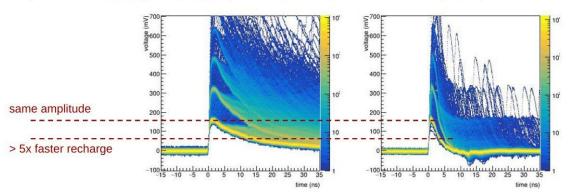
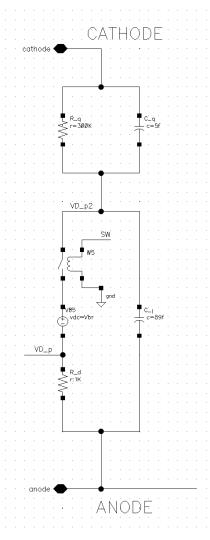
ALCOR and the Hamamatsu UVE SiPM sensors

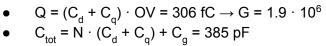

Fabio Cossio


ALCOR day - 25.02.2025

S13360-3050UVE - S14160-3075UVE

• improved NUV sensitivity, improved signal shape and recharge time

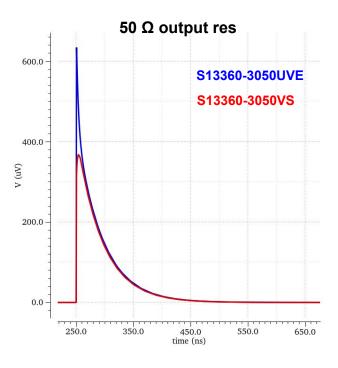
	Symbol	S13360-3050UVE	S14160-3075UVE	Unit
Number of pixels / channel	N	3584	1600	
Junction capacitance	Cd 85 21		215	fF
Quenching capacitance	Cq	17	25	fF
Parasitic capacitance	Cg	19	19	pF
Quenching resistance	nce Rq 300		270	kΩ
Diode resistance	Rd 1000 1000		Ω	
Breakdown voltage	Vbd	53	53	V



S13360-3050UVE - S14160-3075UVE

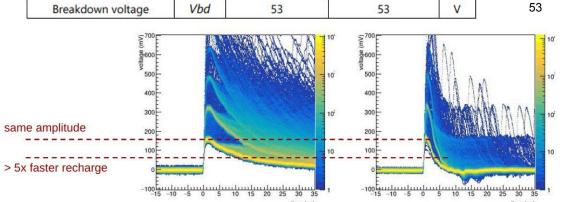
improved NUV sensitivity, improved signal shape and recharge time

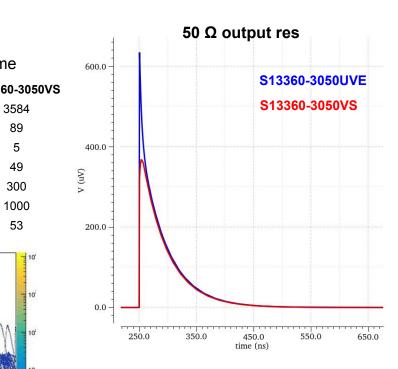
	Symbol	S13360-3050UVE	S14160-3075UVE	Unit
Number of pixels / channel	N	3584	1600	-
Junction capacitance	Cd	85	215	fF
Quenching capacitance	Cq	17	25	fF
Parasitic capacitance	Cg	19	19	pF
Quenching resistance	Rq	300	270	kΩ
Diode resistance	Rd	1000	1000	Ω
Breakdown voltage	Vbd	53	53	V


-		
133	60-	3050VS
	358	34
	89)
	5	
	49)
	30	0
	100	00
	53	3

- Same R_a, R_d

larger Gain smaller C_a , larger C_a and C_d

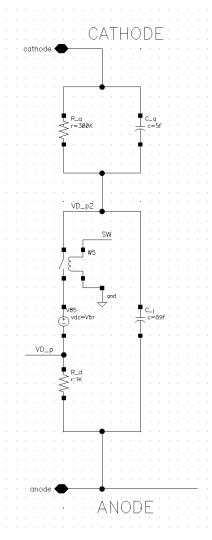

S



S13360-3050UVE - S14160-3075UVE

improved NUV sensitivity, improved signal shape and recharge time

	Symbol	S13360-3050UVE	S14160-3075UVE	Unit	S13360-305
Number of pixels / channel	N	3584	1600		3584
Junction capacitance	Cd	85	215	fF	89
Quenching capacitance	Cq	17	25	fF	5
Parasitic capacitance	Cg	19	19	pF	49
Quenching resistance	Rq	300	270	kΩ	300
Diode resistance	Rd	1000	1000	Ω	1000
Breakdown voltage	Vbd	53	53	V	53

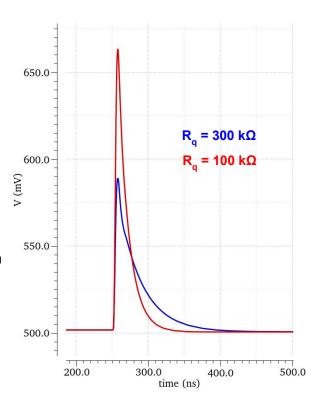

Avalanche begins \rightarrow switch is closed, C_d discharges through R_d with time constant

Avalanche quenched \rightarrow switch is opened, V_{bias} recharges C_{d} with an exponential process with two time constants

- 1. Fast supply path across C_d and the capacitive coupling through Cq, fast time constant
 - $\sigma = T_{fast} = R_i \cdot C_{tot} = 20 \ \Omega \cdot 385 \ pF = 7.7 \ ns$
 - $\circ C_{tot} = C_q + N \cdot (C_d + C_q)$
 - \circ R_I = input impedance of the FE electronics
- 2. Slow component due to the exponentially decreasing recharge current flowing through $R_{\rm q}$ (SiPM recovery time constant), dominates the tail of the response

$$\tau_{\text{slow}} = R_{\text{q}} \cdot (C_{\text{d}} + C_{\text{q}}) = 300 \text{ k}\Omega \cdot 102 \text{ fF} = 30.6 \text{ ns}$$

How is the faster recharge done? Something wrong in SiPMs models?


Avalanche begins \rightarrow switch is closed, C_d discharges through R_d with time constant

Avalanche quenched \rightarrow switch is opened, V_{bias} recharges C_{d} with an exponential process with two time constants

- 1. Fast supply path across C_d and the capacitive coupling through Cq, fast time constant
 - \circ $T_{fast} = R_1 \cdot C_{tot} = 20 \Omega \cdot 385 \text{ pF} = 7.7 \text{ ns}$
 - $\circ \qquad C_{tot} = C_{a} + N \cdot (C_{d} + C_{a})$
 - R_i = input impedance of the FE electronics
- 2. Slow component due to the exponentially decreasing recharge current flowing through R_{α} (SiPM recovery time constant), dominates the tail of the response

$$\tau_{slow} = R_{q} \cdot (C_{d} + C_{q}) = 300 \text{ k}\Omega \cdot 102 \text{ fF} = 30.6 \text{ ns}$$

How is the faster recharge done? Something wrong in SiPMs models?

