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Motivation

@ in gauge beld theories, one-loop calculations are in general quite inv

@ over 30 years since brst non trivial computations k. Ellis Ross Terrano 81

@ progress has been very slow
(adding one more parton would take ~10 years)

@ yet,in the last ~5 years, one-loop calculations have undergone
tremendous progress, so-callé_O revolution

various causes:

_ - tAri Bern Dixon Dunbar Kosower 94
ggnerq!lsed_unltarlty Britto Cachazo Feng 04
- WittenOs twistor string theory
- OPP method Ossola Papadopoulos Pittau 2006
@ two-loop calculations are much younger Smirnov Tausk 99-00

obviously they are much more difPcult

@ can we envisage a similar leap forward ?
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N=4 Super Yang-Mills

@ maximal supersymmetric theory (without gravity)
conformally invariant, fn. =0
& spin 1 gluon

4 spin 1/2 gluinos
6 spin O real scalars
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6 spin O real scalars

@ Ot Hooft limitN:."#  with $ = N. bxed
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N=4 Super Yang-Mills

@ maximal supersymmetric theory (without gravity)
conformally invariant, fn. =0

& spin 1 gluon
4 spin 1/2 gluinos
6 spin O real scalars

@ Ot Hooft limitN:."#  with $ = N. bxed

¢ only planar diagrams

@ AdSCFTduality Maldacena 97

¢ large$ limit of 4dimCFT <—weakly-coupled string theory
(akawealkstrongduality)
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AdSCFT duality, amplitudes & Wilson loops

@ planar scattering amplitude at strong coupling Alday Maldacena 07

B
M ! exp i2—"'(Area)C|

classical solution

area of string world-sheet (n eglect O(1%8$) corrections
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AdSCFT duality, amplitudes & Wilson loops

@ planar scattering amplitude at strong coupling Alday Maldacena 07

B
M ! exp i2—"'(Area)C|

classical solution

area of string world-sheet (n eglect O(1%8$) corrections

@ amplitude has same form as ansatz for MHV amplitudes at weak co

S
M, = M? exp a fOOMOYan+ const) + EWD (1)
=1
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AdSCFT duality, amplitudes & Wilson loops

@ planar scattering amplitude at strong coupling Alday Maldacena 07

|
M ! exp i2—"'(Area)C|

classical solution

area of string world-sheet (n eglect O(1%8$) corrections

@ amplitude has same form as ansatz for MHV amplitudes at weak co

S
M, = M? exp a fOOMOYan+ const) + EWD (1)
=1

Q@ computation ““formally the same as ... the expectation value of a Wilson loop
given by a sequence of light-like segmentsOO
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MHV amplitudes in plandi=4 SYM

@ at any order in the coupling, colour-ordereddHV amplitude
In N=4 SYMcan be written as tree-level amplitude times
helicity-free loop coefbcient ML) = MO mL)

n n n

@ atlloop Bern Dixon Dunbar Kosower 94

m® = F2(p q,P,Q n! 6
o
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MHV amplitudes in plandi=4 SYM

@ at any order in the coupling, colour-ordereddHV amplitude
In N=4 SYMcan be written as tree-level amplitude times
helicity-free loop coefbcient ML) = MO mL)

n n n

@ atlloop Bern Dixon Dunbar Kosower 94

m® = F2(p q,P,Q n! 6
o

@ at 2 loops, iteration formuldor the n-pt amplitude

: 2
. mV )y + 1@ aymd 21+ Const® + R

mP (1) = 3

Anastasiou Bern Dixon Kosower 02
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MHV amplitudes in plandi=4 SYM

@ at any order in the coupling, colour-ordereddHV amplitude
In N=4 SYMcan be written as tree-level amplitude times
helicity-free loop coefbcient ML) = MO mL)

n n n

@ atlloop Bern Dixon Dunbar Kosower 94

m® = F2(p q,P,Q n! 6
o

@ at 2 loops, iteration formuldor the n-pt amplitude

: 2
. mV )y + 1@ aymd 21+ Const® + R

mP (1) = 3

Anastasiou Bern Dixon Kosower 02z
@ at all loops, ansatz for a resummed exponent

- " § -
mt) = exp a fOOMYan+ const + EO()y  +R
=1
Bern Dixon Smirnov 05
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MHV amplitudes in plandi=4 SYM

@ at any order in the coupling, colour-ordereddHV amplitude
In N=4 SYMcan be written as tree-level amplitude times
helicity-free loop coefbcient ML) = MO mL)

n n n

@ atlloop Bern Dixon Dunbar Kosower 94

m® = F2(p q,P,Q n! 6
o

remainder
/function
1 2
mP )= 2 mP () + 1@ )mP(2)+ Const? @

Anastasiou Bern DifXon Kosower 03
@ at all loops, ansatz for a resummed exponent

@ at 2 loops, iteration formuldor the n-pt amplitude

S 5 -
m{-) = exp a fOOmban+ const) + EM(1) +@
=1

Bern Dixon Smirnov 05
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ansatz foMHV amplitudes in plandd=4 SYM

) ul
My, = MO 1+  a-miH)
IL=1

g %

M (9 exp a fOOmMmYPan+ const) + EQN (1)

Bern Dixon Smirnov 05

coupling a= o5 (4"¢e ") I = ?N Ot Hooft parameter
(1 '6|(<|) | (1) 2 ¢ () (1
PO = -+ 1580+ 1245 ED ()= o)

Korchemsky Radyuskin 86

B’ cusp anomalous dimension, known to all ordersiof Beisert Eden Staudacher 06

Q" collinear anomalous dimension, known throughe)( Bern Dixon Smirnov 05
Cachazo SpradlinVolovich 07
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Factorisation of a multi-leg amplitude in QCD

--------
AAAAA

Mueller 1981

W Sen 1983
V. ay L5 Botts Sterman 1987
P Py 4 Kidonakis Oderda Sterman 199
D V AN Catani 1998
Tejeda-Yeomans Sterman 2002
N 9 g Kosower 2003
<, A ——— Aybat Dixon Sterman 2006
Becher Neubert 2009

Gardi Magnea 2009

| i ¢ Ji (2pi &ni)” |”
! | . 2p| é‘pj (2p| é.n|) " n2p2 y -
, 1) = ' iy ! I ”
M~ (pi/p, 1) ) S (i atys ) H uz ' nfp? 7 2("i ani)® |
i ni2 ,

pi=1iQy 2 value ofQ isimmaterial irS, J

to avoid double counting of soft-collinear region (IR double poles),
Jremoves eikonal part frond, which is already I6
JJ contains only single collinear poles
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N =4 SYMin the planar limit

Q@ colour-wise, the planar limit is trivial:
can absorlsinto J

@ each slice is square root
of Sudakov form factor

In L P70/ 2

| | S . n
M N = M [9g! 1] %Zl’l S, hn({pi},uzl! Sy )
=1

@ ! fn = 0<zcoupling runs only through dimensiores(u?)p® = #s(" )"

Sudakov form factor has simple solution

HP | H H" ol T |
A & (o M K= A <Ll6
S 2 # 12 2n2"2 n"

n=1
_ Magnea Sterman 90
<z IR structure of N = 4 SYMamplitudes Bern Dixon Smirnov 05
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Q@ the ansatz checked for the 3-loop 4-pt amplitude Bern Dixon Smirnov 05

2'|00p 5'pt amp“tUde Cachazo SpradlinVolovich 06
Bern Czakon Kosower Roiban Smirnov 06

Q the ansatz fails on Z'IOOp 6'pt amp"tUde Bern Dixon Kosower Roiban SpradlinVergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

Q@ at 2 loops, the remainder function characterises the deviation from the ansatz

1° 2
5 m@ay 1 @ 0ymd 2! Const®

¢ for n=4,5 Ris a constant
forn& 6, Ris a function of conformally invariant cross ratios

R = m(1)!
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Q@ the ansatz checked for the 3-loop 4-pt amplitude Bern Dixon Smirnov 05

2'|00p 5'pt amp“tUde Cachazo SpradlinVolovich 06
Bern Czakon Kosower Roiban Smirnov 06

Q the ansatz fails on Z'IOOp 6'pt amp"tUde Bern Dixon Kosower Roiban SpradlinVergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

Q@ at 2 loops, the remainder function characterises the deviation from the ansatz

1° 2
5 m@ay 1 @ 0ymd 2! Const®

¢ for n=4,5 Ris a constant
forn& 6, Ris a function of conformally invariant cross ratios

R@ = m@ ()1

¢ for n= 6,the conformally invariant cross ratios are

2 /2 2 2 2 2
U, = ~13%46 u, = ~24%15 U. = 35%26
17 x2,x2 27 X2 %2 7 x2.x2

14X36 25X14 36%X25

X are variables in a dual space s.tpi = xj ! Xj+1

thus Xﬁ,k+r =(pc+ ...+ Prrr 1)2

Monday, June 18, 12



Q@ the ansatz checked for the 3-loop 4-pt amplitude Bern Dixon Smirnov 05

2'|00p 5'pt amp“tUde Cachazo SpradlinVolovich 06
Bern Czakon Kosower Roiban Smirnov 06

Q the ansatz fails on Z'IOOp 6'pt amp"tUde Bern Dixon Kosower Roiban SpradlinVergu Volovich 08
Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

Q@ at 2 loops, the remainder function characterises the deviation from the ansatz

1° 2
5 m@ay 1 @ 0ymd 2! Const®

¢ for n=4,5 Ris a constant
forn& 6, Ris a function of conformally invariant cross ratios

R = m(1)!

