

Monte Carlo generator TAUOLA: implementation Resonance Chiral Theory for two and three meson modes. Comparison with experimental data

O. Shekhovtsova

together with

I. Nugent, T. Przedzinski, P. Roig and Z. Was

QCD@Work, Lecce, 20 June 2012

CONTENTS

TAUOLA 2011 (arXiv:1202.3955)

- Structure of the project, model etc.
- Results for two and three meson currents
- Tests
- Numerical results and parameters of fits

First results of 3 pion fits to BaBar (Ian Nugent)

CONCLUSION

TAUOLA (Monte Carlo generator for tau decay modes)

Main references (manuals):

1. R. Decker, S.Jadach, M.Jezabek, J.H.Kuhn, Z. Was, Comput. Phys. Commun. 76 (1993) 361, ibid. 70 (1992) 69, ibid. 64 (1990) 275 *CPC* (reference) version

 P. Golonka, B. Kersevan ,T. Pierzchala, E. Richter-Was, Z. Was, M. Worek, Comput. Phys. Commun. 174 (2006) 818, hep-ph/0312240
 J.H.Kuhn, Z. Was, Acta Phys. Polon. 39 (2008) 47 (5-pions), hep-ph/0602162
 A. E. Bondar, S. I. Eidelman, A. I. Milstein, T. Pierzchala, N. I. Root, Z. Was and M. Worek (4 pions), Comput. Phys. Commun. 146 (2002) 139

The parametrization used by experimental collaboration (based on data 1997-1998):

- 1. Alain Weinstein : http://www.cithep.caltech.edu/~ajw/korb_doc.html#files (cleo version)
- 2. B. Bloch, private communications (aleph version)

Different intermediate states (because of different detector sensitivity), e.g., $K\pi\pi$ only K^* cleo, K^* , ρ aleph

BaBar, Belle

Hadronic modes:

$$\pi v_{\tau} K v_{\tau} \qquad 2\pi v_{\tau} 2K v_{\tau} K \pi v_{\tau} 3\pi v_{\tau} K K \pi v_{\tau} \qquad K \pi \pi v_{\tau} 2\pi \eta v_{\tau} 4\pi v_{\tau} 5 \pi v_{\tau}$$

$$88\% hadronic width$$

CPC version

- 2 pseudoscalar modes written analogous to 2π τ normalization not fixed (too small statics 1992), only vector FF, no scalar FF
- 3 pseudoscalar modes (CPC version)

3pion modes (BW(a1)*BW(ρ)) reproduces LO ChPT limit

KKpi modes:

- within CPC parametrization CLEO was not able to reproduce data
- CLEO parametrization: to adjust data added factors (hep-ex/0401005)

$$\begin{split} J^{\mu} &= \left(q_{1}^{\mu} - q_{3}^{\mu} - Q^{\mu} \frac{Q(q_{1} - q_{3})}{Q^{2}}\right) F_{1}(s_{1}, s_{2}, Q^{2}) \\ &+ \left(q_{2}^{\mu} - q_{3}^{\mu} - Q^{\mu} \frac{Q(q_{2} - q_{3})}{Q^{2}}\right) F_{2}(s_{1}, s_{2}, Q^{2}) \\ &+ i\epsilon^{\mu\alpha\beta\gamma} q_{1\alpha} q_{2\beta} q_{3\gamma} F_{3}(s_{1}, s_{2}, Q^{2}) \\ &R_{B} &= 3.23 \pm 0.26 \end{split} \qquad \begin{split} F_{1} &= -\frac{\sqrt{2}}{3f_{\pi}} BW_{a_{1}}(Q^{2}) \frac{BW_{\rho}(s_{2}) + \beta_{\rho}BW_{\rho'}(s_{2})}{1 + \beta_{\rho}}, \\ F_{2} &= -\frac{\sqrt{2}}{3f_{\pi}} \cdot R_{F} \cdot BW_{a_{1}}(Q^{2}) \cdot BW_{K^{*}}(s_{1}), \\ F_{3} &= -\frac{1}{2\sqrt{2}\pi^{2}f_{\pi}^{3}} \cdot \sqrt{R_{B}} \cdot \frac{BW_{\omega}(s_{2}) + \alpha BW_{K^{*}}(s_{1})}{1 + \alpha} \\ \frac{BW_{\rho}(Q^{2}) + \lambda BW_{\rho'}(Q^{2}) + \delta BW_{\rho''}(Q^{2})}{1 + \lambda + \delta}, \end{split}$$

