QCD@Work, Lecce, June 19th 2012.

Holography and the Quark-Gluon Plasma

Francesco Bigazzi

Firenze University and INFN, Pisa

Plan

- Motivations: heavy ion collisions at RHIC and LHC
- Holography
- Applications

Plan

- Motivations: heavy ion collisions at RHIC and LHC
- Holography
- Applications

Need novel theoretical tools for real-time properties at strong coupling

Products of Au+Au collisions at RHIC. 200 GeV/nucleon pair. Running since 2000.

Products of Pb+Pb collisions at LHC.
3 TeV/nucleon pair.
Running since 2010.

High energies, heavy nuclei: Au = 197 nucleons; Pb = 208 nucleons Why? QCD at high energy densities=Universe a few μ s old

Main picture

Large energy density: deconfinement

Static properties (thermodynamics)

• Lattice optimized for equilibrium, at zero baryon density

Energy density ε/T^4 Trace anomaly: $(\varepsilon-3p)/T^4$ [F.Karsch, 2002] [Borsanyi et al, 2007] 16.0 --- N,=6 14.0 ε/T⁴ ____ N,=8 12.0 10.0 8.0 150 200 250 300 6.0 4.0 2 flavour 2.0 T/T_{c} 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 200 400 800 1000 600 T[MeV]

- At T<Tc: hadron gas [O(1) d.o.f.]. At T>Tc: QGP [O(Nc^2+NcNf)]
- At T>Tc, ϵ/T^4 is $\approx 80\%$ of free quark-gluon gas
- Nearly conformal in a window of T>1.5 Tc

Dynamics: QGP is a strongly coupled medium

Dynamics: elliptic flow

Non central ion-ion collision. Beam direction (z) orthogonal to the screen

Azimuthal anisotropy is observed: collective behavior.

Dynamics: elliptic flow

- If QGP quickly formed, elliptic flow data fit with...
- ... a relativistic hydrodynamic model with very low shear viscosity/s

$$\frac{\eta}{s} = A \frac{1}{4\pi} \left(\frac{\hbar}{K_B} \right), \quad A \in [1, 4]$$

Dynamics: elliptic flow

- If QGP quickly formed, elliptic flow data fit with...
- ... a relativistic hydrodynamic model with very low shear viscosity/s

$$\frac{\eta}{s} = A \frac{1}{4\pi} \left(\frac{\hbar}{K_B} \right), \quad A \in [1, 4]$$

- $\eta/s\approx$ rate of momentum diffusion in transverse direction
- Very small $\eta/s \rightarrow$ strong coupling (QGP is a liquid)
- Note: η/s (water) $\approx (380) (1/4\pi)$; η/s (liquid He) $\approx (9) (1/4\pi)$]
- To connect with microscopic theory can use linear response

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G^R_{xy,xy}(\omega,\mathbf{0})$$
 Kubo formula
$$G^R_{xy,xy}(\omega,\mathbf{0}) = \int \! dt \, d\mathbf{x} \, e^{i\omega t} \theta(t) \langle [T_{xy}(t,\mathbf{x}),\, T_{xy}(0,\mathbf{0})] \rangle \quad \text{Retarded correlator}$$

- But how to compute at strong coupling? Lattice (euclidean) not suited.

Dynamics: jet quenching

- Strong suppression of back-to-back jets: QGP strongly coupled, highly opaque
- Mainly due (LHC) to energy loss of partons by gluon emission
- Effect of the medium accounted by jet quenching parameter q
- Non perturbative def.: a light-like Wilson loop in the adjoint [Wiedemann]

$$\langle W^A[C] \rangle_T \sim \exp\left[-\frac{\hat{q}}{4\sqrt{2}}L_-L^2\right]$$

Data: \hat{q} in the range $5 - 15 \,\mathrm{GeV}^2/\mathrm{fm}$

- Extrapolation from pQCD: $\hat{q} < 1 \text{GeV}^2/\text{fm}$
- Lattice not well suited: light-like WL requires Minkowsky signature

Plan

- Motivations: heavy ion collisions at RHIC and LHC
- Holography
- Applications

Provides novel tools for strongly coupled QFT, both in and out equilibrium

"Ordinary quantum field theories are secretly quantum theories of gravity in at least one higher dimensions"

Heuristic Hint 1

Renormalization Group equations

$$u\frac{dg}{du} = \beta(g)$$

local in the scale u.