¢ for n= 6,the conformally invariant cross ratios are

2 /2 2 2 2 2
U, = ~13%46 u, = ~24%15 U. = 35%26
17 x2,x2 27 X2 %2 7 x2.x2

14X36 25X14 36%X25

X are variables in a dual space s.tpi = xj ! Xj+1

thus Xﬁ,k+r =(pc+ ...+ Prrr 1)2

Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
(2) numerically Drummond Henn Korchemsky Sokatchev 08
R6 known Anastasiou Brandhuber Heslop Khoze Spence Travaglini C

analytically Duhr SmirnovVDD 09
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Wilson loops

@ WI[G]=Tr P exp- g dTX,,lu(T)Au(X(T)).

closed contourG, made by light-like external momenta Pi = Xi ! Xj+1
Alday Maldacena O
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Wilson loops

@ WI[G]=Tr P exp. g dTX,P(T)Au(X(T)).

closed contourG, made by light-like external momenta Pi = Xi ! Xj+1
Alday Maldacena O

@ non-Abelian exponentiation theorem: vev of Wilson loop as an expone

allows us to compute the log W Gatheral 83
Frenkel Taylor 84

! I
IW[G]"'=1+ a-wilt) =exp  a-wl)
L=1 L=1

1° 2

through 2 loops wd) = wd) w@® = w® | 5 w o
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Wilson loops

@ WI[G]=Tr P exp- g dTX,P(T)Au(X(T)).

closed contourG, made by light-like external momenta Pi = Xi ! Xj+1
Alday Maldacena O

@ non-Abelian exponentiation theorem: vev of Wilson loop as an expone

allows us to compute the log W Gatheral 83
Frenkel Taylor 84

! I
IW[G,]' =1+ a-wilt) =exp  a-wl)
L=1 L=1

1° 2

through 2 loops wd) = wd) w@® = w® | 5 w o

Q@ relation between 1 loommplitudes& Wilson loops

(@' 2 "
ng) = g(l' I;mgl) = mﬁ,l) ! nEZ + O(!) Brandhuber Heslop Travaglini O
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Wilson loops &Ward identities

Drummond Henn Korchemsky Sokatchev (
@ N=4 SYMis invariant unde6{2,4) conformal transformations

©

theWilson loops fulPll conformalard identities

@ the solution of theward identity for special conformal boosts
IS given by the Pnite parts of tlikDSansatz +R

¢ at 2 loops
w@ (= £ (Hwd @)+ i) + RA,. + O(1)

with £ ()= 1"+ 7511 57412
(to be compared with f @ (1y=1 ", 1 ";11 ",12 for the amplitudes)
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Drummond Henn Korchemsky Sokatchev (
@ N=4 SYMis invariant unde6{2,4) conformal transformations

©

theWilson loops fulPll conformalard identities

@ the solution of theward identity for special conformal boosts
IS given by the Pnite parts of tlikDSansatz +R

¢ at 2 loops
w@ (= £ (Hwd @)+ i) + RA,. + O(1)

with £ ()= 1"+ 7511 57412
(to be compared with f @ (1y=1 ", 1 ";11 ",12 for the amplitudes)

Q@ RY,, arbitrary function of conformally invariant cross ratios

2 2
Xii £1 X1

2 2
Xii Xig1j +1
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Wilson loops &Ward identities

Drummond Henn Korchemsky Sokatchev (
@ N=4 SYMis invariant unde6{2,4) conformal transformations

©

theWilson loops fulPll conformalard identities

@ the solution of theward identity for special conformal boosts
IS given by the Pnite parts of tlikDSansatz +R

¢ at 2 loops
2
w@ (= £ (Hwd @)+ i) + RA,. + O(1)

with £ ()= 1"+ 7511 57412
(to be compared with f @ (1y=1 ", 1 ";11 ",12 for the amplitudes)

Q@ RY,, arbitrary function of conformally invariant cross ratios

2 2
Xii £1 X1

2 2
Xii Xig1j +1

Uj = with XE,k+r = (Pc+ oot Prarr 1)’

Q@  dualityWilson loop <{ MHV amplitudds expressed by

(2) _ 2
Rn,WL - RE\)
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MHV amplitudes<{ Wilson loops

@ agreement between-edged Wilson loop andpoint MHV amplitude
at weakcoupling (akaveakweakduality)

¢ veribed forn-edged 1-loop Wilson loop  Brandhuber Heslop Travaglini 07

up to 6'edged 2-I00p Wilson IOOBrummond Henn Korchemsky Sokatchev
Bern Dixon Kosower Roiban Spradlin Vergu Volovich

@ n-edged 2-loop Wilson loops computed (numerically)
Anastasiou Brandhuber Heslop Khoze Spence Travaglin

< no amplitudes are known beyond thegdint 2-loop amplitude!
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2-loop 6-edgedemainder functiorRs?

Duhr SmirnovVDD 09

@ the remainder functior? is explicitly dependent
on the cross ratiosn, W, W

@ Itis symmetric in all its arguments
(for n> 6, it is symmetric under cyclic permutations and ref3ections)

@ itis of uniform transcendental weight 4
transcendental weightsy(in ¥ =w(" ) =1  wWLk(X) =wW"' 2 =2

@ it vanishes under collinear and multi-Regge limits (in Euclidean spac

@ itis in agreement with the numeric calculation by
Anastasiou Brandhuber Heslop Khoze Spence Travagli
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@ itis of uniform transcendental weight 4
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@ itis in agreement with the numeric calculation by
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gmR kinematics make it technically feasible
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2-loop 6-edgedemainder functiorRs?

Duhr SmirnovVDD 09

@ the remainder functior? is explicitly dependent
on the cross ratiosn, W, W

@ Itis symmetric in all its arguments
(for n> 6, it is symmetric under cyclic permutations and ref3ections)

@ itis of uniform transcendental weight 4
transcendental weightsy(in ¥ =w(" ) =1  wWLk(X) =wW"' 2 =2

It vanishes under collinear and multi-Regge limits (in Euclidean spac

@ itis in agreement with the numeric calculation by
Anastasiou Brandhuber Heslop Khoze Spence Travagli

T straightforward computation
gmR kinematics make it technically feasible

i Pnite answer, but in intermediate steps many divergences
output is punishingly long
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Analytic 2-loop 6-edged/ilson loop

2 In MB representation of the integrals in general kinematics,
get up to 8-fold integrals
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Analytic 2-loop 6-edged/ilson loop

2 In MB representation of the integrals in general kinematics,
get up to 8-fold integrals

@ after procedure in gmR limit, at most 3-fold integrals
in fact, only one 3-fold integral, which comes fram(pz. Ps, Ps; P4, Ps, P2)

SRt le d22 d23

Z1 Z2 {43
- - - (2122 + 223+ 7Z377) U7 U5° U
"l " " 2!I2!|2!|( ) Ui U3’ Ug

L z) ()P (M z)’ (it 2) ! (2 + z3) ! (Z3+ 21)
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Analytic 2-loop 6-edged/ilson loop

2 In MB representation of the integrals in general kinematics,
get up to 8-fold integrals

@ after procedure in gmR limit, at most 3-fold integrals
in fact, only one 3-fold integral, which comes fram(pz. Ps, Ps; P4, Ps, P2)

S R N [ S d

Z, dz, dzz o
- - - (2120 + z 23+ Z327) Uy US? US®
"l "l "l 2!|2!I2!|( )1 2 ¥3

L z) ()P (M z)’ (it 2) ! (2 + z3) ! (Z3+ 21)

the result is in terms of multiple polylogarithms

4 dt z"
Y aG(\Iv,t), G(a;z)=In 1! -

G(a,W;z) =
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Analytic 2-loop 6-edged/ilson loop

2 In MB representation of the integrals in general kinematics,
get up to 8-fold integrals

@ after procedure in gmR limit, at most 3-fold integrals
in fact, only one 3-fold integral, which comes fram(pz. Ps, Ps; P4, Ps, P2)

S R N [ S d

Z, dz, dzz o
- - - (2120 + z 23+ Z327) Uy US? US®
"l "l "l 2!|2!I2!|( )1 2 ¥3

L z) ()P (M z)’ (it 2) ! (2 + z3) ! (Z3+ 21)

the result is in terms of multiple polylogarithms

4 dt z"
T aG(\Iv,t), G(a;z)=In 1! -

G(a,W;z) =

@ the remainder functioi®? is given in terms of
O(13%) multiple polylogarithm&(us, W, W) Duhr Smirnov VDD 09
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the remainder? has been simplibed and given in terms of polylogarith

Goncharov Spradlin Vergu Volovich

| 3 s
! . 1 .
ROy (U1, Uz, Ug) = La(x X )1 SLia(2! uy)
-
| $ %,
1 !3 T J4 !2 5 !4
= Lio(1! lu; + + _J+ —
8 2( ) 24 12 72
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the remainder? has been simplibed and given in terms of polylogarith

Goncharov Spradlin Vergu Volovich
1+

| 3
RL (U1, Uz uz) = La(x", % )! SLia(1! 2uj)
-
| $ 3 %,
1 | - Y J4 !2J2 | 4
= Lio(1! Lu; + + + —
where 8 . _, 2 ) 24 127 72
| 1
P o= oupx” X* = Up+ Up+ Us? 12 3 I =(up+ ux+ ug! 1)°! 4uquyus

2U1UoU3

T D (B L . ! 1 .