Main problem: almost no published spectra to update Monte Carlo Private codes inside of collaborations

BaBar/Belle comparison for 3 meson modes

Ian Nugent (BaBar) for Workshop tau lepton decays: hadronic currents from Belle Babar data and LHC signatures, 14-19 May 2012 IFJ, Cracow

Only 3 pion mode result within errors

TAUOLA 2011 - 2012

Code management

SVN revision control system

- displaying recent changes
- branching different approaches
- tagging milestones and stable revisions
- when bug is found "blame" to check who and when
- GUI: kdesvn

e <u>B</u> ookma	rks Subversion Se						
	143 3 <u>0</u> 000111011 <u>3</u> 0	attings <u>H</u> elp					
📁 😡 💡		l 🔝 💌 月	F 🛸 🚍 🖿 💅 🗸	- 8			
sme 👻		Status	Last changed Revision	Lastauthor	Last change date	Locked by	
🛡 📁 pho	otos-F		13	olga	2010-08-10 15:42		
🖲 📁 pla	tiorm		13	olga	2010-08-10 16:42		
🖲 📁 ran	dg		1	przedzin ski	2010-08-07 09:41		
P 📂tau	ola		715	przedzin ski	2013-10-05 21:14		
• []	RChL-currents		712	olga	2011-10-05 17:36		
۵ 📁	demo-KK-face		1	przedzin ski	2010-08-07 09:41		
• 📂	demo-jetset		6	olga	2010-08-10 16:31		
Θ.	demo-standalone		706	olga	2013-10-05 01:17		
۲	🔁 pro d		528	olga	2013-06-03 39:47		
	README		1	przedzin ski	2010-08-07 09:41		
	🖉 gaus_integr.f		308	olga	2010-12-15 16:54		
	gaus_integr.o	Ignored	-1		1970-01-01 01:00		
	makefile	Locally modifier	d 304	olga	2010-32-14 36:37		
	aumain.f		6	olga	2010-08-10 15:33		
	🛜 tautest.f		32	olga	2010-08-12 11-03		_
	🚰 tautestroman.exe	Not versioned				#	
	autestroman.f	Needs update	706	olga	Full Log	Ctrl+L	
	/ tautestroman.o	Ignored	-1		2 Diff local changes	Ctrl+D	
• P	other-currents		665	wasm	Magainst HEAD	Ctn+H	
R	rum clen f		1	przedzin ski	📃 Cathead		
	curr clep o	Ignored	-	PROBLEMENT	Lock current items		
US-		Ignored			Unlock current items	E 7	-
ecking for u	pdates started in back	ground		Prope	Delete selected files/dirs	Delete	
iccuirig for a	puates infisitea			: svn:ex	Open With		-

