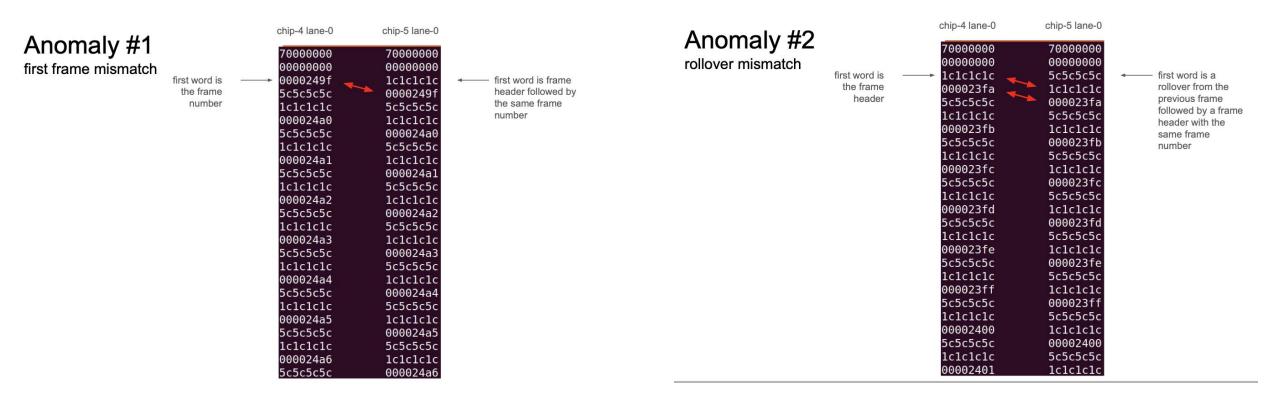
Rollover and other misalignments

Pietro, Sandro, Roberto


ALCOR day - 25 February 2025

This presentation

- re-cap understanding + anomalies seen (up to Mid Feb)
- recent debug results [and conversations!]
- looking forward
 - synchronization in next test beam (and also in lab) with ALCOR v2
 - synchronization with ALCOR v3

Understanding up to few weeks ago

- At test beam (and also in lab) we observed in data several lanes having sometimes one rollover (RO) more, like the foreseen synchronization was not working properly.
- Note: all synch on data is based on RO.
- Suggestion (Fabio): given coarse counter is started for each lane during setup phase (ECCR setting), send a soft reset continuously ("jamming") in such a way no chip reaches rollover. Init all chip, then remove jamming.
- jamming <u>results</u> presented 11/2 by Roberto.
- it "works" but anomalies were still found.

interpretation (Fabio): given SOFT reset is asserted completely asynchronously with respect to the state of coarse counter, depending on when the SR is sent (very close but before a rollover, immediately after etc.) we might have some instabilities.

Anomalies and test pulses

With test pulses

number of rollover mismatch

this run was selected as anomalous based on the mismatch on the total number of rollovers

test pulse words are not recorded in the same frame on all chips

ulses	chip-0 lane-0 164 rollovers	chip-1 lane-0 165 rollovers	chip-2 lane-0 165 rollovers	chip-3 lane-0 164 rollovers	chip-4 lane-0 165 rollovers	chip-5 lane-0 165 rollovers
mismatch	70000000	70000000	70000000	70000000	70000000	70000000
	00000000	00000000	00000000	00000000	00000000	00000000
	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c
	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc
and the second second	00003d47	00003d47	00003d47	00003d47	00003d47	00003d47
test pulse -	→ 0037003f	5c5c5c5c	5c5c5c5c	00370022	5c5c5c5c	5c5c5c5c
	5c5c5c5c	lclclclc	lclclclc	50505050	lclclclc	lclclclc
	lclclclc	00003d48	00003d48	lclclclc	00003d48	00003d48
	00003d48 -	0036fe3f -	00370023	00003d48 -	- 0036fe21 -	0036fe2c
5	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c
a maio na atab	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc
e mismatch	00003d49	00003d49	00003d49	00003d49	00003d49	00003d49
ollovers	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c
01101013	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc
	00003d4a	00003d4a	00003d4a	00003d4a	00003d4a	00003d4a
recorded	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c
recorded	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc
l chips	00003d4b	00003d4b	00003d4b	00003d4b	00003d4b	00003d4b
i chips	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c
	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc
	00003d4c	00003d4c	00003d4c	00003d4c	00003d4c	00003d4c
-	01190043	5c5c5c5c	5c5c5c5c	01190024	5c5c5c5c	5c5c5c5c
	5c5c5c5c	lclclclc	lclclclc	5c5c5c5c	lclclclc	lclclclc
	lclclclc	00003d4d	00003d4d	lclclclc	00003d4d	00003d4d
	00003d4d -	🗕 0118fe42 –	01190026	00003d4d	0118fe27	0118fe25
	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c
	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc
	00003d4e	00003d4e	00003d4e	00003d4e	00003d4e	00003d4e
	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c
	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc	lclclclc
	00003d4f	00003d4f	00003d4f	00003d4f	00003d4f	00003d4f
	5 <u>c</u> 5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c	5c5c5c5c