La(X",X )= 2m)l! log(Xx™ X" )" (lar m(X7 )+ g m(X )+ @Iog(x X" )
L T T

| 3

J= (05! a(x))
1

()= 5 (L0 T (1 1) Lin (1)
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the remainder? has been simplibed and given in terms of polylogarith

Goncharov Spradlin Vergu Volovich
1+

| 3
RL (U1, Uz uz) = La(x", % )! SLia(1! 2uj)
-
| $ 3 %,
1 | - Y J4 !2J2 | 4
= Lio(1! Lu; + + + —
where 8 . _, 2 ) 24 127 72
| 1
P o= oupx” X* = Up+ Up+ Us? 12 3 I =(up+ ux+ ug! 1)°! 4uquyus

2U1UoU3

T D (B L . ! 1 .

La(X",X )= 2m)l! log(Xx™ X" )" (lar m(X7 )+ g m(X )+ @Iog(x X" )
L T T

| 3

J= (05! a(x))
1

()= 5 (L0 T (1 1) Lin (1)

i not a new, independent, computation
just a manipulation of our result
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the remainder? has been simplibed and given in terms of polylogarith

Goncharov Spradlin Vergu Volovich

| 3 T
! . 1
Réz,\)/\/L (Ug,Uz,uz) = La(X, % )! §L|4(1! 1ui)
=1
i % 0/02
1 !3 y J4 o1z o4
- Lip(1! Luj) + >+ —-J2+
where 8 (L1 1u) 24 127 72
I 1+ 1
X5 = uix* Xt = Up* Up+ Ug? 1+ | =(up+ up+ uz! 1)?! 4ujusus
2U1UoU3
RN S (I L . S Ty
La(x™,x )= log(X" x" )" (lar m(X" )+ ta m (X)) + o log(x™ X" )
__, (2m)n 8l!
1 '
()= 5 La0)! (1) Lia (1) J= (LX) ta(x))
=1

i not a new, independent, computation
just a manipulation of our result

T answer iIs short and simple
Introducessymbols TH physics

Monday, June 18, 12



Symbols
Q@ take a fn.debned as an iterated integral of logatdnal functionR

: b i Pt m
TK = dInR;'4aadInRy = dinRiltadadInRy, 1 dInRy(t)

a a a

then the total differential can be written as

dT® =" T* YdmR,
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Symbols
Q@ take a fn.debned as an iterated integral of logatdnal functionR

: b i Pt m
TK = dInR;'4aadInRy = dinRiltadadInRy, 1 dInRy(t)

a a a

then the total differential can be written as

dT® =" 7 YdnR,
[
@ the symbol is dePned recursively assymr®)= symr™ 11 R,
i Goncharov
as such, the symbol is debned on the tensor product
of the group of rational functions, modulo constants
444R1R, 1444 444R; 1444 4aaR,1aa;

4441(CR;) ! A44= 444 R, | 44
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Symbols
Q@ take a fn.debned as an iterated integral of logatdnal functionR

: b i Pt m
TK = dInR;'4aadInRy = dinRiltadadInRy, 1 dInRy(t)

a a a

then the total differential can be written as

dT® =" T* YdmR,

@ the symbol is debPned recursively assymr®1=" symr™ Y11 R,
i Goncharov

as such, the symbol is debned on the tensor product
of the group of rational functions, modulo constants

444R1R,1444= 444R, 1444 A44R, 144
4441(CR;) ! A44= 444 R, | 44

@ If Tis a multiple polylogarithr, then

dG(an: 1,...,a1;8n) = G(an 1,...,d,...,a;;8,)dIn 23—+
=1 a! a1
the symbol is
nt ai " Qi+ "
Sym (G(an! Lyeros al;an)) = Sym (G(an! Is-+- a) ----- al;an)) I al..—al
i il

i=1
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@ Euler and Nielsen polylogarithms are multiple polylogarithms with special arguments

1, , .
G(bn;x) = mln X G(bn; X) = %In 1! g
GO 1,ax) = ! Liy g GOy, B :x) = (! )™ Som g Sut 11(x) = Li n(X)
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@ Euler and Nielsen polylogarithms are multiple polylogarithms with special arguments

1, , .
G(bn;x) = mln X G(bn; X) = %In 1! g
GO 1,ax) = ! Liy g GOy, B :x) = (! )™ Som g Sut 1100 = Li n(X)

@ when the root equals +1,-1,0 multiple polylogarithms become harmonic polylogarithms (HPL:

Hawz)=  dtf (at)H(w;t) FELY= 5¢
0

1 1 1
FOt)= © 1) =
V=T, fLY=

with {a,w}! {" 1,01} Remiddi Vermaseren

when the root equals +1,0 HPLs reduce to Euler and Nielsen polylogarithms

Lin(x) = H(®,_1,1;%) Sam (X) = H(On,1m:%)
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@ Euler and Nielsen polylogarithms are multiple polylogarithms with special arguments

1, , .
G(bn;x) = mln X G(bn; X) = %In 1! g
GO 1,ax) = ! Liy g GOy, B :x) = (! )™ Som g Sut 1100 = Li n(X)

@ when the root equals +1,-1,0 multiple polylogarithms become harmonic polylogarithms (HPL:

H(a,W;z)= ' Ldtf(a;t)H(\N;t) f(1;t)= 1J1rt’ f(0:t) = :t_L f(1;t)= 1llt
0 :

with {a,w}! {" 1,01} Remiddi Vermaseren
when the root equals +1,0 HPLs reduce to Euler and Nielsen polylogarithms

Lin(x) = H(®,_1,1;%) Sam (X) = H(On,1m:%)

Q@ ...0n to symbols

Sym[inx] = x Sym %lnn X = é! %éﬁé )&n x!'n

Sym[Lin()]= ! (1! x)" x' "D
Sym[Snm (X)] = (! )™(@! x)' ™" x' "
SymH (as,...,an;x)] = (! 1(an ! x)" 444 (a! x)  {a}!{01}

k is the number oBOs equal to 1
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Q@ the symbol knows about the discontinuitiesfif
Ssym[TK]= R, 1444! Ry
thenT has a branch cut & = 0, and the symbol of the discontinuity is
Sym[Disc z, (T"®)] = R,1444! Ry,
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Q@ the symbol knows about the discontinuitiesfif
Ssym[TK]= R, 1444! Ry
thenT has a branch cut & = 0, and the symbol of the discontinuity is
Sym[Disc z, (T"®)] = R,1444! Ry,

2" iInx along theycut[-# , O]

. V) =
@ DisclpxIny) { 2" ilny along thexcut[-# , 0]

Sym[inx Iny]=x! y+yl!l X
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Q@ the symbol knows about the discontinuitiesfif
Ssym[TK]= R, 1444! Ry
thenT has a branch cut & = 0, and the symbol of the discontinuity is
Sym[Disc z, (T"®)] = R,1444! Ry,

@ oscnxing= {300 o mecouni# 0
Sym[inx Iny]= x! y+y! X
@ Ingeneral,iDisc(f g) Disc(f) g + f Disc(g)
and Symff]=1! ", R; Symg]="! ™ ., R

then Symffgl= ! ;R (i)

where ( denotes -the set of all shufResmof(m-r) elements
e.g. Sym[f] = R;! Ry Sym[g] = R3! R4

Sym[fg]= Ri! Rz! R3! Rg+ R1! R3! Ry! R4+ R1! R33! Ry! Ry
+ R3! Ri! Ry Rg+ R3! Ri! R4 R+ R33! Rs! RiT Ry
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Q@ the symbol knows about the discontinuitiesfif
Ssym[TK]= R, 1444! Ry
thenT has a branch cut & = 0, and the symbol of the discontinuity is
Sym[Disc z, (T"®)] = R,1444! Ry,

_ 2" iInx along theycut[-# , O]
D Iny) =
¢ sl xiny) { 2 i1Ilny along thexcut[-# , 0]

Sym[inx Iny]=x! y+yl!l X
@ Ingeneral,iDisc(f g) Disc(f) g + f Disc(g)
and Sym[f]=1! R Symfg] = ! L1 R
then Symffg]l= !, R/

where ( denotes .the set of all shufResmof(m-r) elements
e.g. Sym[f] = R;! Ry Sym[g] = R3! R4

Sym[fg]: Ri! Ry! Rz3! R4+ Ri! R3! Ry! R4+ R1! R3! Rs! Ry
+ R33! Ry! Ry! Rg+ R3! Ri! Ry! R+ R3! Rs! R Ry

Q@ symbols form a shufl3e algelir@a vector space with a shufRe product
(also iterated integrals and multiple polylogarithms form shuff3e algebras)
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polylogarithm identities satisbped by the functfon
become algebraic identities satisbPed by its symbol