Z. Was, T. Przedzinski, O.Shekhovtsova

ifj.edu.pl

http://annapurna.ifj.edu.pl/~wasm/RChL/RChL.htm

RChL tauola update

Z. Was homepage O. Shekhovtsova e.mail: Olga.Shekhovtsova (at)	Inf.infn.it T. Przedzi	inski homepage					
Resonance chiral lagrangian currents and tau decay Monte Carlo							
Progam is managed by: T. Przedzinski, O. Shekhovtsov	va, Z. Was						
 Paper (mar 18 2012) by: O. Shekhovtsova, T. Przedzinski, P. Roig, Z. Was tar ball (nov 14, 2011) : for corresponding TAUOLA upgrade; svn tag inside. 							
Results of numerical tests:							
MC-TESTER: TAUOLA cleo vs. TAUOLA new currents PS/PDF rootfiles							
Tests in old style (90's): comparison with analytical calc.							
2000 m one offic (200), comparison offic analytical case	PS PDF	tgz (restr.)					
tau -> pi- pi0 nu	PS PDF	tgz (restr.)					
$tau \rightarrow K - pi0 nu$	PS PDF	tgz (restr.)					
$tau \rightarrow pr - K0 m$	PS PDF	tgz (restr.)					
$tau \rightarrow pi - pi - pi + nu$	PS PDF	TeX					
tau -> pi0 pi0 pi- nu	PS PDF	TeX					
tau -> K- pi- K+ nu	PS PDF	TeX					
tau -> K0 pi- K0 nu	PS PDF	TeX					
tau -> K- pi0 K0 nu	PS PDF	TeX					
Technical tests style of 90's too. MC analytical calc. Channel ni0 ni0 ni-							
Fi 1 star formforten eren mei meiù eren	PS PDF	TeX					
F1=1, other formfactors zero, mpi=mpi0=aver	PS PDF	TeX					
F1 F2 physical, other formfactors zero, mpi=mpi0=aver	PS PDF	TeX					
All formfactors physical, mpi=mpi0=aver	PS PDF	TeX					
ME reweighting, results of tests	PS/PDF	rootfiles					
Cleo to RChL	PS PDF	first second					
RChL to cleo	PS PDF	first second					

We expect matrix element to evolve even after our paper is finished. This page is the place to check on the progress. Eventually new co-authors and contribution from data analysis will be added here or link to such works will be added.

Last update: 18 Mar 2012 by Z. Was

Structure of *new-currents/RChL-currents*

- codes for currents
 - frho_pi.f pipi0 mode
 - fkk0.f kk0 mode
 - fkpipl.f kpi modes
 - f3pi_rcht.f 3 pion modes
 - fkkpi.f KKpi modes
 - fkk0pi0.f KK0pi0 mode
- library of functions used in the currents
 - funct_rpt.f Width of resonances etc
- code for a1 width as function of qq
 - /tabler/a1/da1wid_tot_rho1_gauss.f
 - wid_a1_fit.f linear interpolation
- numerical values of fit parameters, dipswitches
 - value_parameter.f
- tests of MC results (for separate modes) /cross-check/check_analyticity_and_numer_integr

Every directory with own README

Added to \tauola *cleo* version

<u>Two meson modes:</u> $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}; \quad \tau^- \rightarrow (K\pi)^- \nu_{\tau}; \quad \tau^- \rightarrow K^- K^0 \nu_{\tau}$

$$J^{\mu} = N \left[(p_1 - p_2)^{\mu} F^V(s) + (p_1 + p_2)^{\mu} F^S(s) \right]$$
$$N^{\pi^{-\pi^0}} = 1, \ N^{K^{-K^0}} = \frac{1}{\sqrt{2}}, \ N^{\pi^{-K^0}} = \frac{1}{\sqrt{2}}, \ N^{\pi^{0}K^{-}} = \frac{1}{2}$$
$$TAUOLA \ 2011: \ only \ vector \ FF$$

<u>Three meson modes</u>: $\tau^- \rightarrow (3\pi)^- \nu_{\tau}$; $\tau^- \rightarrow K^- \pi^- K^+ \nu_{\tau}$; $\tau^- \rightarrow K^0 \pi^- K^0 \nu_{\tau}$; $\tau^- \rightarrow K^- \pi^0 K^0 \nu_{\tau}$

$$J^{\mu} = N \left\{ T^{\mu}_{\nu} \left[c_{1}(p_{2} - p_{3})^{\nu} F_{1} + c_{2}(p_{3} - p_{1})^{\nu} F_{2} + c_{3}(p_{1} - p_{2})^{\nu} F_{3} \right] + c_{4}q^{\nu}F_{4} - \frac{i}{4\pi^{2}F^{2}}c_{5}\varepsilon^{\mu\nu\rho\sigma}p_{1\nu}p_{2\rho}p_{3\sigma}F_{5} \right\}$$

