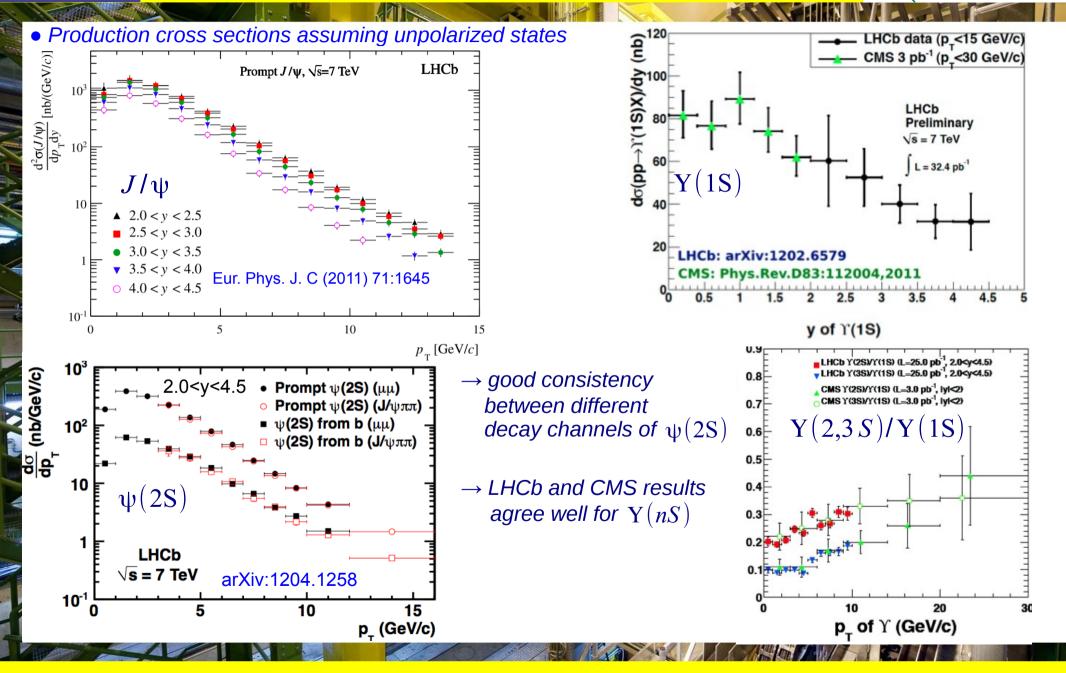
Max-Planck-1

Phys. Lett. B 693 (2010) 69-80


Phys. Lett. B 703 (2011) 267-273

11/20

Charmonium to $\mu^+\mu^-$


MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

20.06.2012, QCD@Work2012, Lecce Soft QCD and onia production at LHCb by D.Volyanskyy

Charmonia production

20.06.2012, QCD@Work2012, Lecce Soft QCD and onia production at LHCb by D.Volyanskyy