2
let us prove the identity Lio(1! x)="! Lip(x)! InxIn(1! x)+ %
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polylogarithm identities satisbped by the functfon
become algebraic identities satisbPed by its symbol

2
let us prove the identity Lio(1! x)= 1! Lip(x)! InxIn(1! x)+ %
proof Sym[Li>(X)]="! (1! x)" x Sym[Li>(1! x)]="!"x" (1! x)

Sym[inxIn(1! x)]=x" (1! x)+(1 ! x)" X
thus Syml[Li>(1! x)]=Sym[! Li,(x)! InxIn(1! x)]
which determines the function up to functions of lesser degree

Lio(1! x)= ! Lio(x)! InxIn(! x)+ c!?+ il (cInx+c'In(1! x))
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polylogarithm identities satisbped by the functfon
become algebraic identities satisbPed by its symbol

2

let us prove the identity Lio(1! x)= 1! Lip(x)! InxIn(1! x)+ %

proof Sym[Li>(X)]="! (1! x)" x Sym[Li>(1! x)]="!"x" (1! x)
Sym[inxIn(1! x)]=x" (1! x)+(1 ! x)" X

thus Syml[Li>(1! x)]=Sym[! Li,(x)! InxIn(1! x)]

which determines the function up to functions of lesser degree

Lio(1! x)= ! Lio(x)! InxIn(! x)+ c!?+ il (cInx+c'In(1! x))

but the equation is real fod < x < 1, socO=cO0=0

| 2

atx=1  0=! 1 0+c!? = c=

ol =
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@ takef, gwith W(f) = W(g) = nandSymf] = Sym[]
thenf-g = hwith w(h) = n-1
the symbol does not know abourt
Info on the degrean-1 is lost by taking the symbol
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@ takef, gwith W(f) = W(g) = nandSymf] = Sym[]
thenf-g = hwith w(h) = n-1
the symbol does not know abourt
Info on the degrean-1 is lost by taking the symbol

@ in N=4 SYM polynomials exhibit a uniform weight
wiinx) =1, WLik(xX)) =k, w(' ) =1

I symbols Px polynomials up to factors'oftimes functions of lesser weight
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@ takef, gwith W(f) = W(g) = nandSymf] = Sym[]
thenf-g = hwith w(h) = n-1
the symbol does not know abourt
Info on the degrean-1 is lost by taking the symbol

@ in N=4 SYM polynomials exhibit a uniform weight
wiinx) =1, WLik(xX)) =k, w(' ) =1

I symbols Px polynomials up to factors'oftimes functions of lesser weight

Thus, we have a procedure to simplify a generic function of polylogarithms:

Q@ Pbnd suitable variables (through momentum twistors or else) such that
the arguments of the multiple polylogarithms become rational functions

Q@ determine the symbol of the function

@ through some symbol-processing procedure, Duhr Gangl Rhodes 11
Pnd a simpler form of the integral in terms of multiple polylogarithms
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Recent results on symbols

@ symbol ofn-point 2-loop MHV amplitudes/Wilson loopScaron-Huot 11
(in principle one can get the-point 2-loop Wilson loop,
but the symbol is complicated)

@ symbol of6-point 3-loop MHV amplitude, up to 2 constants
(and function in the multi-Regge limit) Dixon Drummond Henn 11

@ symbol of 6-point 2-loop NMHV amplitude
(and function up to a 1-dim integral) Dixon Drummond Henn 11

@ symbol of non-planar massive double box (to be useghirgd' ttbar)

von Manteuffelpresented at ACAT2011

& SymbOI of 3-g|uon 2'|00p form factor Brandhuber Travaglini Yang 12
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Coproducts

@ symbols miss transcendental constants

@ look for somethingvith more structure
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Coproducts

symbols miss transcendental constants
look for somethinwith more structure

multiple polylogarithms form a Hopf algebra witle@roduct Goncharov

© © © ©

algebra is a vector space with a multiplicatipn A! A" A ) (@ b)=4db
that is associativeA! A! A" Al A" A (a'n)'c = d'(b"c
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@ algebra is a vector space with a multiplicatipn A!' A" A ) (@ b)=4db
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that is coassociativ®8" B! B" B! B! B (a)= ) at a?
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Coproducts

@ symbols miss transcendental constants

@ look for somethingvith more structure

@ multiple polylogarithms form a Hopf algebra witle@roduct Goncharov

@ algebra is a vector space with a multiplicatipn A!' A" A ) (@ b)=4db
that is associativeA! A! A" Al A" A (@'b)'c = d'(b"c

Q@ coalgebra is a vector space with a comultiplicattonB" B! B
that is coassociativid8" B! B" B! B! B (a)= ) at a?

@ ) puts together} decomposes i

@ take a word, sum over ways to split it into twdeconcatenation

T =wXxyz
I T)=wxyz! 1+wxy! z+wx! yz+w! xyz+1! wxyz
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Coproducts

@ symbols miss transcendental constants

@ look for somethingvith more structure

@ multiple polylogarithms form a Hopf algebra witle@roduct Goncharov

@ algebra is a vector space with a multiplicatipn A!' A" A ) (@ b)=4db
that is associativeA! A! A" Al A" A (@'b)'c = d'(b"c

Q@ coalgebra is a vector space with a comultiplicattonB" B! B
that is coassociativid8" B! B" B! B! B (a)= ) at a?

@ ) puts together} decomposes i

@ take a word, sum over ways to split it into twdeconcatenation

T =wXxyz
I T)=wxyz! 1+wxy! z+wx! yz+w! xyz+1! wxyz
iterate: sum over ways to split it into three

wxt yz® (Wi x)tyz if sum over all possibilities,
wx! yz" wx! (y! 2) get to the same result
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Hopf algebra

@ a Hopf algebra is an algebra and a coalgebra,
such that product and coproduct are compatible (a'b) = * (a)'* (b)
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| W | w

I(Lw)= 'ewrk(Lw) = Li! Ltk
k=0 k=0
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Hopf algebra

@ a Hopf algebra is an algebra and a coalgebra,
such that product and coproduct are compatible (a'b) = * (a)'* (b)

@ multiple polylogarithms form a Hopf algebra witle@roduct Goncharov

| w | w

I(Lw)= 'ewrk(Lw) = Li! Ltk
k=0 k=0

@ letOs see how it works on the classical polylogarithms
Y I(In 2)=1! Inz+Inz! 1
IIn yInz)=!i(In y)al(ln z2)
=(@A! Iny+Iny! 1)al@d! Inz+Iln z! 1)
=1! Inylnz+Iny! Inz+Inz! Iny+Inylnz! 1

-

Monday, June 18, 12



Hopf algebra

@ a Hopf algebra is an algebra and a coalgebra,
such that product and coproduct are compatible (a'b) = * (a)'* (b)

@ multiple polylogarithms form a Hopf algebra witle@roduct Goncharov

| w | w

I(Lw)= 'ewrk(Lw) = Li! Ltk
k=0 k=0

@ letOs see how it works on the classical polylogarithms
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Hopf algebra

@ a Hopf algebra is an algebra and a coalgebra,
such that product and coproduct are compatible (a'b) = * (a)'* (b)

@ multiple polylogarithms form a Hopf algebra witle@roduct Goncharov

| w | w

I(Lw)= 'ewrk(Lw) = Li! Ltk
k=0 k=0

@ letOs see how it works on the classical polylogarithms
Y I(In 2)=1! Inz+Inz! 1
IIn yInz)=!i(In y)al(ln z2)
=(@A! Iny+Iny! 1)al@d! Inz+Iln z! 1)
=1! Inylnz«dhy! Inz+Inz! Iny®inylnz! 1
Sym[lnyInz]=y! z+ z! vy

-

| Lis(z) =1! Lin(2)+Li2(2)! 1" In(L" 2)! Inz

-
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Hopf algebra

@ a Hopf algebra is an algebra and a coalgebra,
such that product and coproduct are compatible (a'b) = * (a)'* (b)

@ multiple polylogarithms form a Hopf algebra witle@roduct Goncharov

| w | w

I(Lw)= 'ewrk(Lw) = Li! Ltk
k=0 k=0

@ letOs see how it works on the classical polylogarithms
Y I(In 2)=1! Inz+Inz! 1
IIn yInz)=!i(In y)al(ln z2)
=(@A! Iny+Iny! 1)al@d! Inz+Iln z! 1)
=1! Inylnz«dhy! Inz+Inz! Iny®inylnz! 1
Sym[lnyInz]=y! z+ z! vy
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Sym[Liz(z)] = ! (1! 2)" z

-

Monday, June 18, 12



Hopf algebra

@ a Hopf algebra is an algebra and a coalgebra,
such that product and coproduct are compatible (a'b) = * (a)'* (b)

@ multiple polylogarithms form a Hopf algebra witle@roduct Goncharov

| w | w

I(Lw)= 'ewrk(Lw) = Li! Ltk
k=0 k=0

@ letOs see how it works on the classical polylogarithms
Y I(In 2)=1! Inz+Inz! 1
IIn yInz)=!i(In y)al(ln z2)
=(@A! Iny+Iny! 1)al@d! Inz+Iln z! 1)
=1! Inylnz«dhy! Inz+Inz! Iny®inylnz! 1
Sym[lnyInz]=y! z+ z! vy

