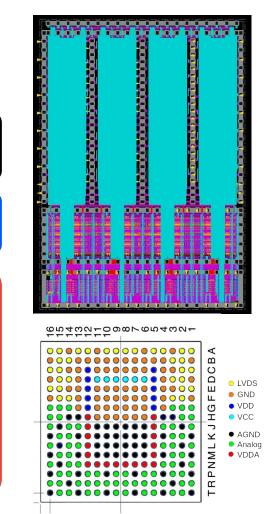
ALCOR v3 update

Fabio Cossio

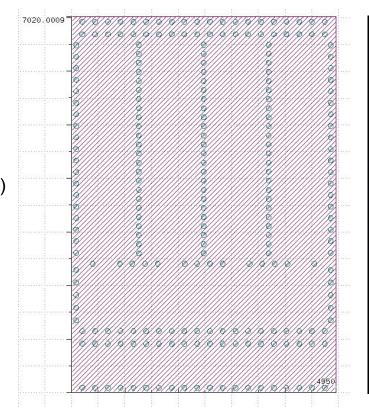
ALCOR day - 25.02.2025

ALCOR v3

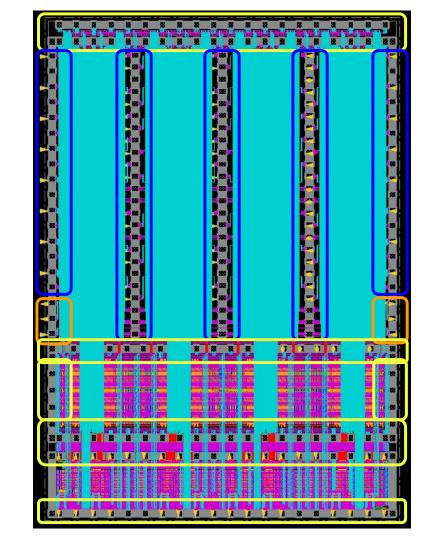

ALCOR v2: 32-channel wire bonded ASIC **ALCOR v3**: 64-channel ASIC (8x8 matrix) inside BGA package (256 balls)

Operation of ALCOR at multiple of **EIC clock frequency** (98.52 MHz): digital logic \rightarrow **394.08 MHz**

The ePIC detector will take data using a **streaming data acquisition system** with no traditional hardware trigger


Digital shutter: "inhibit" pixel digital logic to reduce data throughput

- ~10.2 ns bunch crossing, ~300 ps bunch length, select 2-3 ns \rightarrow 3x-5x data reduction before ALCOR digitization
- Asynchronous digital shutter implemented in ALCOR v3 pixel logic with programmable delay to compensate offsets between the channels


ALCOR-64

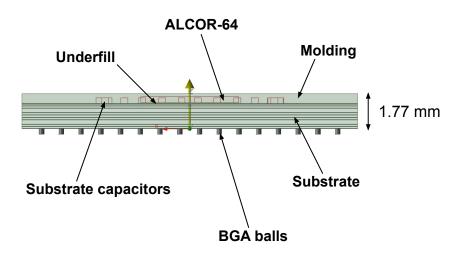
- ALCOR-64:
 7.02mm x 4.95mm
- 234 PAD
- Bump pads pitch:
 - \circ ~170 µm (Analog IN)
 - \circ ~215 μm

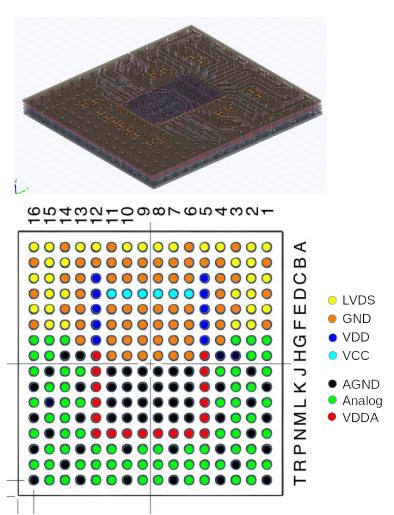
	8
555 555 555 555 555 555 555 555 555 55	