Max-Planck-Institut 🔪 für Kernphysik

Charmonia production vs Theory

TH

do(J

<u>/小</u> [nb/(GeV/c)] nb/GeV/c) √s=7 TeV √s=7 TeV 10³ NLO CS+CO MWC LHCb (2.0 < v < 4.5)LHCb (2.0 < y < 4.5)NLO CS+CO 🕅 KB Direct NLO NRQCD (2.0 < y < 4.5)Direct NLO CSM (2.0 < y < 4.5) 10² Direct LO NRQCD (2.0 < y < 4.5) NNLO CS 🔲 AL Direct NNLO* CSM (2.0 < y < 4.5) J/ψ I / ab $\psi(2S)$ • Prompt ψ(2S) <mark>b</mark>d_ Eur. Phys. J. C 61, 693 (2009) P103 hep-ph/1012.1030 PRL 106 (2011) 022003 PRL 101 (2008) 152001 LHCb 10⁻¹ $\sqrt{s} = 7 \text{ TeV}$ arXiv:1204.1258 Eur. Phys. J. C (2011) 71:1645 10⁻² 10 10 15 10 20 0 10 0 15 5 15 20 p_{_} (GeV/c) $p_{_{T}}$ [GeV/c] p_{T} [GeV/c] \rightarrow Good agreement with NLO \rightarrow (N)LO NRQCD describe the J/ψ cross section rather well calculations with color-singlet and (not the case for the (N)NLO CSM) color-octet contributions at large p_{T} [nb/(GeV/c)] GeV/c) [nb/(GeV/c) Cb data (2.0<y<4.5) HCb data (2.0<v<4.5) LHCb data (2.0<y<4.5) direct NNLO* CSM (2.0<y<4.5) direct NNLO* CSM (2.0<v<4.5) direct NNLO* CSM (2.0<y<4.5) direct NLO CSM (2.0<y<4.5) direct NLO CSM (2.0<y<4.5) direct NLO CSM (2.0<y<4.5))/qu] arXiv:1202.6579 arXiv:1202.6579 arXiv:1202.6579 \rightarrow Reasonable agreement do^{3S}/dp $\times do^{1S}/dp_T$ $\times do^{2S}/dp_T$ with NNLO CSM calculations for 10-2 10-2 Y(nS) states × LHCb LHCb B^{3S} B^{1S} B^{2S} INCD YS = 7 TeV Y (2S $\sqrt{S} = 7 \text{ TeV} Y(1S)$ IS = 7 TeV Y (3S 10-5 10-3 10-3

10-4

15

20.06.2012, OCD@Work2012, Lecce Soft QCD and onia production at LHCb by D.Volyanskyy

p_ of Y(1S) (GeV/c)

5

10

10"

14/20

15

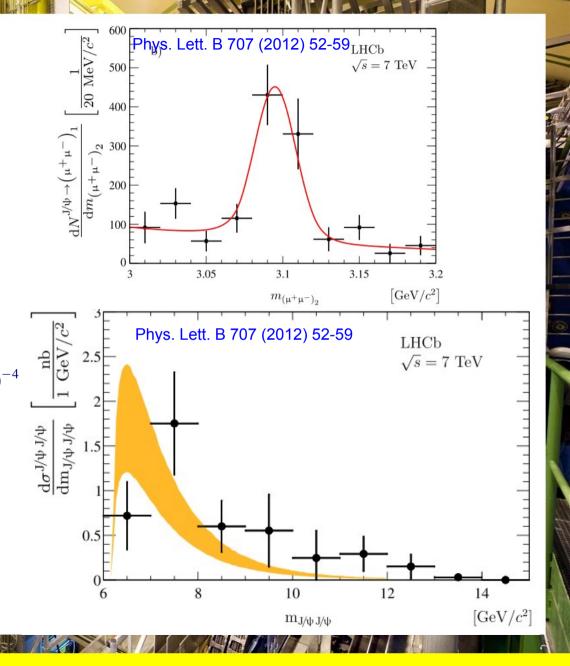
10

p_ of Y(3S) (GeV/c)

10"

10

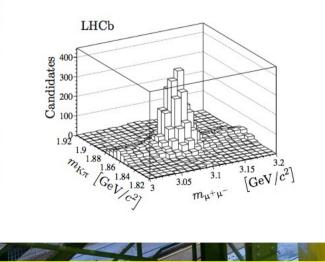
p_ of Y(2S) (GeV/c)


Max-Planck-Institut FÜR KERNPHYSIK

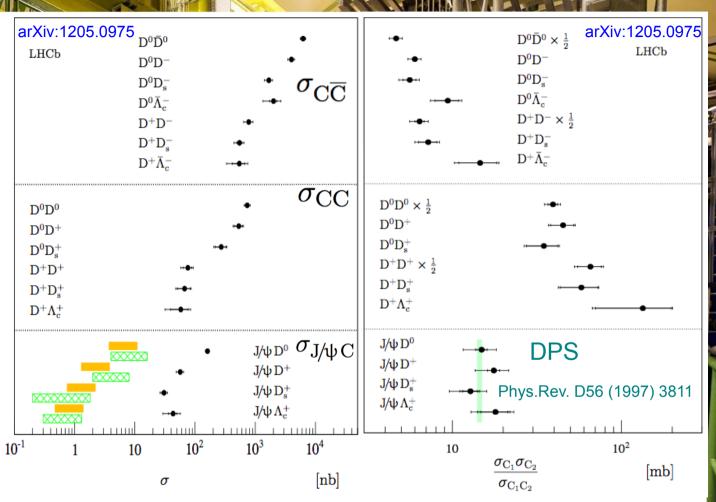
Double J/ ψ production

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

- σ(J/ψJ/ψ) measured with 37.5 pb⁻¹ for 2.0<y<4.5 and pτ< 10GeV/c
- \rightarrow 2 J/ ψ from a common vertex
- \rightarrow 141 ± 19 events observed
- ightarrow statistical significance >6 σ
- Potential enhancement of pp → J/ψJ/ψ+X from Double Parton Scattering (DPS) mechanism and intrinsic charm model (IC)
- Results at 7 TeV for 2.0<y<4.5 and pT< 10GeV/c $\sigma(J/\psi J/\psi) = 5.1 \pm 1.0 (\text{stat}) \pm 1.1 (\text{syst}) \text{ nb}$ $\frac{\sigma(J/\psi J/\psi)}{\sigma(J/\psi)} = [5.1 \pm 1.0 (\text{stat}) \pm 0.6^{+1.2}_{-1.0} (\text{syst+polar})] \times 10^{-4}$
- → Theory predictions: $L0 \ CS: \sigma(J/\psi J/\psi) = 4 \ nb \ (arXiv:1204.1058)$ DPS contribution: 2 nb (arXiv:1106.2184)
- σ(J/ψJ/ψ) vs invariant mass of both J/ψ: data vs theory:
 - \rightarrow more statistics is needed



J/ψ +open charm production


MAX-PLANCK-INSTITUT Für Kernphysik Heidelberg

- First observation of $J/\psi C(\bar{C})$ and CC open charm states in hadronic collisions performed with 0.36 fb⁻¹@7TeV
- predictions from DPS and IC larger by one order of magnitude than the LO CSM calculations
- In case DPS dominates

 $\frac{\sigma_{C_1}\sigma_{C_2}}{\sigma_{C_1C_2}} \sim 15 \, mb$ from the cross-sections measured at Tevatron for multi-jet events \rightarrow PDR 56 3811 (1997)

20.06.2012, QCD@Work2012, Lecce

- → LO predictions
 Phys.Rev. D57 (1998) 4385
 Eur. Phys. J C61 (2009) 693
 significantly underestimate the cross-sections
- → Good consistency between DPS prediction and the results for J/ψC modes, whereas 2-3 times lower for CC states

Soft QCD and onia production at LHCb by D.Volyanskyy

χ_c production

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

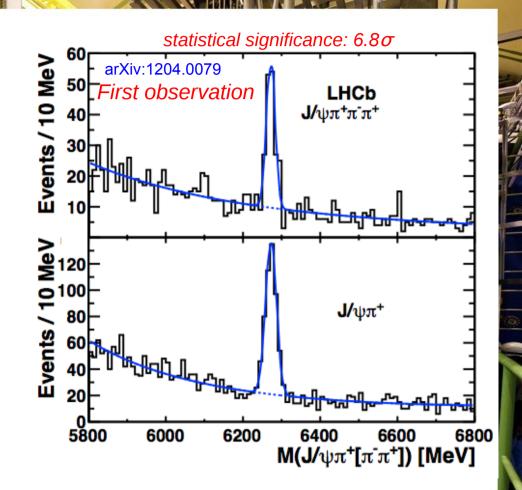
• $\sigma(\chi_c \rightarrow J/\psi \gamma)/\sigma(J/\psi)$ χ_c production studies provide (arXiv:1204.1462) important test of NRQCD and CS/CO $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ (arXiv:1202.1080) mechanisms: measured by LHCb using 36 pb⁻¹@7TeV \rightarrow prompt χ_c give substantial feed-down for $2 < p_T < 15$ GeV/c to J/ψ production: crucial for polarization studies • Converted after the magnet and non-converted photons are detected in the ECAL 🔶 ChiGen LO+CSM: *ChiGen* assuming unpolarized production מ/ך)ס b) NLO NRQCO **VNLO NRQCD** LHCb ъ LHCb 36 pb⁻¹ LHCb 36 pb , / ⁽ የህር Results for $\sqrt{s} = 7 \text{ TeV}$ $\sigma[\chi_{c_2}]$ CDF 1.1 fb⁻¹ $\sigma(\chi_c \rightarrow J/\psi \gamma)/\sigma(J/\psi)$ in agreement with NLO NROCD 0.8 0.3 • $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ 0.6 is found to be larger 0.2 than any prediction 0.4 and CDF measurement LHCb 0.1 0.2 √s = 7 TeV 10 12 14 10 $p_{\tau}^{J/\psi}$ [GeV/c] $p_{\tau}^{J/\psi}$ [GeV/c]

LHCb THCp

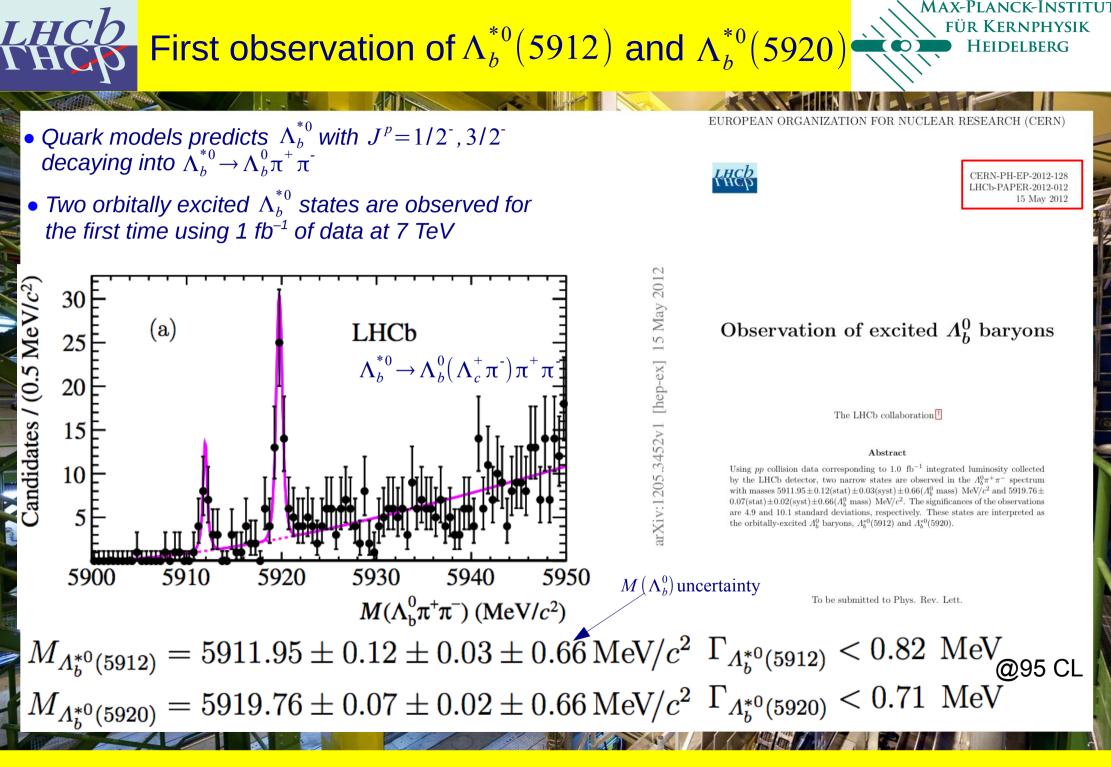
B_c production

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

- only the ground state of B_c is observed so far
 - \rightarrow great spectroscopy potential
- LHCb has performed the world's best measurement of the B_c mass with 2010 data @ 7TeV:
 - $M(B_c^+) = 6268.0 \pm 4.0 \pm 0.6 \text{ MeV}/c^2$


using $B_c^+ \rightarrow J/\psi \pi^+$

• Ratio measured for pT>4 GeV/c and 2.5<y<4.5 (CERN-LHCb-CONF-2011-017)


$$R_{c+} = \frac{\sigma\left(B_{c}^{+}\right) \times \mathcal{B}\left(B_{c}^{+} \to J/\psi\pi^{+}\right)}{\sigma\left(B^{+}\right) \times \mathcal{B}\left(B^{+} \to J/\psiK^{+}\right)} = (2.2 \pm 0.8 \pm 0.2)\%$$

• First observation of $B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$ using 2011 data (arXiv:1204.0079)

$$\frac{\mathcal{B}(B_c^+ \to J/\psi \, \pi^+ \pi^- \pi^+)}{\mathcal{B}(B_c^+ \to J/\psi \, \pi^+)} = 2.41 \pm 0.30 \pm 0.33$$

 \rightarrow theory predictions: 1.5 – 2.3

Summary

MAX-PLANCK-INSTITUT Für Kernphysik Heidelberg

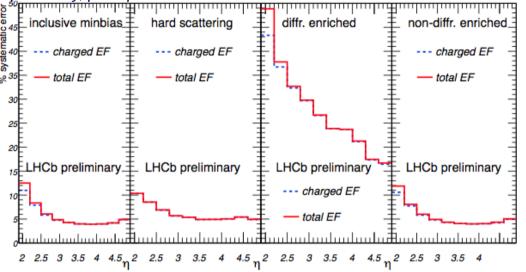
- LHCb detector achievements:
 - Excellent vertex resolutions
 - Great tracking performance
 - Robust particle identification
 - Selective and flexible trigger system

Great conditions to deliver high-quality physics results

Just do it :-)

...and LHCb does it indeed :

57 papers submitted to journals so far, a lot more in the pipeline


 world's best measurements of many important physics parameters and first observations of very rare processes !

- LHCb is much more than just a beauty experiment :-)
 - → a lot of measurements in the quarkonia and soft QCD sector were performed bringing much input for theoreticians
 - \rightarrow stay tuned for further results in particular obtained at 8 TeV !

Backup: systematics

• Energy Flow systematics: tracking related factors, model dependency, pile-up contamination

Relative systematic uncertainties (%) for the D^0C cross-sections. The uncertainties for CC and $C\overline{C}$ are equal.

Source		$\mathrm{D}^0\mathrm{D}^0$	$\mathrm{D}^{0}\mathrm{D}^{+}$	$\mathrm{D}^{0}\mathrm{D}^{+}_{\mathrm{s}}$	${ m D}^0 \Lambda_{ m c}^+$	
D ⁰ C reconstruction	$\varepsilon_1^{\rm reco} \times \varepsilon_2^{\rm reco}$	1.4	1.4	2.3	3.6	
Hadron ID	$arepsilon_{ m had}^{ m ID}$	1.2	1.8	1.6	2.4	
Tracking	$\xi^{ m trk}$	8.5	10.7	10.6	10.6	
Trigger	$arepsilon_{ m CC,C\overline{C}}^{ m trg}$	1.8	2.5	3.9	5.2	
Global event cuts	$\varepsilon^{ m GEC}$	1.0	1.0	1.0	1.0	
Luminosity	\mathcal{L}	3.7	3.7	3.7	3.7	
${\cal B}({ m D}^{_0} ightarrow{ m K}^-\pi^+)$	\mathcal{B}_1	1.3	1.3	1.3	1.3	
C branching fractions	\mathcal{B}_2	1.3	4.3	6.0	26	
Total		10	12	14	30	

Relative systematic uncertainties (%) for the $J\!/\!\psi\,\mathrm{C}$ cross-sections.

Relative systematic uncertai	inties (%) fo	or the D^+C	cross-sections.	The uncertainties
for the CC and \overline{CC} are equal.				

Source		D^+D^+	$D^+D^+_s$	${ m D}^+\Lambda_{ m c}^+$
D ⁺ C reconstruction	$\varepsilon_1^{ m reco} imes \varepsilon_2^{ m reco}$	1.4	2.2	4.0
Hadron ID	$arepsilon_{ m had}^{ m ID}$	2.3	2.4	3.0
Tracking	$\xi^{ m trk}$	12.8	12.8	12.8
Trigger	$\varepsilon^{ m trg}_{ m CC,C\overline{C}}$	3.7	5.8	5.0
Global event cuts	$\varepsilon^{ m GEC}$	1.0	1.0	1.0
Luminosity	\mathcal{L}	3.7	3.7	3.7
${\cal B}({ m D}^+ ightarrow{ m K}^-\pi^+\pi^+)$	\mathcal{B}_1	4.3	4.3	4.3
C branching fractions	\mathcal{B}_2	4.3	6.0	26
Total		17	17	31
Total		17	17	31

Source		$J/\psi D^0$	$J/\psi D^+$	$J/\psi D_s^+$	$J/\psi \Lambda_{c}^{+}$
J/ψ reconstruction	$\varepsilon_1^{ m reco}$	1.3	1.3	1.3	1.3
C reconstruction	$\varepsilon_2^{ m reco}$	0.7	0.8	1.7	3.3
Muon ID	$arepsilon_{ m J/\psi}^{ m ID}$	1.1	1.1	1.1	1.1
Hadron ID	$arepsilon_{ m had}^{ m ID}$	1.1	1.9	1.1	1.5
Tracking	$\xi^{ m trk}$	4.9	7.0	7.0	7.0
Trigger	$arepsilon^{ m trg}_{ m J\!/\!\psi C}$	3.0	3.0	3.0	3.0
J/ψ polarization	$\varepsilon_{\mathrm{J/\psi}}^{\mathrm{reco}}$	3.0	3.0	3.0	3.0
Global event cuts	$\varepsilon^{ m GEC}$	0.7	0.7	0.7	0.7
Luminosity	\mathcal{L}	3.7	3.7	3.7	3.7
${\cal B}({ m J}\!/\!\psi ightarrow \mu^+\mu^-)$	\mathcal{B}_1	1.0	1.0	1.0	1.0
C branching fractions	\mathcal{B}_2	1.3	4.3	6.0	26
Total		8	10	11	28

20.06.2012, QCD@Work2012, Lecce Soft QCD and onia production at LHCb by D.Volyanskyy

MAX-PLANCK-INSTITUT

FÜR KERNPHYSIK

Backup: systematics

ψ

\rightarrow double J/ ψ production

Relative systematic uncertainties on the cross-section measurement. The total uncertainty is calculated as the quadratic sum of the individual components.

Source	Systematic uncertainty [%]
Track-finding efficiency	4 × 4
Trigger efficiency	8
Per-event efficiency	3
J/ψ polarisation	2 × 5
Data/simulation difference for χ^2/ndf	3
Global event cuts	2
Muon identification	2 × 1.1
Luminosity	3.5
$J/\psi \rightarrow \mu^+ \mu^-$ branching ratio	2 × 1
Total	21

Summary of the relative systematic uncertainties on the cross-section measurements. Ranges indicate variations depending on the (p_T, y) bin and the Υ state. All uncertainties are fully correlated among the bins.