QO ! Lix(z) =1 Liy(2)+Li(2)! 1--
Sym[Liz(z)] = ! (1! 2)" z

. . I " # 1 |nkZ
0 Ingeneral Liz(z) =1! Lin(2)+Lin(2)! 1+  Lin (2)! e
k=1 )
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Hopf algebra

@ a Hopf algebra is an algebra and a coalgebra,

such that product and coproduct are compatible (a'b) = * (a)'* (b)

@ multiple polylogarithms form a Hopf algebra witlke@roduct

| W | w

!( LW) = ! kw ! k(l—w) - Le ! Lwi
k=0 k=0

@ letOs see how it works on the classical polylogarithms

Y I(In 2)=1! Inz+Inz! 1

L I(In ylnz)=YIn y)a&((n 2z)
=(1! Iny+Iny! 1)a@! Inz+In z! 1)

=1! Inylnz«dhy! Inz+Inz! Iny®inylnz! 1
Sym[lny Inz] =

Goncharov

yl z+z!ly

QO ! Lix(z) =1 Liy(2)+Li(2)! 1--
Sym[Liz(z)] = ! (1! 2)" z

o1

0 In generaI! !Lin(z)" =1! Lipn(2)+Lin(2)! 1+ Lin «(2)! —=

k=1
11 Lin(z) =Lin1(2)! Inz

iterating 1, 1'Lin(z) =! In1! 2)" lpz" afo}a\ 'Ing

Sym[Li,(2)]= ! (1! 2)" 7" A44"2
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Hopf algebra

@ a Hopf algebra is an algebra and a coalgebra,
such that product and coproduct are compatible (a'b) = * (a)'* (b)

@ multiple polylogarithms form a Hopf algebra witlke@roduct Goncharov

!( LW) = ! kw ! k(l—w) - Le ! Lwi
k=0 k=0

@ letOs see how it works on the classical polylogarithms
Y I(In 2)=1! Inz+Inz! 1

L I(In ylnz)=YIn y)a&((n 2z)
=(@A! Iny+Iny! 1)al@d! Inz+Iln z! 1)
=1! Inylnz«dhy! Inz+Inz! Iny®inylnz! 1

Sym[lnyInz]=y! z+ z! vy

QO ! Lix(z) =1 Liy(2)+Li(2)! 1--

Sym[Lix(2)]=" (1! 2)" z

11
i Ink z

¢ In general !Lin(z)" LT L@+ L @T D Link@)! -

=1
I ni11 Lin(2) =Lin 1(2)! Inz \ L
primitive element

iterating 1, 1'Lin(z) =! In1! 2)" lpz" afo}a\ 'Ing

Sym[Li,(2)]= ! (1! 2)" 7" A44"2
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Q@ example on a function of weight 4

Fy =Gy

‘/’/,//f//,/’/, \ \\\\‘\\\\\\\\\‘ Duhr 12

symbols represent the maximal iteration of a coproduct
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Q@ ...butthere is a problem

1 1
! i Ink z

putz=1in !'Lin(z)":l! Lin(z)+Lin(z)! 1+ Lini «(2)! 0
k=1 )

get !('n)=1! !+, 1
better than symbols sym[¢,]=0

1
however !4 = —5!22

1 1 1 .
()= ! 12)%= g (M1 ta+ 1ol )7 = 2 (L 13+ 151 142151 1) contradiction!
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Q@ ...butthere is a problem

! " o1 K
putz=1in ! Lin(2) =1! Lin(@+Lia(@! 1+  Lin«(2)! lnk—lz
k=1 )

get !('n)=1! !+, 1
better than symbols sym[¢,]=0

1
however !4 = —5!22

1 1 1 .
()= ! 12)%= g (M1 ta+ 1ol )7 = 2 (L 13+ 151 142151 1) contradiction!

9 debne !('an)="lan! 1 Francis Brown 11

1 1 1
I(1)= —=1(1)%2= —(I,! 1)2= =121 1=1,41 1
SO ( 'a) 15(2 15(2 52 4
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Q@ ...butthere is a problem

- . . . ML Ink z
putz=1in ! Lin(z) =1! Lin(2)+Lin(2)! 1+  Lin«(2)! e
k=1 )

get !('n)=1! !+, 1
better than symbols sym[¢,]=0

1
however !4 = —5!22

1 1 1 .
()= ! 12)%= g (M1 ta+ 1ol )7 = 2 (L 13+ 151 142151 1) contradiction!

Q0 debPne !('a)='la! 1 Francis Brown 11
1 1 1
(1, Y= —1( 1,)2 = — (1,1 2 - 12 = 1,1
SO (ta)= 201 = g (fal 7= 2t 1=1,1 1
& debnealso I(!1)=111 Duhr 12
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Q@ ...butthere is a problem

1 1
! # Ink z

putz=1in !'Lin(z)":ll Lin(z)+Lin(z)! 1+ Lini «(2)! 0
k=1 )

get !('n)=1! !+, 1
better than symbols sym[¢,]=0

1
however !4 = —5!22

1 1 1 .
()= ! 12)%= g (M1 ta+ 1ol )7 = 2 (L 13+ 151 142151 1) contradiction!

o debne !(!an)='!an!1 Francis Brown 11
1 1 1
(1, Y= —1( 1,)2 = — (1,1 2 - ~ 12 = 1,1
SO I( 14) 15.( I, 15(.2. 1 2! 1=1,! 1
& debnealso I(!1)=111 Duhr 12

@ this allows us to account consistently feri' terms (which the symbol misses)
so the coproduct Pxes all but the primitive elements
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Coproducts and inverse relations

@ weight1 Lil(%):! In(L! %):! IN(L! 2)+In(!'2)=" In(L! 2)+In z! il
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Coproducts and inverse relations

@ weight1 Lil(%):! In(L! %):! IN(L! 2)+In(!'2)=" In(L! 2)+In z! il

. | ' 1 1
@ weight2 ', L, = =tin 1! = "In =
Z Z Z
=In(1 !I z)" Inz! Inz" Inz+ il " Inz
S 1 _ .
=1 11 ! Lix(2)! é|n2z+|! Inz I' more than
the symbol
1 . 1 . 1
Li, = = —Lix(2) = =Inz+1il Inz+ c!? —11 c= =
SO 2 3 2(2) > il'Inz+c z=11! c= 3

Monday, June 18, 12



Coproducts and inverse relations

@ weight1 Lil(%):! In(L! %):! IN(L! 2)+In(!'2)=" In(L! 2)+In z! il

: 1 ' 1 1
@ weight2 ', L, = =tin 1! = "In =
y4 y4 y4
:hﬂlh z)" Inz! Inz" Inz+ il " Inz
. . 1 . "1
=1 11 ! Lix(2)! é|n2z+|! Inz I' more than
the symbol
1 . 1 . 1
Li, = = —Lix(2) = =Inz+1il Inz+ c!? 11 ¢c= =
SO 2 3 2(2) > z=1! c 2
' | ' 1 1 1
Q Welght3 !1’1,1 Lig - =!ln 1! — "In - "In -
y4 y4 y4 y4
:!IM1HzV'Mz"Inz+Mz"Iqr'MZ!i!"Inf'mz

1 i!
= | Lia(z)+ =In3z! ——1In?z
111 Liz(2) 5 >
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Coproducts and inverse relations

: .1 1 .
Q weight 1 Lll(E):! In(1 ! = =!Inl! 2)+In(!'z2)="!" InA! 2)+In z! I
- 1 ' 1 1
@ weight2 ', L, = =tin 1! = "In =
Z Z Z
=In(1 !I z)" Inz! Inz" Inz+ il " Inz
. . 1 . "1
=1 11 ! Lix(2)! é|n2z+|! Inz I' more than
the symbol
| . 1 . 1
Li, = = —Lio(z)— =In?z+il Inz+c!? —11 ¢c= =
SO 2 3 2(2) — 5 z=11! c= 3
' 1 1 1 1
Q Welght3 !1,1,1 |_|3 — =!lIn 1! — "In = "In -
Z Z Z Z
= In(lI! z)" Inz" Inz+Inz" Inz" Inz! it " Inz" Inz
o 1 il
one can do better
1 ' 1 i! | 2
! Lis = ! Lig(2)+ =In®z! —In? =1 "
21 s - 13(2) gn“z! —In"z 3| In z "
L
=1 54 'glnz
so Li 1 = Li (z)+}In32' i!—In22| ﬁlnz+c" + Gyl 3 z=1! ¢=¢ =0
3 Z 3 6 " 2 " 3 13 2' " 1 2
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Higgs + 3 gluons

@ the 2-loop amplitudes for Higgs + 3 gluons have been computed

In terms of 2-dim HPLs Koukoutsakis 03
Gehrmann Jacquier Glover Koukoutsakis
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Higgs + 3 gluons

@ the 2-loop amplitudes for Higgs + 3 gluons have been computed
In terms of 2-dim HPLs Koukoutsakis 03
Gehrmann Jacquier Glover Koukoutsakis

@ the symbol of the leading colour maximally transcendental part
equals the symbol of the 2-loop 3-gluon form factoiNr4 SYM
and can be expressed in terms of classical polylogarithms up to we