ALCOR-64

Analogue power supply

Pixel input + analogue power supply

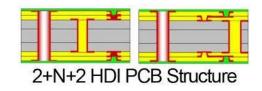

Bias Vref (2) + debug outputs (4)

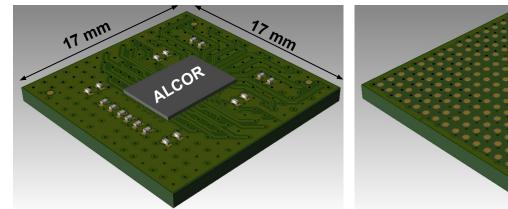

Digital core power supply

Digital IO power supply and signals

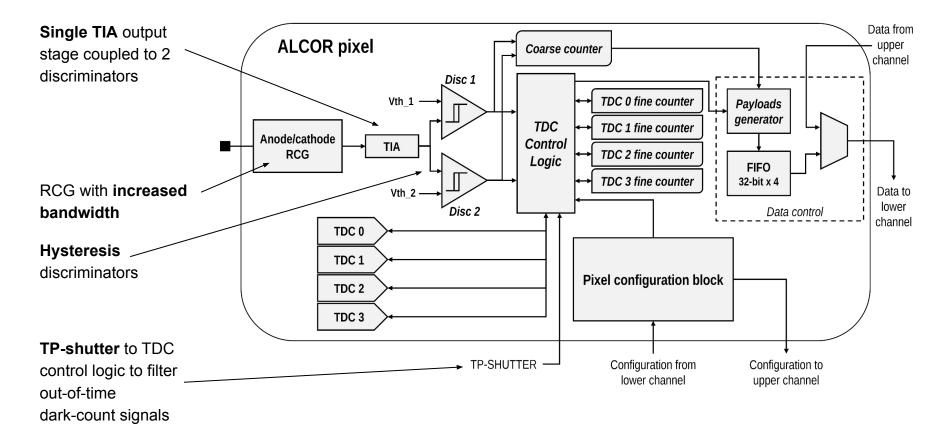
ALCOR-64 BGA package

- BGA 256 (16 x 16)
- Size: 17 mm x 17 mm
- Ball pitch: 1 mm

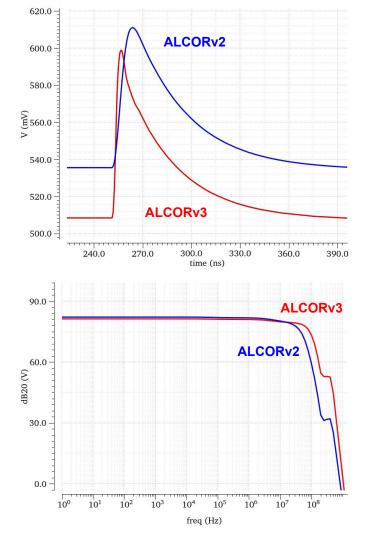


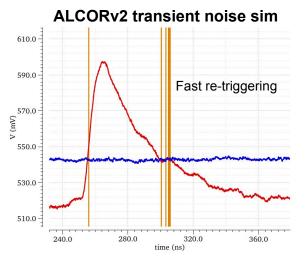

BOTTOM VIEW

ALCOR BGA substrate


- BGA 256 Ball 17x17mm 1mm-pitch
- BT-Epoxy
- 10 Layer (2+N+2)
- Tick 1.27 mm

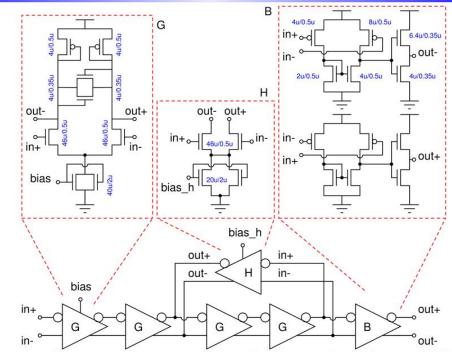
ALCORv3 - pixel architecture


ALCOR v3 - Front-End


Increased amplifier bandwidth to improve time resolution

- CS amplifier bias transistor with source degeneration to reduce its noise contribution
- Common gate DC current partially subtracted before output stage