Source	Uncertainty (%)
Unknown Υ polarisation	0.3-41.0
Trigger	3.0
Track reconstruction	2.4
Track quality requirement	0.5
Vertexing requirement	1.0
Muon identification	1.1
Global event selection requirements	0.6
$p_{\rm T}$ binning effect	1.0
Fit function	1.1 - 2.1
Luminosity	3.5

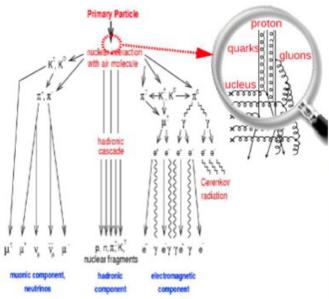
(2S) Systematic uncertainties included in the measurement of the cross-section. Uncertainties labelled with *a* are correlated between the $\mu^+\mu^-$ and $J/\psi \pi^+\pi^-$ mode, while *b* indicates a correlation between $\psi(2S) \rightarrow \mu^+\mu^-$ and the $J/\psi \rightarrow \mu^+\mu^-$ uncertainties [8].

Uncertainty source	$\mid \mu^+\mu^-(\%)$	$J\!/\psi\pi^+\pi^-(\%)$
Luminosity ^{a,b}	3.5	3.5
Trigger efficiency ^{a}	1-8	1 - 7
Total efficiency	0.4 - 2.2	0.6 - 1.0
Global event $\operatorname{cuts}^{a,b}$	2.1	2.1
Muon identification a,b	1.1	1.1
Tracking efficiency ^{a}	3.5	7.3
Track $\chi^{2a,b}$	1	2
Vertex fit^b	0.8	1.3
Hadron identification	_	0.5
Unknown polarization ^a	15-26	15 - 26
$\mathcal{B}(\psi(2S) \rightarrow e^+e^-)$	2.2	—
${\cal B}(\psi(2S) o J/\psi \pi^+\pi^-)$	_	1.2
${\cal B}(J/\psi ightarrow \mu^+\mu^-)$		1.0
Mass fit function	1.1	0.5
Pseudo-decay-time fits	2.7	2.7
	-	

Source	systematic uncertainties. Systematic error (%)
B_c^+ lifetime	6.0
J/ψ vertexing	1.6
Track χ^2	3.0
Trigger	3.0
Tracking	1.0
Weighting procedure	2.3
Total	7.9

20.06.2012, QCD@Work2012, Lecce Soft QCD and onia production at LHCb by D.Volyanskyy

Backup/2



Backup: cosmic-ray models

MAX-PLANCK-INSTITUT Für Kernphysik Heidelberg

Modelling Interactions in Extensive Air Showers

by Ralf Ulrich

Requirements and Problems:

- Interactions up to $\sqrt{s} \sim 500 \,\mathrm{TeV}$
 - \rightarrow Far beyond accelerator energies...
- Mainly soft physics + diffraction: forward region → Difficult to instrument...
 - \rightarrow Only fixed target at lower energies...
- ► Target is air: p-air, π-air, K-air, A-air, ... → Typical target very different from air: Nuclear effects must be considered...

Ingredients:

- Theory: pQCD (hard) + Gribov-Regge (soft)
- A lot of phenomenology: Diffraction, String fragmentation, Saturation, Remnants, Nuclear effects, ...

Older models:

Glauber based, different mostly in remnants+diffraction, for example: QGSJet01 (Kalmykov, Ostapchenko) SIBYLL (Engel, Gaisser, Lipari, Stanev)

Recent models:

QGSJetII (Ostapchenko) Theory++, Optimized for cosmic rays

EPOS (Werner, Pierog) Phenomenology++ Optimized for LHC, RHIC (and cosmic rays)

20.06.2012, QCD@Work2012, Lecce Soft QCD and onia production at LHCb by D.Volyanskyy

Backup/3