Brandhuber Travaglini Yang 12
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Higgs + 3 gluons

@ the 2-loop amplitudes for Higgs + 3 gluons have been computed

In terms of 2-dim HPLs Koukoutsakis 03
Gehrmann Jacquier Glover Koukoutsakis

@ the symbol of the leading colour maximally transcendental part
equals the symbol of the 2-loop 3-gluon form factoiNr4 SYM
and can be expressed in terms of classical polylogarithms up to we

Brandhuber Travaglini Yang 12

@ using coproducts, the whole 2-loop amplitude for Higgs + 3 gluons
can be expressed in terms of classical polylogarithms up to weight ¢

Duhr 12
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Conclusions

@ PlanamM=4 SYMis an ideal lab where to learn how an integrable
peld theory works
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@ PlanamM=4 SYMis an ideal lab where to learn how an integrable
peld theory works

@ one can make comparisons between quantitiesw@ikand
strong couplings: th&-loop 6-edgeiVilson loop

@ one can learn about 2-loop-point (N)MHV amplitudes,
and think of recycling that knowledge in realistic gauge Peld theorie:

@ a major progress has come from the introductionsyimbolswhich
capture most of the analytic properties of a function, and help us in
simplifying what the Pnal result should be likgmbolsare being
Introduced in the analytic results of 2-loop quantitiesJ&D, and will
certainly be used there more and more
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Conclusions

@ PlanaN=4 SYMis an ideal lab where to learn how an integrable
peld theory works

@ one can make comparisons between quantitiesw@ikand
strong couplings: th&-loop 6-edgeiVilson loop

@ one can learn about 2-loop-point (N)MHV amplitudes,
and think of recycling that knowledge in realistic gauge Peld theorie:

@ a major progress has come from the introductionsyimbolswhich
capture most of the analytic properties of a function, and help us in
simplifying what the Pnal result should be likgmbolsare being
Introduced in the analytic results of 2-loop quantitiesJ&D, and will
certainly be used there more and more

@ ... but symbols loose much info about the target function.
Most of that info can be recovered usingproducts
which include the symbols, and much more ...
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Resummation: Sudakov form factor

Q@ Sudakov (quark) form factor as matrix elementtdfl current
) 2
L (P, P2 %, 1) 1 < 013,(0) [P, P2 > = @(P2)" pu(py) ! %,#s(“2)1!

obeys evolution equation

-

! . - -y 2 o7 .
Qaln | G s = 5 K D E G (), #
Kis a counterterm(is pPnite as" O <
RGinvariance requires
dG dK )
Hao = g = (s (1)
H H Korchemsky Radyushkin 1987 J
, k is the cusp anomalous dimension
solution is
U R . "1 Q
_ n2 n2 )
1 Q2,1 =exp 5 i - G ! L#("!),! ! §$K #B:("7!) In —3
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Collinearlimits of Wilson loops

collinear limit a||b Anastasiou Brandhuber Heslop Khoze Spence Travagll
R" O R" R R R
triple collinear limit allbi|c
R" R R" R R" R+R R" R+ R
quadruple collinear limital|bj|c||d
R" R R" R R" R+R R" Rt R
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Collinearlimits of Wilson loops

collinear limit a||b Anastasiou Brandhuber Heslop Khoze Spence Travagi
R" O R" R R" R
triple collinear limit allbj|c
R" R R" R R" R+R R" R2+ R
quadruple collinear limital|bl|c||d
R" R R" R R" R+K R" Rt R
(k+1)-ple collinear limit i1||i2]|aaail+1
R" Rkt R
(n-4-ple collinear limit iilli2||a&&H 2 - . ( +

Ri1” Rz R" Rz
(n-3-ple collinear limit i,]lio|]|a&al s

R R
@ thusR,is bxed by thé€n-3-ple collinear limit
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Quasi-multi-Regglmit of hexagowWilson loop

o 6-pt amplitude in the gmR limit of a pair along the ladder
ya! ya" ys! Ye; Pz |" [par [" [ Psi | " | Per |

the conformally invariant cross ratios are
’ % _ X%gxﬁa _ S12545
Uz = 2 o2
M X14X36  S123S345
_ X54Xis _ S23Ss6
%QQQQ% Uiy = 2 o2
o X55X14 S234S123
a _ X5sX5¢ _  S34Se1
125 T %252 T sy
6 367\ 25 2349345

the cross ratios are alD(1)
" Rs does not change its functional dependence onulse

Q@ Rsisinvariant under the gmR limit of a pair along the ladder
Duhr Glover SmirnovVDD 08
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Quasi-multi-Regglmit of n-sidedWilson loop

o 7-pt amplitude in the gmR limit of a triple along the ladder

Y3l va" ys" Ye! Y7, Ps | " [ Pa " IPs | " | Per | " | P7r |

p2 p3
LQQQQQ0Q0Q0QQVQQQAAQQ NOL01010101010101010X010 01010101010 %

% M 7 cross ratios, which are al1)

290990090000005 R is invariant under the gmR limit

§ R of a triple along the ladder

1 7
QQQQQQQQQAAAQAAQQQ NelolvlvioioloioioioioleiololvIololoN]
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Quasi-multi-Regglmit of n-sidedWilson loop

7-pt amplitude in the gmR limit of a triple along the ladder

,_
@
»)

Y3l va" ys" Ye! Y7, Ps | " [ Pa " IPs | " | Per | " | P7r |

p2 p3
LQQQQQ0Q0Q0QQVQQQAAQQ NOL01010101010101010X010 01010101010 %

% M 7 cross ratios, which are al1)

290990090000005 R is invariant under the gmR limit
§ R of a triple along the ladder

@ can be generalised to thept amplitude
In the gmR limit of ar{-4)-ple along the ladder

yab ya" ..." Ynra! yn; Pz | " ..." |pn- |
Duhr SmirnovVDD 09
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Quasi-multi-Regglmit of Wilson loops

Drummond Korchemsky Sokatchev

Q@ LloopWilson loops areReggeexact Duhr Smirnov\VDD 09

Wi (1) = 15 O (LD + Ol + R (ug) + O()
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Quasi-multi-Regglmit of Wilson loops

Drummond Korchemsky Sokatchev

Q@ LloopWilson loops areReggeexact Duhr Smirnov\VDD 09

Wi (1) = 15 O (LD + Ol + R (ug) + O()

v

1) -
Ml T T2 oM
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Quasi-multi-Regglmit of Wilson loops

Drummond Korchemsky Sokatchev

Q@ LloopWilson loops areReggeexact Duhr Smirnov\VDD 09

Wi (1) = 15 O (LD + Ol + R (ug) + O()

v

(1! 2¢
!2(1! e;mg‘l)

\

|n(5ij ) + Liy(1! Uij )

wib) =
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Quasi-multi-Regglmit of Wilson loops

Drummond Korchemsky Sokatchev O

Q@ LloopWilson loops areReggeexact Duhr Smirnov\VDD 09

wit () = £5) O wd L)+ cf) + R (uy)+ 0()

(1] 26/ /

(1) — (1) A : : :
Wil T T2 g uOs are invariant in the gmRk

VS

|n(3ij ) + Liy(1! Uij )
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Quasi-multi-Regglmit of Wilson loops

Drummond Korchemsky Sokatchev O

Q@ LloopWilson loops areReggeexact Duhr Smirnov\VDD 09

wiP (1) = £ (wP (L) + Cf) + REL () + O()

L/

(1) — (1) A . : :
Wil T T2 g uOs are invariant in the gmRk

VS

|n(3ij ) + Liy(1! Uij )

N\

logOs are not power suppressed
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Quasi-multi-Regglmit of Wilson loops

Drummond Korchemsky Sokatchev O

Q@ LloopWilson loops areReggeexact Duhr Smirnov\VDD 09

w () = 5 MOw® L)+ i) + R (Ui)+ O(h)

@ _ L@ 20 /

Wn' = 2y oM uOs are invariant in the gmRK

VS

|n(5ij ) + Liy(1! Uij )

N\

logOs are not power suppressed

Q@ we may compute th&Vilson loop in gmRk
the result will be correct in general kinematics !!!
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Diagrams of 2-loopVilson loops

hard diagram curtain diagram

« Cross diagram

S Y diagram

Anastasiou Brandhuber Heslop Khoze Spence Travagli

each diagram yields an integral,
similar to a Feynman-parameter integra

factorised cross diagram

Monday, June 18, 12



Computing 2-loopVilson loops

cusp diagrams are given by cross andY diagrams with gluons attaching to consecutive
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Computing 2-loopVilson loops

cusp diagrams are given by cross andY diagrams with gluons attaching to consecutive

v most difbcult diagrams to compute are hard diagrams

fu hasl/-2 singularities i1 = Q@ =0,Q. O
it has1/- singularities i1 =0,Q,Q. O
itis Pnite ifQ1, @, Q. 0O

e.gfor n=6, themost difpcult diagram is
fu (P1, P3, Ps; P4, Ps, P2)  Which is Pnite