Transient simulation results

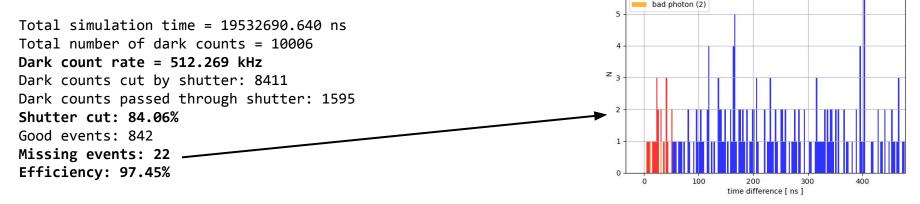

- slope: 10 MV/s \rightarrow 24 MV/s
- rise time: 12.7 ns \rightarrow 6.4 ns
- ampl: 76 mV \rightarrow 86 mV
- rmsNoise: 1.4 mV \rightarrow 2.2 mV
- jitter: 140 ps \rightarrow 92 ps

- ALCOR LE discriminator derived from design where it was coupled with CFD
- Added hysteresis to avoid re-triggering on slow tail with low thresholds
 - PCR3: enable/disable + 2-bit DAC

Fast multistage comparators

Very fast comparators are obtained by cascading low-gain cells. Full CMOS levels generated only in the last stage.

INFN


Shutter mixed-signal simulation

Shutter: periodic test-pulse (width = 2.5 ns)

Spectre netlist simulates different SiPM SPADs:

- Each **SPAD** is modeled with a current pulse generator, each with a different period
- **Real photons**: current pulse generators are synchronized with the shutter signal
- Dark-count signals: current pulse generators are not synchronized

Decode data, calibrate TDCs (from DCR asynchronous signals), extract ToA, compare with input netlist to evaluate shutter efficiency:

Previous dark-count/photon time difference when missing real photon

good (779) bad DCR (20)

Shutter mixed-signal simulation (SlewRate mode)

Shutter efficiency vs DCR (mixed-signal sim)

 Shutter width = 2.5 ns Input rate = 20 kHz Sim time = 20 ms Ongoing: digital simulations (with improved DCR and photons signals model) to verify shutter distribution for the whole ALCOR chip and provide better statistics 	Total simulation time = 19989730.664 ns Total number of dark counts = 811 Dark count rate = 40.571 kHz Dark counts cut by shutter: 650 Dark counts passed through shutter: 161 Shutter cut: 80.15% Good events: 409 Missing events: 1 Efficiency: 99.76%	Total simulation time = 19962950.756 ns Total number of dark counts = 1604 Dark count rate = 80.349 kHz Dark counts cut by shutter: 1309 Dark counts passed through shutter: 295 Shutter cut: 81.61% Good events: 413 Missing events: 3 Efficiency: 99.28%
Total simulation time = 19427451.802 ns	Total simulation time = 19996870.504 ns	Total simulation time = 19532690.640 ns
Total number of dark counts = 3082	Total number of dark counts = 6325	Total number of dark counts = 10006
Dark count rate = 158.641 kHz	Dark count rate = 316.299 kHz	Dark count rate = 512.269 kHz
Dark counts cut by shutter: 2546	Dark counts cut by shutter: 5286	Dark counts cut by shutter: 8411
Dark counts passed through shutter: 536	Dark counts passed through shutter: 1039	Dark counts passed through shutter: 1595
Shutter cut: 82.61%	Shutter cut: 83.57%	Shutter cut: 84.06%
Good events: 388	Good events: 412	Good events: 842 <mark>(was 40 kHz)</mark>
Missing events: 2	Missing events: 7	Missing events: 22
Efficiency: 99.49%	Efficiency: 98.33%	Efficiency: 97.45%

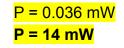
ALCOR v3 registers

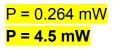
ECCR (4 \rightarrow 8, one for each column)

- **Pol** (moved from PCR, propagated along the pixel column)
- Shutter column/sector delay (4-bit)

PCR3

- Offset1 [15:13]
- OpMode [12:9] Pixel operation mode
- Offset2 [8:6] \rightarrow Disc hysteresis [8:6]
- Gain [5:4]
- Gain2 [3:2] + Pol[1] + unused[0] \rightarrow Shutter pixel delay [3:0]


Power consumption (I/Os)


LVDS tx: 8 Tx, SDO, clk_out (10)

- DVDD = $1.2 \text{ V} \rightarrow 0 \text{ uA} \text{ (static)}, 30 \text{ uA} \text{ (average)}, 0 \text{ uA} \text{ (off)}$
- DVDDIO = $2.5 \text{ V} \rightarrow 4.2 \text{ mA}$ (static), 5.5 mA (average), 620 uA (off)
 - \circ I_{out} = 3.58 mA
 - \circ I_{fb} = 260 uA
 - \circ I_{bias} = 268 uA
 - \circ I_{Rfb} = 25 uA

LVDS rx: reset, clk, tp, SDI, SS, SCLK (6)

- DVDD = $1.2 \text{ V} \rightarrow 0 \text{ uA} \text{ (static)}, 220 \text{ uA} \text{ (average)}$
- DVDDIO = $2.5 \text{ V} \rightarrow 1.7 \text{ mA}$ (static), 1.8 mA (average)
 - I_{bias} = 300 uA + 470 uA + 560 uA + 360 uA

P_{tot}(10 Tx + 6 Rx)= 10 · 14 mW + 6 · 5 mW = **170 mW**

Power consumption (analogue)

Front-End

AVDD = $1.2 \text{ V} \rightarrow 4.4 \text{ mA}$ (cg = boost = 15) •

•
$$I_{amp} = 3.2 \text{ mA} (I_{cg} = 86 \text{ uA}, I_{boost} = 2.6 \text{ mA}, I_{sub} = 110 \text{ uA}, I_{mirror} = 50 \text{ uA}, I_{out} = 190 \text{ uA})$$

• $I_{unu} = 185 \text{ uA}$

- I_{disc} = 975 uA (+200 uA on DVDD when commuting) 0
- I_{dig buffer} = 0.170 uA 0

TDC (4 for each pixel)

- AVDD = $1.2 \text{ V} \rightarrow 190 \text{ uA}$ (single TDC) + 30 uA (bias) •
- DVDD = $1.2 \text{ V} \rightarrow 5 \text{ uA}$ (average, single TDC) •

Bias EoC (4 sectors, same as ALCOR v2.1)

AVDD = $1.2 \text{ V} \rightarrow 17 \text{ mA}$ (cg = boost = 15) •

P_{tot} = 64 · (5.3 mW + 1 mW) + 21 mW = **425 mW**

ALCOR v2.1 measurements

ALCOR FE-DUAL measurements

•	cg=boost=0	I _{ana} = 280 mA	l _{dig} = 240 mA
•	cg=boost=5	I _{ana} = 324 mA	I _{dia} = 240 mA
•	cg=boost=10	I _{ana} = 373 mA	I _{dia} = 240 mA
•	cg=boost=15	I _{ana} = 411 mA	I _{dig} = 240 mA
•	cg=boost=20	l _{ana} = 440 mA	I _{dia} = 240 mA
•	cg=boost=25	l _{ana} = 461 mA	l _{dia} = 240 mA
•	cg=boost=30	$I_{ana} = 477 \text{ mA}$	I_{dig}^{dig} = 240 mA

ALCOR v2 has slightly higher I_{ana} due to:

- **Periphery:** EoC bias manages 32 channels, in ALCOR v3 same circuit manages 64 channels (17 mA vs 34 mA)
- **Pixel:** FE and discriminator in ALCOR v3 have slightly lower *nominal bias* (0.5 mA / pixel → 32 mA / ALCOR), only one TIA output stage