• Idea: RG flow of a D-dim QFT as "foliation" in D+1 dims. Extra dimension = RG scale u

Heuristic Hint 2

- Effective description in D+1 must have same number of d.o.f. as the QFT in D-dims
- Gravity is a good candidate: it is "holographic"
- See black hole physics

Black holes... are not so black

Quantum effects: emit thermal radiation.

Obey laws of thermodynamics

Entropy scales like the area of the event horizon and not as the enclosed volume!

[Bekenstein, Hawking 1974]

Quantum gravity, whatever it is, is holographic.

Degrees of freedom in a d+1 dimensional spacetime volume encoded by some theory on the d-dimensional boundary.

['t Hooft, Susskind, 1994]

- But still... (quantum) gravity in D+1 so different from a QFT in D!
- Any possible connection should work in a very subtle way
- In fact...

Certain regimes where the QFT is strongly interacting, mapped into classical (i.e. weakly interacting) gravity!

Certain regimes where the QFT is strongly interacting, mapped into classical (i.e. weakly interacting) gravity!

• First master example from string theory [Maldacena 1997]:

$$\mathcal{N}=4$$
 $SU(N_c)$ SYM in $D=4$ dual to gravity on $AdS_5\times S^5$.
Classical gravity regime: $N_c\gg 1$, $\lambda=g_{YM}^2N_c\gg 1$.

- An enormous amount of validity checks has been provided
- Extended to many other QFTs, including confining ones

Unfortunately holographic QCD is an hard task!

 $\Lambda_{\rm QCD}$

$$\Lambda_{QCD} \sim M \exp\left(-\frac{a}{g_{YM}^2(M)N_c}\right)$$

Decoupling:
$$g_{YM}^2(M)N_c \ll 1$$

Classical gravity:
$$g_{YM}^2(M)N_c \gg 1$$

Moreover: high spin states (Regge) cannot be accounted by gravity alone. Need a complete stringy description. Technically hard.

Therefore

- Price: classical gravity allows us to holographically describe dual QFTs which are not QCD. Toy models.
- However: there are phases of QCD (e.g. at T>Tc) for which holographic models provide good benchmarks.
- Morevoer: can built holographic effective theories (bottom-up)
- Key: universality. Some dynamical properties not so tied to microscopic details
- Gain: calculability. Can explore regimes (e.g. finite baryon density, real-time issues) at strong coupling, otherwise hard to access with standard theoretical tools.

How to compute?

RG scale E → radial extra dim. r

QFT vacuum → Gravity background

Operator $O(x) \rightarrow Gravity field \varphi(x,r)$

 $\langle O(x) O(y) \rangle \rightarrow On$ -shell action for φ

Can compute these at strong coupling just from classical gravity equations of motion!

QFT vacuum Gravity background

QFT vacuum Gravity background

QFT at finite temperature $Z = Tre^{-\frac{H}{T}}$

$$Z = Tre^{-\frac{H}{T}}$$

Log $Z \approx -S[gravity on shell]$

QFT vacuum → Gravity background

QFT at finite temperature and density $Z=Tre^{-\frac{H-\mu N}{T}}$

QFT density = electric flux on the boundary

 $\text{Log Z} \approx -\text{S[gravity on shell]}$

AdS d+1

$$E \xrightarrow{\lambda} \lambda^{-1} E$$

$$ds^2 = \frac{r^2}{R^2} dx_{\mu} dx^{\mu} + \frac{R^2}{r^2} dr^2$$

 $E \approx r$ (AdS radius)

CFT d

AdS d+1

$$E \xrightarrow{\lambda} \lambda x_{\mu}$$
$$E \xrightarrow{\lambda} \lambda^{-1} E$$

$$\iff$$

$$ds^{2} = \frac{r^{2}}{R^{2}}dx_{\mu}dx^{\mu} + \frac{R^{2}}{r^{2}}dr^{2}$$

 $E \approx r$ (AdS radius)

CFT at finite T

AdS black hole

$$Z = Tre^{-\frac{H}{T}}$$

$$ds^{2} = \frac{r^{2}}{R^{2}} \left[-b[r]dt^{2} + dx_{i}dx_{i} \right] + \frac{R^{2}}{r^{2}} \frac{dr^{2}}{b[r]}$$
$$b[r] = 1 - \frac{r_{h}^{d}}{r^{d}}$$

$$T_{CFT} = T_{BH} = \frac{r_h d}{4\pi R^2};$$

$$T_{CFT} = T_{BH} = \frac{r_h d}{4\pi R^2}; \qquad S_{CFT} = S_{BH} = \frac{A_h}{4G_N} \sim V_{d-1} T^{d-1}$$