Monday, June 18, 12



Computing 2-loopVilson loops

cusp diagrams are given by cross andY diagrams with gluons attaching to consecutive

v most difbcult diagrams to compute are hard diagrams

fu hasl/-2 singularities i1 = Q@ =0,Q. O
it has1/- singularities i1 =0,Q,Q. O
itis Pnite ifQ1, @, Q. 0O

e.gfor n=6, themost difpcult diagram is
fu (P1, P3, Ps; P4, Ps, P2)  Which is Pnite

- most general hard diagram h@s’, Q@?,Q?. 0;it occurs forn& 9
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A comment on 2-loom-edged/Nilson loops

@ 2-loop 7-edged Wilson loop:
In the MB repr. of the integrals in gmRk, one gets up to 4-fold integral
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A comment on 2-loom-edged/Nilson loops

@ 2-loop 7-edged Wilson loop:
In the MB repr. of the integrals in gmRk, one gets up to 4-fold integral

Q@ 2-loop 8-edged Wilson loop:
In the MB repr. of the integrals in gmRk, one gets up to 5-fold integral
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A comment on 2-loom-edged/Nilson loops

@ 2-loop 7-edged Wilson loop:
In the MB repr. of the integrals in gmRk, one gets up to 4-fold integral

Q@ 2-loop 8-edged Wilson loop:
In the MB repr. of the integrals in gmRk, one gets up to 5-fold integral

@ 2-loop 9-edged Wilson loop:
In the MB repr. of the integrals in gmRk, one gets up to 6-fold integral

@ At 9 edges, thanard diagrartopology saturates, which generates
the highest-fold integrals
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A comment on 2-loom-edged/Nilson loops

@ 2-loop 7-edged Wilson loop:
In the MB repr. of the integrals in gmRk, one gets up to 4-fold integral

Q@ 2-loop 8-edged Wilson loop:
In the MB repr. of the integrals in gmRk, one gets up to 5-fold integral

@ 2-loop 9-edged Wilson loop:
In the MB repr. of the integrals in gmRk, one gets up to 6-fold integral

@ At 9 edges, thanard diagrartopology saturates, which generates
the highest-fold integrals

@ For 10/ n/ 12,the only new contributionsome from the
factorized cross diagreopology, which is the simplest
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Wilson loops: analytic calc

1. Use Mellin-Barnes (MB) representation of the Feynman-parameter intet
replace each denominator by a contour integral

1 1 1+ A?
A+B)Y ()2 ., dz! (! z)!(!+z)B!+Z
Integral turns into a sum of residues A
1 1)
Res-1 1! (2) = ( n!) #
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Wilson loops: analytic calc

1. Use Mellin-Barnes (MB) representation of the Feynman-parameter intet
replace each denominator by a contour integral

1 1 1+ A?
A+B)Y ()2 ., dz! (! z)!(!+z)B!+Z
Integral turns into a sum of residues A
Res=1n!(2) = E 1) #

n! K

2. Use Regge exactness inthegmR Iimit: ¢ ¢ o o
retain only leading behaviour
(.e leading residu® of the integral

leading residue

Monday, June 18, 12



Wilson loops: analytic calc

3. Use Regge exactness again: iterate the gmRditimtes,
by taking then cyclic permutations of the external legs
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Wilson loops: analytic calc

3. Use Regge exactness again: iterate the gmRditimtes,
by taking then cyclic permutations of the external legs

1

\

e o o >
leading residue In S‘%« oo
leading residue in step
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Wilson loops: analytic calc

3. Use Regge exactness again: iterate the gmRditimtes,
by taking then cyclic permutations of the external legs

4. Sum remaining towers of residues

| o0 n
. u
— =1 In(1!
—=11In1! v
n=1
I n
H u .
nk = LI (u)
n=1

leading residue in sﬁ oo o
leading residue In step

\

1

=)

=

>
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Wilson loops: analytic calc

3. Use Regge exactness again: iterate the gmRditimtes,
by taking then cyclic permutations of the external legs

4. Sum remaining towers of residues t
!OO un A
— =1 1In(1"! u)
n=1 n \\
I n
H u .
nk = Li ¢ (u)

n=1

leading residue in s *—o

leading residue Iin step

In general, get nested harmonic sumsmultiple polylogarithms

I! ng Mm"1 Mg 1 nk
=(! NVXGH#
e o = (D) g_%& KT
ni=1 no=1 ng=1

m;" 1 me" 1
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@ using symbols, one can reduce tHBLsto a minimal set Buehler Duhr 11

weight 1: BP(x)=Inx, BPx=mn@! x), BP =@+ x)

: : .1
weight 2: B ()=Li200, B ()=Lia(tx), BP(=Li, —5

weight 3:  polylogarithms of typé.is of various arguments

weight 4:  polylogarithms of typé.is of various arguments,
plus a few polylogarithms of type ,, like Li> »(-1,X) etc.
Alternatively, the polylogarithms of typa» >can be replaced
by the HPLs:H(0,1,0,-1x) andH(0,1,1,-1x)

If needed numerically, any combination##Lsup to weight 4
can be evaluated in terms of a minimal set of numerical routines
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@ using symbols, one can reduce tHBLsto a minimal set Buehler Duhr 11

weight 1: BP(x)=Inx, BPx=mn@! x), BP =@+ x)

: : .1
weight 2: B ()=Li200, B ()=Lia(tx), BP(=Li, —5

weight 3:  polylogarithms of typé.is of various arguments

weight 4:  polylogarithms of typé.is of various arguments,
plus a few polylogarithms of type ,, like Li> »(-1,X) etc.
Alternatively, the polylogarithms of typa» >can be replaced
by the HPLs:H(0,1,0,-1x) andH(0,1,1,-1x)

If needed numerically, any combination##Lsup to weight 4
can be evaluated in terms of a minimal set of numerical routines

@ multiple polylogarithms are also debPned through nested harmonic sums

I ne M1 2" 1 n,
. u . . u 1 1
' = K 1 _ Kk
Hmem (e U= = )Gy o aa
nk=l K ng =1 =101 k 1

Gm,..m . (U1,..., u)=G" Q;$%gz Ug,..., 9;$%g, uy ; 1(

mp! 1 mg! 1
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@ also multiple polylogarithms can be reduced to a minimal setDuhr Gangl Rhodes 11

weight 1. one needs functions of typrex

weight 2: Lix(X)

weight 3: Liz(X)

weight 4: Lia(X), Lb,AX,Y

weight 5: Lis(X), L a(X,Y)

weight 6: Lis(X), Lba(X,y, L AX,Y, Lb24X,y,2
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let us prove the identity Li, 1! % =1 Lip(1! x)! %Inzx
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let us prove the identity Lip 1! % =1 Lip(1! x)! %Inzx

proof  SymlLiz(1! X)]= ! X" (1! x)

-

o 1
Sym LI 1! —
y 2 »

Sym[In°x] =2 x! x
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let us prove the identity Lip 1! % =1 Lip(1! x)! %Inzx

proof  SymlLiz(1! X)]= ! X" (1! x)

1!}
X

' 1
Sym Li, 1! =
y 2 »

X |

oox 1
X
=x" (1! x)! x" x

= x'

Sym[In°x] =2 x! x

-

_ S .
thus Sym ! Lip(1! x)! %lnzx =x" (1! x)! %2x" X =Sym Lip 1! ”
which determines the function up to functions of lesser degree

' 1 1
Li» 1! = =1Li»(1! x)! ZIn°x+ c!?
2 < 2( ) 5
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let us prove the identity Lip 1! % =1 Lip(1! x)! %Inzx

proof  SymlLiz(1! X)]= ! X" (1! x)

1!}
X

' 1
Sym Li, 1! =
y 2 »

X |

oox 1
X
=x" (1! x)! x" x

= x'

Sym[In°x] =2 x! x

-

_ S .
thus Sym ! Lip(1! x)! %lnzx =x" (1! x)! %2x" X =Sym Lip 1! ”
which determines the function up to functions of lesser degree

' 1 1
Li» 1! = =1Li»(1! x)! ZIn°x+ c!?
2 < 2( ) 5

atx=1 0=1!0! 0+c!? —_ c=0
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Symbols in the DGR construction

Duhr Gangl Rhodes 11
@ DGR associatelecorated (n+1)-gaiwsmultiple polylogarithms of weight

2 Ja;¥ <—= S(G(a;x))= 1! 3 Gangl Goncharov Levin 05

(@)
Ol
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Symbols in the DGR construction

Duhr Gangl Rhodes 11
@ DGR associatelecorated (n+1)-gaiwsmultiple polylogarithms of weight

- i T : X
2 Ja;¥ <—= S(G(a;x))= 1! 3 Gangl Goncharov Levin 05
¢ Gabiy<—\ /.
S(Ga b <— "V° §7 TV
tazx|ba tbx|ax bx|ab
' b ' d
abcd= 1! — " 1! -
a C

9 Ga,b,ck<— cl a Ga, b, c, d)x<— d®a
p ¢ b

@ the symbol in the DGR construction is basically equivalent to GSVVOs,
excepthat one needs not treatl log cas zero

Cl 2"3"x'>I D=m(C! 2! D)+ n(C! 3! D)" 5(C! x! D)
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6-dim one-loop 6-point integrals
@ 2n-dim one-loop 2-pt integrals (| > 2) are bnite and conformal invaria