Reminder: (at each spill rising edge an SR is sent)

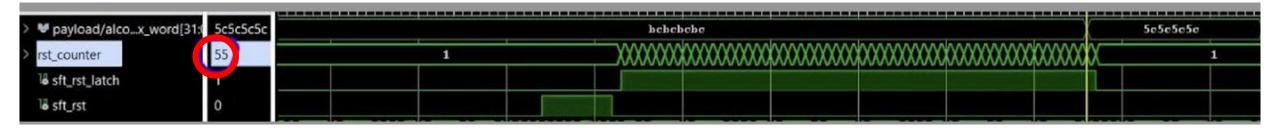
- Jamming: using 20 kHz spill pulses with 500 ns width (*EC enable* bits stay at 0).
- Data taking: 2kHz test pulses considering a spill width of 10 ms and lower frequency.

Our understanding since last ALCOR meeting (May):

after a SR is sent, first word out is a frame header (0x1C1C1C1C).

Our understanding after debug these days with FPGA + chats with Fabio:

- when a SR is sent the coarse counter goes to 0 while a frame is already opened, so first word seen different from idle (in absence of pulses) is a RO (0x5c5c5c5c) followed by words closing the frame + next frame header/new frame counter.
 - Verified through a ILA IP core set after deserialization inside the FPGA firmware.


Check: what happens when a SR is sent?

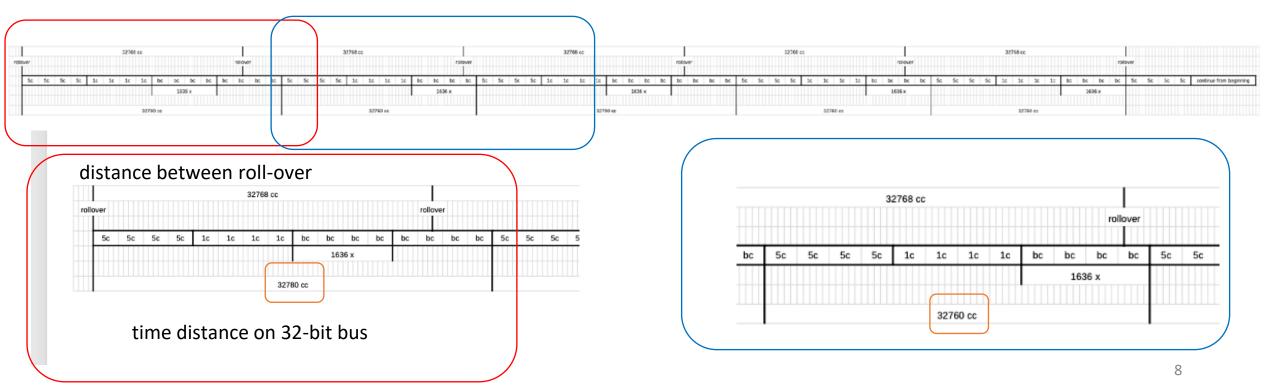
Following chat with Fabio we understand that:

event words or idle words are sent until the coarse counter reaches rollover. At that point the RO (and frame closing) is sent. If this is true we should count 32768 = 2¹⁵ clock cycles between the SR falling edge and the observation of the RO.

We checked the above statement sending the SR in a completely asynchronous way with respect to the ALCOR internal coarse counter. So the SR can be everywhere in the coarse counter range (0-32768).

Findings: the # of clock cycles varies a lot! Also very few (55!) or O(33000)! This is surprising and not understood.

We then tried to verify without sending SR which is the distance between 2 ROs .


Check: time distance between rollover signals

Check: without soft reset is the rollover distance correct?

After data serialization we count the clock cycles between two consecutive RO signals.

Result: two different fixed values were measured: 32780 and 32760 cc.

