FLASH 2nd meeting

WP3: RF Cavity

UPCT, LNF, IFIC (CSIC-UV)

FLASH 2nd Meeting

March 10th, 2025

- TM₀₁₀:
 - Calculation of optimal β for maximizing the scanning rate. Study of electrical and magnetic coupling (comparison). Output: coupling geometry as input to mechanical eng.
 - Methodology for avoiding mode crossing (blind regions). Combination of coarse and fine tuning.
 - Effect of leakage from moving parts on Q_0 . Input from mechanical eng.
- Analysis of other modes for HFGWs

RESULTS OF LARGE FLASH CAVITY (3 rods, with gap)

Quasi - TM Modes	<i>Q</i> ₀ (x10 ⁵)	Q _{0rad} (x10 ¹¹)	f_r (MHz)
TM ₀₁₀	5.78	2.65	116.95
TM ₀₁₁	4.92	1.07	171.11
TM ₁₁₀	7.41	0.00896	183.62
TM ₁₁₁	5.69	0.011	222.07
TM ₂₁₀	8.33	0.0169	247.38
TM ₀₂₀	9.1	1.08	258.38
TM ₂₁₁	6.15	0.46	275.84
TM ₀₁₂	6.24	0.15	277.13
TM ₀₂₁	6.65	0.8	287.00
TM ₃₁₀	9.41	0.011	293.79

Quasi - TE Modes	Q ₀ (x10 ⁵)	<i>Q</i> _{0<i>rad</i>} (x10 ⁹)	<i>f</i> _r (MHz)
TE ₁₁₁	5.31	2.85	149.94
TE ₂₁₁	4.73	1.39	184.97
TE ₀₁₁	10.9	0.881	214.75
TE ₃₁₁	4.92	0.563	238.66
TE ₁₁₂	5.34	0.00681	263.23

FLASH: 3 RODS vs 4 RODS

3 RODS: Rcav = 1050 (TBD) mm Lcav = 1200 (TBD)mm Rrod = 115 mm

3 RODS: Freq. TM010 = 117 MHz Tuning Range = 90 MHz Tuning % = 43.5%

4 RODS: Rcav = 1050 (TBD)mm Lcav = 1200 (TBD) mm Rrod = 100 mm

4 RODS: Freq. TM010 = 117 MHz Tuning Range = 110 MHz Tuning % = 48.5%

Es. Copper Rod: Weight single Rod R100: 15 kg (60 kg – 4 rods) Weight single Rod R115: 18 kg (54 kg – 3 rods)

2e+03 (mm)

e+03 (mm)

HFGW EM Mode \rightarrow TE211 mode – 3 rods vs 4 rods

HFGW EM Mode \rightarrow TM210 mode – 3 rods vs 4 rods

HFGW EM Mode \rightarrow TM211 mode – 3 rods vs 4 rods

TM010 – 4 Rods \rightarrow EM Axion parmeters

117 MHz \rightarrow 227 MHZ

Coupling - Loop Antenna

Coupling - Loop Antenna

Conclusions & Next tasks

- TM₀₁₀:
 - Three or four rods from now?
 - Calculation of optimal β for maximizing the scanning rate. Study of electrical and magnetic coupling (comparison).
 - Methodology for avoiding mode crossing (blind regions). Combination of coarse and fine tuning.
 - Effect of leakage from moving parts on Q_0 . Input from mechanical eng.
- GWs:
 - Question: simultaneous or independent search for axions & GWs? Type of GW signal?
 - Tuning rods needed for GWs?
 - Identification of GWs operating modes:
 - Not clear at this moment.
 - Complete incidence analysis (θ , φ plots).
 - Selection of modes for avoiding blind spots or allow modulation analysis
 - Design of ports for desired modes.