CFT at finite T and µ

$$Z = Tre^{-\frac{H-\mu N}{T}}$$

$$A_t \sim \mu - \frac{\rho}{r^{d-2}}$$

Operator O(x) \rightarrow Gravity field $\phi(x,r)$

- Example 1(stress tensor): $T^{\mu\nu}(x) \to g_{\mu\nu}(x,r)$
- Example 2 (conserved current): $J^{\mu}(x) o A_{\mu}(x,r)$

$$\langle e^{-\int d^d x \phi_0(x) \mathcal{O}(x)} \rangle_{QFT} \approx e^{-S_{gravity}[\phi_0(x)]}$$

$$\lim_{r \to \infty} \phi(x, r) = \phi_0(x) \qquad \text{(schematically)}$$

Boundary value of field = source for corresponding operator

$$\langle \mathcal{O}(x)\mathcal{O}(y)\rangle \sim \frac{\delta^2 S_{grav}[\phi_0]}{\delta \phi_0(x)\delta \phi_0(y)}|_{\phi_0=0}$$

- Can compute correlators at strong coupling!
- Retarded correlators at finite T: incoming waves at horizon

Wilson loops

$$W_R[C] = Tr_R P e^{i \int_C A_\mu dx^\mu}$$

- R= representation (fundamental, adjoint...);
- C= contour (e.g. a rectangle T, L in Euclidean): W=exp[-T E[L]]
- Holographically:

$$W_F[C] \sim e^{-[\text{Minimal Area Surface with boundary C}]}$$

Plan

- Motivations: heavy ion collisions at RHIC and LHC
- Holography
- Applications

- Strongly coupled thermal QFT → Black Hole in higher dim.
- QFT Thermodynamics → Black Hole thermodynamics.
- Hydrodynamics -> Fluctuations around black hole background

A toy model for a quark+gluon plasma

[F.B., Cotrone, Mas, Paredes, Ramallo, Tarrio 09; F.B., Cotrone, Mas, Mayerson, Tarrio 10]

- SU(Nc) Yang Mills coupled with massless fields:
- 6 real scalars in the adjoint
- 4 Weyl fermions in the adjoint
- Nf fermions in the (anti)fundamental (quarks)
- Nf scalars in the (anti) fundamental (squarks)
- At finite T and finite quark chemical potential μ
- Parameters:

$$\lambda_h = g_{YM}^2(T)N_c \gg 1, \quad N_c \gg 1$$

$$\epsilon_h = \frac{\lambda_h}{8\pi^2} \frac{N_f}{N_c} \ll 1, \quad \delta = \frac{4}{\sqrt{\lambda_h}} \frac{\mu}{T} \left(1 - \frac{5}{24} \epsilon_h \right) \ll 1$$

N=4 SYM

Nf hypers

Thermodynamics

$$s = \frac{1}{2}\pi^2 N_c^2 T^3 \left[1 + \frac{\epsilon_h}{2} (1 + \delta^2) + \frac{7\epsilon_h^2}{24} (1 + \delta^2) \right]$$

$$\varepsilon = \frac{3}{8}\pi^2 N_c^2 T^4 \left[1 + \frac{\epsilon_h}{2} (1 + 2\delta^2) + \frac{\epsilon_h^2}{3} (1 + \frac{7}{4} \delta^2) \right]$$

$$p = \frac{1}{8}\pi^2 N_c^2 T^4 \left[1 + \frac{\epsilon_h}{2} (1 + 2\delta^2) + \frac{\epsilon_h^2}{6} (1 + \frac{7}{2}\delta^2) \right]$$

- $\varepsilon(N_f=0)=3p(N_f=0)$ consistently with CFT
- $\varepsilon \approx 0.75 \,\varepsilon(\lambda = 0)$ similarly to QGP at $T \in [1.5, 3]T_c$