Decay mode	c_1	c_2	c_3	c_4	c_5
(p_1, p_2, p_3)					
$\pi^-\pi^-\pi^+$	1	- 1	0	1	0
$\pi^0\pi^0\pi^-$	1	- 1	0	1	0
$K^-\pi^-K^+$	1	- 1	0	0	1
$K^0\pi^-\bar{K}^0$	1	- 1	0	0	1
$K^-\pi^0 K^0$	0	1	- 1	0	- 1

$$N = \begin{cases} \cos \theta_{Cabibo} / F , & 2n \ kaons \\ \sin \theta_{Cabibo} / F , & 2n + 1 \ kaons \end{cases}$$

$$T^{\nu}_{\mu} = g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2}, \quad q^{\mu} = p^{\mu}_1 + p^{\mu}_2 + p^{\mu}_3$$

FF: F_1 , F_2 , F_3 axial-vector, F_5 vector, F_4 pseudoscalar

 $R\chi T$, Pablo Roig talk

arXiv:1202.3955

Numerical benchmarks of formfactor implementation:

- 1. al width is tabulated to avoid problem with triple integration:
 - Cross check with linear interpolation
- 2. Check of every channel: /cross-check/check_analyticity_and_numer_integr semi-analytical result (Gauss integration): comparison with linear interpolated spectrum ratio MC/semi-analytical of differential width (qq) comparison of analytical integration and MC for total width

2 pion, 2 Kaon with physical mass of pions, Kaons

others $m_{\pi} = (m_{\pi^0} + 2 \cdot m_{\pi^+})/3$ $m_K = (m_{K^0} + m_{K^+})/2$

An example: three pions $(\tau \rightarrow \pi^- \pi^- \pi^+ \nu_\tau)$:

- $F_1 = F$, $F_{others} = 0$ to check phase space
- $F_1 = physical, F_{others} = 0$
- $F_{all} = physical$

linear interpolation ~ 0.1% for whole spectrum except for ends MC (6e6): (2.1013 \pm 0.016%) \cdot 10⁻¹³GeV; semi-analyt(2.1007 \pm 0.02% %) \cdot 10⁻¹³GeV

Comparison of semi-analytical integration and MC

$$\begin{aligned} \mathbf{3} \text{ pseudoscalars} \quad \frac{d\Gamma}{dq^2} &= \frac{G_F^2 |V_{ud}|^2}{128(2\pi)^5 M_\tau F^2} \left(\frac{M_\tau^2}{q^2} - 1\right)^2 \int ds dt \left[W_{SA} + \frac{1}{3} \left(1 + 2\frac{q^2}{M_\tau^2}\right) (W_A + W_B)\right] \\ W_B &= \frac{1}{64\pi^4 F^4} \left[stu + (m_{K,\pi}^2 - m_\pi^2)(q^2 - m_{K,\pi}^2)s + m_{K,\pi}^2(2m_\pi^2 - q^2)q^2 - m_{K,\pi}^2m_\pi^4\right] |F_5|^2, \\ W_{SA} &= q^2 |F_4|^2. \qquad W_A &= -(V_1^\mu F_1 + V_2^\mu F_2 + V_3^\mu F_3)(V_{1\mu}F_1 + V_{2\mu}F_2 + V_{3\mu}F_3)^*, \\ \int ds dt &= \int_{4m_{K,\pi}^2}^{\left(\sqrt{q^2} - m_\pi\right)^2} ds \int_{t_-(s)}^{t_+(s)} dt \qquad t_{\pm}(s) = \frac{1}{4s} \left\{ (q^2 - m_\pi^2)^2 - [\lambda^{1/2}(q^2, s, m_\pi^2) \mp \lambda^{1/2}(m_{K,\pi}^2, m_{K,\pi}^2, s)]^2 \right\} \end{aligned}$$

Two pions
$$\frac{d\Gamma}{dq^2} = \frac{G_F^{"} |V_{ud}|^2 m_\tau^3}{384\pi^3} \left(1 - \frac{q^2}{m_\tau^2}\right)^2 \lambda \left(1, \frac{m_{\pi^+}^2}{q^2}, \frac{m_{\pi^0}^2}{q^2}\right) |F_{\pi}|^2$$

Channel	Analytical , GeV ⁻¹	Monte Carlo , GeV ⁻¹	
pipi0	(5.2431±0.02%)·10 ⁻¹⁵	(5.2441±0.005%)·10 ⁻¹⁵	
ККО	(2.0863±0.02%)·10 ⁻¹⁵	(2.0864±0.005%)·10 ⁻¹⁵	
КріО	(2.5193±0.02%)·10 ⁻¹⁴	$(2.5197 \pm 0.008\%) \cdot 10^{-14}$	
pipipi	$(2.1007\pm0.02\%)\cdot10^{-13}$	(2.1013±0.016%)·10 ⁻¹³	
K-pi-K+	(3.7379±0.024%)·10 ⁻¹⁵	(3.7383±0.02%)·10 ⁻¹⁵	$m_{\pi^{\pm}} = m_{\pi^{0}}$
КОрі-КО	(3.7385±0.024%)·10 ⁻¹⁵	(3.7383±0.02%)·10 ⁻¹⁵	K^{\pm} K^{0}
КріОКО	(2.7370±0.02%)·10 ⁻¹⁵	(2.7367±0.02%)·10 ⁻¹⁵	

Numerical results

Channel	Width, [GeV]					
	PDG	Equal masses	Phase space			
			with masses			
$\pi^{-}\pi^{0}$	$(5.778 \pm 0.35\%) \cdot 10^{-13}$	$(5.2283 \pm 0.005\%) \cdot 10^{-13}$	$(5.2441 \pm 0.005\%) \cdot 10^{-13}$			
$\pi^0 K^-$	$(9.72 \pm 3.5\%) \cdot 10^{-15}$	$(8.3981 \pm 0.005\%) \cdot 10^{-15}$	$(8.5810 \pm 0.005\%) \cdot 10^{-15}$			
$\pi^- \bar{K}^0$	$(1.9 \pm 5\%) \cdot 10^{-14}$	$(1.6798 \pm 0.006\%) \cdot 10^{-14}$	$(1.6512 \pm 0.006\%) \cdot 10^{-14}$			
K^-K^0	$(3.60 \pm 10\%) \cdot 10^{-15}$	$(2.0864 \pm 0.007\%) \cdot 10^{-15}$	$(2.0864 \pm 0.007\%) \cdot 10^{-15}$			
$\pi^-\pi^-\pi^+$	$(2.11 \pm 0.8\%) \cdot 10^{-13}$	$(2.1013 \pm 0.016\%) \cdot 10^{-13}$	$(2.0800 \pm 0.017\%) \cdot 10^{-13}$			
$\pi^0\pi^0\pi^-$	$(2.10 \pm 1.2\%) \cdot 10^{-13}$	$(2.1013 \pm 0.016\%) \cdot 10^{-13}$	$(2.1256 \pm 0.017\%) \cdot 10^{-13}$			
$K^-\pi^-K^+$	$(3.17 \pm 4\%) \cdot 10^{-15}$	$(3.7379 \pm 0.024\%) \cdot 10^{-15}$	$(3.8460 \pm 0.024\%) \cdot 10^{-15}$			
$K^0\pi^-\bar{K^0}$	$(3.9 \pm 24\%) \cdot 10^{-15}$	$(3.7385 \pm 0.024\%) \cdot 10^{-15}$	$(3.5917 \pm 0.024\%) \cdot 10^{-15}$			
$K^-\pi^0 K^0$	$(3.60 \pm 12.6\%) \cdot 10^{-15}$	$(2.7367 \pm 0.025\%) \cdot 10^{-15}$	$(2.7711 \pm 0.024\%) \cdot 10^{-15}$			

only ρ

with ρ' (parameters from pion mode) $(2.6502 \pm 0.008\%) \cdot 10^{-15} \text{ GeV}$