@ Forn=3, itssymbol contributes to the symbol of two-loop Wilson loop
Caron-Huot 11
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6-dim one-loop 6-point integrals
@ 2n-dim one-loop 2-pt integrals (| > 2) are bnite and conformal invaria

@ Forn=3, itssymbol contributes to the symbol of two-loop Wilson loop
Caron-Huot 11

@ explicit expression of massless one-loop 6-pt integral
IS reminiscent of 2-lool-edged Wilson loop, but it has weight 3

Duhr SmirnovVDD 11

n3
1 L Dixon Drummond Henn 11
l6(U1, Up, Ug) = J? "2 La(x{,X)
' i=1
1#"3 $3 vy u3 0
t 3 LX) ha(xi )+ 3# Pa(x) " (%))
i=1 i=1
() " N
Lot )= SR K ) L () L ()
k:O( )
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6-dim one-mass one-loop 6-pt integral

@ hexagon with a massive side

2 _ 2 2 _ U2 _ U2 _ U2 _ o2 _
X1p = M X23 = X34 = X5 = X56 = X5, =0

@ the cross ratios are

2 2 2 2 2 U2 2 2
_ X% X35 _ X13X%6 _ X715 X324 _ X712 X36
U1 = 5=, W=7, U= 55,2 W= 5
X325 X36 X36 X14 X14 X35 X13 X6

& In the massless Iimig " O

-

¢ Z> symmetry swapsi andu;
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6-dim one-mass one-loop 6-pt integral
@ hexagon with a massive side
xf, = m? X33 = X34 = X35 = X8 = Xg; =0

@ the cross ratios are

2 2 2 2 2 2 2 2
Uy = X26 X35 _ X13X46 _ X15X24 _ X12X36

) ’ 3~ )
X35 X3¢ X36 X4 X4 X35 X13 X56
& Inthe massless limiy " O

O Z> symmetry swapsh anduy
Q@ after using MB integrals, the symbol map and momentum twistors, the integral is

| 6,m (U1, U2, us, Ua) Duhr SmirnovVDD 11
1 : ng n?2 # w2 $

) ooty Loy y
- JT7 i=1 j=1 La(xj; » Xij ) (_Sq( Xy ) _gl(xll i)

I + I &% + ! + !
+ > A(X51,X21) + B(X52:%22)  28(X]1,X31) A(X] 2, X7 2)
+ -ﬂ.L(XJlr,lv X!1,1) -'ZfL(XJar,l’ X!3,1) + %(Xi,l’ X!1,1) -'Z?L(X;,zi X!3,2) + ,-[Z.’L(XJlr,zi X!1,2) -’Z{L(X;,l’ X!B,l)
| + | + | + ! &
+ (X7 2, X1 2) (X532, X32) + 2 A(X3 1, X3.1) B (X352, X3.2)
B(xTx )= In(xT) ! h(x)

 7=(Uus+ Up+ Us! ugupus! 1)°! 4usupus (1! us) reduces to* in the massless limit

X 5(U1, U, Us, Us) = X1 (Uz, Uz, Us,Ug),  i=1,...,8 underZ; symmetry
Monday, June 18, 12




6-dim 3-mass easyne-loop 6-pt integral

Q@ hexagon with 3 massive sides, Xs7, Xs1

the cross ratios are

I
2 2 2 2 2 2
_ X25X17 _ X5gX41 _ Xg2X74
ul - 2 2 U2 - 2 2 1 U3 - 2 2 1
X15X57 X28X15 X27X48
2 2 2 2 2 2
_ X94X7sg _ X57X4g _ Xg1X7o ,
U4 - 2 2 U5 - 2 2 1 u6 - 2 2 g
X14X%5 X47X58 XgoX17

O / Ly

o D3 #Ssymmetry made of cyclic rotatiorssand ref3ections

2 in the massless limily, U, Us "

pC pc pc pc pC

uq U-o us ! Uq ,Ug ! Usg ! Ug ! Ug,
up #  Us,us#  Us,
u, #° U, ,ug #  Ug. Dixon Drummond Duhr Henn SmirnovVDD 1
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6-dim 3-mass ea®ne-loop 6-pt integral
Q@ hexagon with 3 massive sidgsi, X57, Xs1
the cross ratios are

2 2 2 2 2 U2
_ X25Xi17 _ X5gX11 _ Xg2X74
ul - 2 2 U2 - 2 2 1 U3 - 2 2 1

X15X57 X28X15 X27X48

2 2 2 2 2 2

_ X%4X7s5 _ X57X4g _ Xg1X72
Up= 5= U= 55—, U= 5
X14X%5 X47X58 XgoX17

¢ Iin the massless limity, s, k" 0O
o D3 #Ssymmetry made of cyclic rotatiorssand ref3ections

pc pc pc pC

u; U-o Us Uq ,Ug ! Us ! Ug ! Ug,
up #  Us,us#  Us,
U, #'  Up,Ug #'  Ug. Dixon Drummond Duhr Henn SmirnovVDD 1

Q@  after using diff. eqs, the symbol map and momentum twistors, the integral is
L4 { +1 for {1c¢c?}
I o(Ug,...,Ug) = = 1 (g) La(x,, X 4) =
S e % it gss e T (@ -1 for {r,rc,cd
ng = g(x|i ) |i - Xii— (U1, Uz, Uz, Ug, Us, UG)
+ | 1 ! + | "3 + |
La(x™,x" )= — h(x7)! 1i(x') ~+ La(x™,x")

18
'g=(1"! uy! up! usz+ uguius + UsUU3 + UgUszUq ! u1u2u3u4u5u6)2! Auiuuz(1! ug)(d! us)(1! ug)

reduces to* in the massless limit
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8-edgedVilson loop iINAdS

@ at strong couplinghlday & Maldacenaave consideredri2sided polygons
embedded into the boundary éifdS

@ 2n-sided remainder function depends omz) variables
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8-edgedVilson loop iINAdS

@ at strong couplinghlday & Maldacenaave consideredri2sided polygons
embedded into the boundary éifdS

@ 2n-sided remainder function depends omz) variables

@ for the octagon, the remainder function is

I ) 1 7"
Rgt,(,‘\’,”Lg = | 5 In 1+!"' In 1+ 53 -+ 3 Alday Maldacena 09
%, . _ &
+ dt |m| sinht In 1+ e! 2! |[m| cosht

" tanh(2t + 21#)

where I— e2! Im m 1! = ¢ 2 Rem m = |m|e”
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8-edgedVilson loop iINAdS

@ at strong couplinghlday & Maldacenaave consideredri2sided polygons
embedded into the boundary éifdS

@ 2n-sided remainder function depends omz) variables

@ for the octagon, the remainder function is

I ) 1 7"
Rgt,(,‘\),”Lg = | 5 In 1+!"' In 1+ 53 -+ 3 Alday Maldacena 09
%, . _ &
+ dt |m| sinht In 1+ e! 2! |[m| cosht

o tanh(2t +2i#)
where | + = g2 Imm 1! = ¢ 2'Rem m = |m|e”

@ at weak coupling, the 2-loop octagon remainder function is

n /4 1 | 1 1 hud | " ' 1 «

| IR
Rg\)NL(!*,!!):!l—S! S 141t n 1+ 5 In 1+t In 14

Duhr SmirnovVDD 10

Monday, June 18, 12



8-edgedVilson loop iINAdS

@ at strong couplinghlday & Maldacenaave consideredri2sided polygons
embedded into the boundary éifdS

@ 2n-sided remainder function depends omz) variables

@ for the octagon, the remainder function is

I ) 1 7"
Rgt,(,‘\),”Lg = | 5 In 1+!"' In 1+ 53 -+ 3 Alday Maldacena 09
%, . _ &
+ dt |m| sinht In 1+ e! 2! |[m| cosht

o tanh(2t +2i#)
where | + = g2 Imm 1! = ¢ 2'Rem m = |m|e”

@ at weak coupling, the 2-loop octagon remainder function is

n4 1 I n " 1"" | 1 " 1\?
R(82,\)NL(!+’!!):!1_8!§|n 1+17 n 1+ In 1+1" In L+
Duhr SmirnovVDD 10

Q@ 2-loop 2r-sided polygorR conjectured through collinear limitsieslop Khoze 1t
proven throughOPE Gaiotto Maldacena Sever Vieira
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Amplitudes intwistor space

@ twistors live in the fundamental irrep 8d2,4)

@ any point indualspace corresponds to a line fwistor space
Xa ! (Za,Za+1)
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Amplitudes intwistor space

@ twistors live in the fundamental irrep 8d2,4)

@ any point indualspace corresponds to a line fwistor space
Xa ! (Za,Za+1)

Za +2
. . (z+] /
null separations idualspace correspond z,
to intersections intwistor space yw
I
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Amplitudes intwistor space

@ twistors live in the fundamental irrep 8d2,4)

@ any point indualspace corresponds to a line fwistor space
Xa ! (Za,Za+1)

. . Z(H-l /
null separations idualspace correspond z,
to intersections intwistor space - >} —_—
a Pa
 S—
Ta-NPa-
Za-l

2-loop n-pt MHV amplitudes can be written \z',\
as sum of pentaboxes twistor space

] k

i<j<k<I<i

Arkani-Hamed Bourjaily Cachazo Trnkal0
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