Jet quenching parameter from holography

Non perturbative definition in terms of a certain light-like Wilson loop. Evaluated in dual gravity setup [Liu, Rajagopal, Wiedemann 06]. Amounts on evaluating minimal area for a 2d surface ending on loop in the boundary

$$\hat{q} = \frac{\pi^{3/2} \sqrt{\lambda_h} \Gamma(\frac{3}{4})}{\Gamma(\frac{5}{4})} T^3 \left[1 + \frac{1}{8} (2 + \pi) \epsilon_h + 0.56 \epsilon_h^2 \right]$$

Comparing with Nf=0 theory at fixed T and fixed energy density, get that quarks enhance jet quenching: they have larger cross section than gluons

[F.B. Cotrone, Mas, Paredes, Ramallo, Tarrio 09; Magana, Mas. Mazzanti, Tarrio 12]

Extrapolating to QGP: Nc=Nf=3,
$$\lambda$$
=6 π , T=300 MeV, get $q \approx 4 \div 5$ GeV^2/fm right in the ballpark of data

Conformality breaking

- (Toy) Model QCD in the Quark-Gluon-Plasma phase as
- ... a strongly coupled large N QFT at finite temperature...
- ... with conformality slightly broken by....
- ... a marginally relevant operator (as TrF^2)

Accounted by a simple effective gravity model in 5d ($\gamma <<1$)

$$S = \frac{1}{16\pi G_N} \int d^5 x \sqrt{-\det g} \left[R[g] - \frac{1}{2} (\partial \phi)^2 + \frac{12}{L^2} e^{\gamma \phi} \right]$$

- If $\gamma=0$ it has an AdS5 vacuum (L=AdS radius) with $\phi=$ const
- If $\gamma <<1$, $\phi \approx -3\gamma \log(r)$ i.e. logarithmic running with energy scale

Hydrodynamics: the shear viscosity

$$\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \ d\vec{x} \ e^{i\omega t} \ \langle [T_{xy}(t, \vec{x}), T_{xy}(0, \vec{0})] \rangle$$

Compute correlator following basic holographic formula Source term for Txy: external metric gxy. In dual gravity take $\delta gxy \exp(-i\omega t)$ Retarded correlator: incoming wave condition at horizon

Get [Policastro, Son, Starinets, 2001; Kovtun, Son, Starinets 2004]:

$$\frac{\eta}{s} = \frac{1}{4\pi} \frac{h}{K_B}$$

- Universal: for any isotropic QFT plasma with gravity dual
- Right in the ballpark of estimated QGP value

Second order hydrodynamics

[Baier,Romatschke,Son,Starinets,Stephanov 2008; Romatschke 2009; Bhattacharyya, Hubeny, Minwalla, Rangamani 2008]

$$T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} + p \Delta^{\mu\nu} + \pi^{\mu\nu} + \Delta^{\mu\nu} \Pi$$

Expansion in gradients of u^{μ} and $\varepsilon \to s$ (via thermodynamics):

$$\pi^{\mu\nu} = -\eta \sigma^{\mu\nu} + \eta \tau_{\pi} \Big[\langle D\sigma^{\mu\nu} \rangle + \frac{\nabla \cdot u}{3} \sigma^{\mu\nu} \Big] + \kappa \Big[R^{\langle \mu\nu \rangle} - 2u_{\alpha} u_{\beta} R^{\alpha \langle \mu\nu \rangle \beta} \Big]$$

$$+ \lambda_{1} \sigma_{\lambda}^{\langle \mu} \sigma^{\nu > \lambda} + \lambda_{2} \sigma_{\lambda}^{\langle \mu} \Omega^{\nu > \lambda} + \lambda_{3} \Omega_{\lambda}^{\langle \mu} \Omega^{\nu > \lambda} + \kappa^{*} 2u_{\alpha} u_{\beta} R^{\alpha \langle \mu\nu > \beta} \Big]$$

$$+ \eta \tau_{\pi}^{*} \frac{\nabla \cdot u}{3} \sigma^{\mu\nu} + \lambda_{4} \nabla^{\langle \mu} \log s \nabla^{\nu \rangle} \log s$$

For conformal fluids: $(\tau_{\pi}^*, \kappa^*, \lambda_4) = 0$

$$\Pi = -\zeta(\nabla \cdot u) + \zeta \tau_{\Pi} D(\nabla \cdot u) + \xi_{1} \sigma^{\mu\nu} \sigma_{\mu\nu} + \xi_{2} (\nabla \cdot u)^{2} + \xi_{3} \Omega^{\mu\nu} \Omega_{\mu\nu} + \xi_{4} \nabla^{\perp}_{\mu} \log s \nabla^{\mu}_{\perp} \log s + \xi_{5} R + \xi_{6} u^{\alpha} u^{\beta} R_{\alpha\beta}$$

For conformal fluids: $\zeta = 0$

 $\eta=$ shear viscosity, $\zeta=$ bulk viscosity, $au_{\pi}, au_{\Pi}=$ relaxation times.

Get all the transport coefficients!

[Romatschke 2009; F.B., Cotrone, Tarrio; F.B., Cotrone, 2010]

$$\delta_{cb} = (1 - 3c_s^2) \ll 1$$

Expected.
Universal.
[Kovtun, Son,
Starinets, 04]

$rac{\eta}{s}$	$rac{1}{4\pi}$	$T au_{\pi}$	$rac{2-\log 2}{2\pi} + rac{3(16-\pi^2)}{64\pi} \delta_{cb}$	$\frac{T\kappa}{s}$	$\left rac{1}{4\pi^2}\Big(1-rac{3}{4}\delta_{cb}\Big) ight $
$rac{T\lambda_1}{s}$	$\frac{1}{8\pi^2} \left(1 + \frac{3}{4} \delta_{cb} \right)$	$\frac{T\lambda_2}{s}$	$-\frac{1}{4\pi^2} \left(\log 2 + \frac{3\pi^2}{32} \delta_{cb} \right)$	$\frac{T\lambda_3}{s}$	0
$\frac{T\kappa^*}{s}$	$-rac{3}{8\pi^2}\delta_{cb}$	$T au_\pi^*$	$-rac{2-\log 2}{2\pi}\delta_{cb}$	$\left \frac{T\lambda_4}{s} \right $	0
$rac{\zeta}{\eta}$	$rac{2}{3}\delta_{cb}$	$T au_\Pi$	$rac{2-\log 2}{2\pi}$	$\frac{T\xi_1}{s}$	$rac{1}{24\pi^2}\delta_{cb}$
$rac{T\xi_2}{s}$	$rac{2-\log 2}{36\pi^2}\delta_{cb}$	$\frac{T\xi_3}{s}$	0	$\left \frac{T\xi_4}{s} \right $	0
$rac{T\xi_5}{s}$	$rac{1}{12\pi^2}\delta_{cb}$	$\frac{T\xi_6}{s}$	$rac{1}{4\pi^2}\delta_{cb}$		

Possible benchmarks for QGP?

• From lattice [Borsany et al 2010]: $c_s^2(T \sim 1.5T_c) \sim 0.26$ (RHIC)

$\frac{\eta}{s}$	$rac{1}{4\pi}$	$T\tau_{\pi}$	0.228	$\frac{T\kappa}{s}$	0.021
$\frac{T\lambda_1}{s}$	0.015	$\frac{T\lambda_2}{s}$	-0.023	$\frac{T\lambda_3}{s}$	0
$\frac{T\kappa^*}{s}$	-0.008	$T\tau_{\pi}^*$	-0.046	$\frac{T\lambda_4}{s}$	0
$\frac{\zeta}{\eta}$	0.147	$T au_{\Pi}$	0.208	$\frac{T\xi_1}{s}$	0.001
$\overline{\eta}$	0.147	1 /11	0.200	s	0.001
$\frac{\overline{\eta}}{\frac{T\xi_2}{s}}$	0.001	$\frac{T\xi_3}{s}$	0	$\frac{T\xi_4}{s}$	0

Many other directions

- Meson melting, phase transitions [Mateos, Myers, Thomson et al 07]
- Drag force on heavy quarks [Herzog, Karch, Kovtun, Kozcaz, Yaffe; Gubser 06]
- Photon spectrum (from retarded correlator of Jμ) [Yaffe et al 06]
- Thermalization: BH formation from colliding shock waves in AdS [Gubser et al 08] or time dependend backgrounds [Kraps et al 10]
- More realistic models: Sakai-Sugimoto; improved bottom-up approaches [Kiritsis et al]

Summary

- Holography: a novel theoretical framework for strongly coupled QFTs
- A novel set of tools which could complement well established ones especially for problems concerning e.g.
 - Real-time issues (transport properties)
 - Out of equilibrium physics
 - Finite density (cfr. sign problem in lattice)
- Often analytic control on the models. Novel intuitions.
- Still limited to effective toy models.
- Sometimes useful benchmarks on universal behaviors

Thank you