This is indeed consistent with the **10/8 encoding/decoding**!! The **rollover cannot be sent "immediately"** if there is something in the serializer (including an idle Oxbcbcbcbc).

Check: controlling "phase" of SR assertion

- An internal **FPGA 15-bit counter** is reset at each SR or at its own rollover.
- The SR is sent to ALCOR after a fixed number of clock cycles (16384 and 8192 ccs)
- Result:
 - the time distance between the SR falling edge and the first RO word floats around ~33945 (strange.. it should be close to 32768, we are still checking why an offset of more than 1100 cc). No small values observed as in asynchronous case.
 - the distance between 2 ROs is however fixed and the value is as expected.

Phase (cc)	RO distance (cc)	Notes
16384	49140 and 49160 (16384 + 32768 = 49152)	2 values due to 10/8 bit DESER
8192	40960 (8192 + 32768 = 40960)	fixed because is a multiple of 20

Phase = 8192 cc

Expected RO distance = 32768 + 8192 cc = 40960 cc

Name	Value	4,088	4,089	4,090	4,091	4,092	4,093	4,094	4,095	4,096	4,097	4,098	4,099	4,100	4,101	4,102
> W payload/rd[31:0]	5c5c5c5c	hcbchcbc							5c5c5c5c							
> Roll_counter	40960	40952	40953	40954	40955	40956	40957	40958	40959	40960	1	2	3	4	5	
> rst_counter	33936	33928	33929	33930	33931	33932	33933	33934	33935	33936	X			1		
14 sft_rst_latch	1										8					
😼 sft_rst	0							_								

The difference between 2 rollovers is exactly what we expected

Result: new anomalies

With Smart Reset

soft reset sent at 1/2 rollover

c	chip-0	chip-1	chip-2	chip-3	chip-4	chip-5
l:	ane-0	lane-0	lane-0	lane-0	lane-0	lane-0
7003	10000	70010000	70010000	70010000	70010000	70010000
0000	00000	0000000	0000000	0000000	0000000	00000000
0000	055c2 🔶	000055c2	lclclclc	000055c2 🔶	000055c2 🔶	000055c2
5c50	c5c5c	5c5c5c5c	000055c2	5c5c5c5c	5c5c5c5c	5c5c5c5c
1c10	clclc	lclclclc	5c5c5c5c	lclclclc	lclclclc	lclclclc
0000	055c3	000055c3	lclclclc	000055c3	000055c3	000055c3
5c50	c5c5c	5c5c5c5c	000055c3	5c5c5c5c	5c5c5c5c	5c5c5c5c
1c10	clclc	lclclclc	5c5c5c5c	lclclclc	lclclclc	lclclclc
0000	055c4	000055c4	lclclclc	000055c4	000055c4	000055c4
5c50	c5c5c	5c5c5c5c	000055c4	5c5c5c5c	5c5c5c5c	5c5c5c5c
1c10	clclc	lclclclc	5c5c5c5c	lclclclc	lclclclc	lclclclc
0000	055c5	000055c5	lclclclc	000055c5	000055c5	000055c5
5c50	c5c5c	5c5c5c5c	000055c5	5c5c5c5c	5c5c5c5c	5c5c5c5c
1c10	clclc	lclclclc	5c5c5c5c	lclclclc	lclclclc	lclclclc
0000	055c6	000055c6	lclclclc	000055c6	000055c6	000055c6
5c50	c5c5c	5c5c5c5c	000055c6	5c5c5c5c	5c5c5c5c	5c5c5c5c
1c10	clclc	lclclclc	5c5c5c5c	lclclclc	lclclclc	lclclclc
0000	055c7	000055c7	lclclclc	000055c7	000055c7	000055c7
TP 42ce	05c2b 🔶	42c05c37	000055c7	42c05e4b	42c06055	42c06054
5c50	c5c5c	5c5c5c5c	42c05e54	5c5c5c5c	5c5c5c5c	5c5c5c5c
1c10	clclc	lclclclc	5c5c5c5c	lclclclc	lclclclc	lclclclc

Lanes data for different chips seem starting incomplete, without RO! In all lanes but one we lose also the frame header.

in this run it looks like the first word was not a rollover

in most chips the frame header is missing and the first word is the frame counter

In chip 2 the first word is the frame header

Result: new anomalies

TP

With Smart Reset

soft reset sent at 1/2 rollover anomaly 1740266061

the first word in most chip is a rollover

but in chip 2 there is a missing rollover and the first word is a frame header

test pulse is aligned in the same frame

10000	111111		1100020		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100000	20102
chip-0	chip-1		chip-2		chip-3	chip-4	chip-5
lane-0	lane-0		lane-0		lane-0	lane-0	lane-0
70010000	70010000	1	70010000		70010000	70010000	70010000
00000000	00000000		00000000		00000000	00000000	00000000
5c5c5c5c	5c5c5c5c		lclclclc		5c5c5c5c	5c5c5c5c	5c5c5c5c
lclclclc	lclclclc		00004dcd		lclclclc	lclclclc	lclclclc
00004dcd	00004dcd	-	5c5c5c5c	Sec.	00004dcd	 00004dcd	00004dcd
5c5c5c5c	5c5c5c5c		lclclclc		5c5c5c5c	5c5c5c5c	5c5c5c5c
lclclclc	lclclclc		00004dce		lclclclc	lclclclc	lclclclc
00004dce	00004dce		5c5c5c5c		00004dce	00004dce	00004dce
5c5c5c5c	5c5c5c5c		lclclclc		5c5c5c5c	5c5c5c5c	5c5c5c5c
lclclclc	lclclclc		00004dcf		lclclclc	lclclclc	lclclclc
00004dcf	00004dcf		41a71c26		00004dcf	00004dcf	00004dcf
 41a71c3e	 41a71c49		5c5c5c5c		41a71c21	 41a71e29	 41a71e27
5c5c5c5c	5c5c5c5c		lclclclc		5c5c5c5c	5c5c5c5c	5c5c5c5c
lclclclc	lclclclc		00004dd0		lclclclc	lclclclc	lclclclc
00004dd0	00004dd0		5c5c5c5c		00004dd0	00004dd0	00004dd0
5c5c5c5c	5c5c5c5c		lclclclc		5c5c5c5c	5c5c5c5c	5c5c5c5c
lclclclc	lclclclc		00004dd1		lclclclc	lclclclc	lclclclc
00004dd1	00004dd1		5c5c5c5c		00004dd1	00004dd1	00004dd1
5c5c5c5c	5c5c5c5c		lclclclc		5c5c5c5c	5c5c5c5c	5c5c5c5c
lclclclc	lclclclc		00004dd2		lclclclc	lclclclc	lclclclc
00004dd2	00004dd2		5c5c5c5c		00004dd2	00004dd2	00004dd2

All lanes but one seem starting complete!

One lane loses the rollover.

Final check and conclusions/questions

Final check: using again SR at ½ rollover,

we verified again **through a ILA IP core set** after deserialization inside the FPGA firmware that the **first word non IDLE after a SR** is <u>always</u> a **rollover**!

Current conclusions/questions:

- 1. We still need to investigate what happens with SR sent in different positions of the coarse counter range, and specifically very "close" to normal rollover. **One of the tests done (slide 7) might indicate we have instability regions.**
- 2. Monitoring ALCOR output just after deserialization: tests indicate **no RO are lost after SR**.
- 3. However data anomalies are seen in the data even controlling when the SR is sent (slide 10, 11) at half of ½ rollover. We will move debug on FPGA and readout to understand where they are generated!

Backup

ALCOR Soft Reset and EIC orbit

Current scheme:

- Input clock: 98.52 MHz \rightarrow 394.08 MHz (ALCOR_{clk} = 4 x EIC_{clk})
- 1 RevTick ("Revolution Tick") orbit counter/bunch reset every EIC_{clk} 1260 ticks = 12.789 us
- \rightarrow 1 RevTick (Soft Reset) every 5040 ALCOR_{clk}
- SR would reach ALCOR @ 78.2 kHz

Jamming:

Jamming sequence

- program KC705
- initialise ALCOR chips
 - make sure that ECCR "Column 0 Enable" and "Column 1 Enable" bits stay zero
 - needed to modify programs for that, not big issue
- turn ON the Jamming pulser
- set KC705 in SPILL mode (mode = 0x5)
 - this will trigger a SOFT RESET at each SPILL signal
 - ALCOR chips are "jammed", frame counters do not increase
- enable columns in ECCR
 - manually set ECCR "Column 0 Enable" and "Column 1 Enable" to one
- reset KC705 SPILL mode (mode = 0x0)
 - stop sending SOFT RESET signals
 - ALCOR chips are "unjammed" all together, frame counters start increasing
- turn OFF the Jamming pulser
- ready to collect data with synchronised frames