

FLASH TDR meeting. WP1: Physics reach

Contributions by Giulio Marino, Federico Mescia, Momchil Naydenov, Paolo Panci, Luca Visinelli, Michael Zantedeschi

INFN-LNF, March 10, 2025

1. The Axion opportunity

Cold axions as dark matter

Interactions are set by the **pseudo-scalar nature** of the axion, with Lagrangian:

$\mathcal{L} \supset g_{a\gamma} a \mathbf{E} \cdot \mathbf{B} + g_a$

Experimentally, how do they look like?

- Via $\mathbf{E} \cdot \mathbf{B}$ coupling (CP-odd) —
- Via coupling to e^- and n spins \longrightarrow Precessions

Coupling of the axion with the photon

$$a_{f}(\nabla a) \cdot \mathbf{S} + g_{\mathrm{EDM}} a \, \mathbf{S} \cdot \mathbf{E}$$

Additional electric current

Coupling of the axion with the photon

Overdensities produced in the early Universe act as "seeds" for bound axion miniclusters (Hogan, Rees 88)

For an overdensity $\,\delta\equiv 1-ar{
ho}/
ho\,$ the AMC de

We first assessed the minicluster distribution in the Milky Way Kavanagh, Edwards, LV, Weniger 2011.05377

ensity is
$$ho_{
m amc}(\delta) = 140 \, (1+\delta) \delta^3
ho_{
m eq}$$

Kolb, Tkachev astro-ph/9311037

 $\delta f = f\left(\frac{v\sigma_v}{c^2}\right) \approx 0.23 \,\mathrm{mHz}\left(\frac{10}{10}\right)$

Velocity dispersion in the AMC: $\sigma_v^2 = \frac{GM_{\rm amc}}{R_{\rm amc}}$ $\sigma_v \approx 1.4 \,\mathrm{m/s} \,\left(\frac{M_{\mathrm{amc}}}{10^{-10} \,M_{\odot}}\right)^{1/3} \,\left(\frac{\delta}{10}\right)^{2/3}$

This translates into the frequency width:

$$\frac{f}{100 \,\mathrm{MHz}} \left(\frac{M_{\mathrm{amc}}}{10^{-10} \,M_{\odot}} \right)^{1/3} \left(\frac{\delta}{10} \right)^{2/3}$$

Figure from Snowmass 2021 (with L. Visinelli) 2203.14923

Other things to do if we proceed for this!

Power in the cavity: $P(\omega) \propto g_{a\gamma}^2 \,
ho_a \, f(\omega)$

We need to account for the chance of encountering miniclusters and streams: <u>2212.00560</u>

- Some simulations of minicluster dynamics that involve the axion DM in the mass range of FLASH.
- This includes assessing the mass distribution of miniclusters for axions with $\,m_a = 1\,\mu{
 m eV}$
- The mass distribution includes tidal stripping: my work <u>2011.05377</u> + recent work <u>2402.03236</u>
 - Fourier decomposition at the frequency ω

2. High-Frequency Gravitational Waves

Inverse Gertsenshtein effect (see e.g. Camilo Garcia work)

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad h_0 \sim |h_{\mu\nu}|$

Gatti, **LV**, Zantedeschi <u>2403.18610</u>, PRD

High-frequency gravitational waves

FLASH LowT BabyIAXO ADMX EFR HAYSTAC ■ ALPHA

High-frequency gravitational waves

Vs.

LVK $f \sim (10-1000)$ Hz: Solar-mass BHs

Cavities resonate at much higher frequencies than those in LIGO/VIRGO/KAGRA

Gatti, **LV**, Zantedeschi 2403.18610

Cavity $f \sim (0.1-10) \,\mathrm{GHz}$: Primordial BHs

Open theory questions, see for more: Gatti, LV, Zantedeschi 2403.18610

- How precisely can we infer the signal geometry using a single cavity?
- Multiple cavities help distinguishing between spin-0, spin-1, or spin-2 (pseudo-)fields and provide noise reduction
- Further work needed to characterize coherent versus stochastic signals, as well as continuous versus transient signals.
- Nevertheless, any potential detection would unequivocally point to new physics of astrophysical origin.

High-frequency gravitational waves

High-frequency gravitational waves

 $h^2 \Omega_{\rm GW}$

3. Millicharged searches by the Flash cryostat

FLASH Spherical deflector setup

- alternating electric field with amplitude 10^5 V/m and frequency 100 kHz, falling charge deflection and accumulation.
- presents a diagram of the experimental setup:

Momchil Naydenov

• Consider a wind of millicharged DM particles of mass $m_{\chi} \sim 1$ eV, charge $q \sim 10^{-9} e$, traveling at a mean speed $v_{\chi} = 100$ km/s with Maxwell distribution of the velocity vector. The DM wind hits a grounded sphere of radius 1m with an internal central source of quadratically with distance. Using a Monte Carlo simulation we obtain the steady state

• The parameters of the simulation are taken from the paper Direct Deflection of Particle Dark Matter by A. Berlin et. al. (Phys. Rev. Lett. 124, 011801, 2020). Their paper

 $\mathcal{O}\mathcal{Q}$ 2/4

MC Simulation

Momchil Naydenov

FLASH Deflector simulation

The cited paper presents an analytical formula for the deflected charge density of DM particles - equation (S25). We test this equation with the MC simulation and the ratio between the analytical and the simulation result is plotted on the graph here:

JQ (P

3/4

1

Comments

- It can be noted that the analytic result fails the most along the diagonals.
- These results are strongly dependent on the DM charge, the DM mass and the particle number density, all constrained by cosmological considerations. For various parameters we might have better/worse match between the models.
- The agreement between the formula provided and the MC simulation is best for short distances.
- Specific parameters used for calculations in the Berlin et. al. paper are not provided, so we cannot have quantitative conclusion on the analyitical model applicability.

4/4

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □