## **Annealing strategy and requisites**

Direct current @ 100 mA and 10 V (1W) per SiPM = 150° C

Maybe **less** due to:

- 1. self heating (thermal power shared among more than one SiPM)
- 2. heating fluid

#### Constraints:

- 1. Segmentation (MasterPanel dictated):
  - a. 8 VAnn per Master panel divided by 8
  - b. down to 1/8th of PDU at the time (256/8\*1W=32W)
- 2. polarization inversion by putting negative voltage in VBias respect to GND

#### Main tests:

- 1. Does it work?
- 2. can we reach 150° C?
- 3. Are all the components in the VAnn path suitable for the task?
- 4. Annealing with heating fluid
- 5. Thermal stresses on carrier and FEBs

#### **FEB**

bypass diodes

Vf = 0.75 - 1.0 V @ 100 mA

lf = 250 mA

Ptot = 335 mW

Rthj = 375 K/W





BAS30LS-Q

https://assets.nexperia.com/documents/data-sheet/BAS30LS-Q.pdf

#### Thermal test in lab

# 4 SiPMs in a row: 8 V 420 mA





Thermally speaking minimal board design

#### Fluid-assisted annealing

(2024-2025)



Temperature readings:

Boards (NTC) Plate (Thermocouple) SiPMs (Thermo-camera)

By knowing the plate/board temperature and the power delivered by the PSU for the annealing, the temperature of the SiPM can be easily determined.

We have control on the annealing temperature without a thermo-camera



#### **Evaluate the thermal impact on a FEB shaped board**

thermal camera measurements, ntc close to ALCOR position?

#### Confirm the minimal impact of the diode on the SiPM signal

few channels with coax connection for oscilloscope measurements

# Same FEB-Carrier connection allows to test annealing on SiPMs mounted on the carrier for the first time

proper evaluation on the annealing power

### **Confirm the MasterPanel strategies**

MasterPanel prototype

### Will the ferrites work in the magnetic field?