FSI effects

No.	Channel	Width [GeV]	Width [GeV]
1.	$\pi^{-}\pi^{0}$	$5.2441 \cdot 10^{-13} \pm 0.005\%$	$4.0642 \cdot 10^{-13} \pm 0.005\%$
2.	$\pi^0 K^-$	$8.5810 \cdot 10^{-15} \pm 0.005\%$	$7.4275 \cdot 10^{-15} \pm 0.005\%$
3.	$\pi^- \bar{K}^0$	$1.6512 \cdot 10^{-14} \pm 0.006\%$	$1.4276 \cdot 10^{-14} \pm 0.006\%$
4.	K^-K^0	$2.0864 \cdot 10^{-15} \pm 0.007\%$	$1.2201 \cdot 10^{-15} \pm 0.007\%$
		FSI	No FSI

14% - 32%

FFVEC = 1 (FSI), 0 (no FSI)

Comparison between CLEO and TAUOLA2011

http://annapurna.ifj.edu.pl/~wasm/RChL/RChL.htm

http://annapurna.ifj.edu.pl/~wasm/RChL/RChL.htm

 $\tau \to \pi^- \pi^- \pi^+ \nu_\tau$

Fit of 3 pion available spectra from BaBar

an exercise done Ian Nugent

(Aachen University, Alexander von Humboldt Foundation)

Presented at Workshop tau lepton decays:

hadronic currents from Belle Babar data and LHC signatures, 14-19 May 2012 IFJ, Cracow

Fit Parameters							
	Μ _{ρ'}	Γ _{ρ'}	M _{a1}	F	F_V	F _A	β _{ρ'}
Min.	1.44	0.32	1.00	0.0920	0.12	0.10	-0.36
Max.	1.48	0.39	1.24	0.0924	0.24	0.20	-0.18
Default	1.453	0.40	1.12	0.0924	0.18	0.149	-0.25
Fit	1.4302	0.376061	1.21706	0.092318	0.121938	0.11291	-0.208811

χ²= 2262.12 ndf=132

Note:

- The fit is a work in progress not necessarily the minimum
- Reliable errors estimates are not available yet

$\pi^{-}\pi^{-}\pi^{+}$ invariant mass

$\pi^{-}\pi^{+}$ invariant mass

For the $\pi^-\pi^+$ invariant mass:

- RCHL Current is in better agreement then Tauola 1.05
- Disagreement is visible in the low mass region

(Data- MC (RChL)) is less than 12 %

Application for LHC

Martin Flechl (ATLAS) for Workshop tau lepton decays: hadronic currents from Belle Babar data and LHC signatures, 14-19 May 2012 IFJ, Cracow

τ is used a tag
 dynamics is not studied
 however

its knowledge is important for Higgs polarization measurement agreement MC/data

CONCLUSION

- released version, <u>http://annapurna.ifj.edu.pl/~wasm/RChL/RChL.htm</u>
- done under SVN code manager
- 2πτ, 2Κ τ, Κπτ, 3πτ, ΚΚπτ

88% of tau hadronic width

• first comparison / fit

TAUOLA2012

- common work with experimentalists (I. Nugent, D. Epifanov) \rightarrow fit of parameters
- higher energy resonances in 3 pseudoscalar modes
- scalar FF in Kpi mode, FSI for 2 pseudoscalar modes (TALK OF P.ROIG)
- sigma meson in 3 pseudoscalar modes
- 4 pion modes in RChT to get 97% hadronic width, G.Ecker, R. Unterdorfer, Eur.Phys. JC24 (2002) 535
- other channels: pi eta, k eta etc

Common work: theory + experiment

Workshop tau lepton decays: hadronic currents from Belle Babar data and LHC signatures, 14-19 May 2012 IFJ, Cracow

TAU12, Nagoya, 17-21 September, 2012

BACK UP

DIPSWITCH PARAMETERS

new-currents/RChL-currents/value_parameter.f

DIPSWITCH	VALUE	MEANING	MODE	
FFVEC	0, 1*	FSI OFF, ON*	PIPIO, KPI, KKO	
FFKPIVEC	0, 1*	FSI GS, EXPON	КРІ	
FFKKVEC	0*,1	RHOPR OFF*,ON	ККО	

* default value

Input: parameters from fit etc.