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Bioacoustics is the study of animal sounds 

Deep learning 

huge datasets to analyze

Methods mainly used so far:

- signal processing

- data mining

- AI  machine learning 

10 yrs of application in audio 
task but recent in bioacustic 

classification main use in 
computational bioacustic 

flexible can be applied to several tasks:
- Classification
- Regression
- Signal enhancement
- Synthesis of new data 

Introduction



Species/taxa whose vocalisations have been analysed through DL include:

🐦⬛Birds—the most commonly studied group 

🐋Cetaceans and other marine mammals 

🦇Bats

🐘Terrestrial mammals (excluding bats): including primates

🐁Mouse and rat ultrasonic vocalisations (USVs) 

🐸Anurans

🪲 Insects
Kershenbaum, Arik, et al. "Automatic detection for bioacoustic research: a 
practical guide from and for biologists and computer scientists."

Bergler, Christian, et al. "ANIMAL-SPOT enables animal-independent signal detection and classification using deep learning."

Taxonomic coverage



Convolutional Neural Network (CNN): 
• dominate the field, often pre-trained on generic datasets (e.g., AudioSet)
• specialized in processing data structured in grids (such as images or audio spectrograms)
• uses convolutional filters to automatically extract relevant features 

Neural Network Architectures

CNNs work well for Bioacoustics:

✓Detects Frequency Patterns: finds species-specific features (e.g., bird chirps, bat echolocation).

✓Handles Background Noise: learns to ignore irrelevant sound patterns.

✓Works with Large Datasets: learns from thousands of spectrograms efficiently.

✓Pretrained Models Help: CNNs pretrained on large audio datasets can be fine-tuned for bioacoustics.



Neural Network Architectures

Why CNNs for audio?

Patterns in sound (like bird calls or whale songs) appear in frequency-time representations (spectrograms).

CNNs are great at detecting localized patterns, such as harmonics or frequency shifts in spectrograms.

Unlike traditional machine learning, CNNs automatically learn features without needing manual engineering.


Step What Happens? Purpose

1. Convert to Spectrogram Audio is converted to a time-frequency 
representation

Makes sound interpretable for CNNs

2. Convolutional Layers Small filters “kernels” (e.g., 3×3 or 5×5 grids) detect 
patterns in spectrograms -> each filter produces a 
feature map,

Identify pitch, rhythms, harmonics

3. Pooling Layers Reduce dimensions while keeping important features

Max pooling: keeps most important values (e.g., 
strongest frequency peaks

Average pooling: Averages nearby values

Improve efficiency, prevent overfitting

4. Fully Connected Layer Extracted features are mapped to output classes.

Pooled feature maps are flattened into a 1D vector 
which is fed into a fully connected neural network 
that makes the final classification decision.

Make predictions (species, call types)

5. Output Layer Outputs probabilities for different classes:

Softmax for multi-class problems

Sigmoid (for binary classification)

Classify the sound (i.e. Sparrow 85% Robin 10 Crow 
5%


Kernels filters



Convolutional-Recurrent Neural Networks (CRNN):

• analyze the full sequence and not just the patterns.

• good for tasks like detecting repeated sounds, tracking changes in pitch over time, and recognizing call 

sequences (e.g., bird songs, whale calls).

• combine CNNs with LSTM/GRU units to model temporal sequences

Convolutional recurrent neural network (CRNN) architecture. The input features are matrix of consecutive frames of log-Mel filter banks (64 filter banks by 96 time frames). 
The convolutions and max-poling operations are sequentially applied to extract beneficial features. Then these are fed into the gated recurrent unit (GRU) to capture the 
temporal information. The network outputs are sigmoid scores, these indicate several active acoustic events in audio signal. 


Neural Network Architectures

Step Process Purpose Example in Bioacoustics

1. Convert Audio Convert raw waveform → spectrogram Makes data CNN-compatible by converting it into a 2D image-
like representation

Transforming a birdsong waveform into a spectrogram to visualize its 
pitch changes

2. CNN Feature Extraction CNN applies convolutional filters to scan local frequency-time 
patterns in the spectrogram

Detects harmonics, syllables, textures, and patterns Recognizing harmonic structures in whale calls or sharp pulses in 
bat echolocation

3. Pooling Layers Reduces dimensions while keeping important spectral features Improves efficiency, reduces overfitting Keeping only the most relevant frequency bands in frog calls

4. Flattening & Time 
Distribution

Converts CNN feature maps into sequences (so they can be 
processed by RNN layers)

Converts spectrogram features into a format that tracks time 
evolution

Preparing features for analyzing the temporal order of bird song 
syllables

5. RNN Temporal Processing RNN (LSTM or GRU) processes the sequence of extracted features Captures long-term dependencies and sequential patterns in 
the sound

Identifying whether an elephant is making an alarm or social call 
based on previous sounds

6. Fully Connected Layer Dense layer maps extracted features into a high-level representation Helps the model learn species, call types, or behavior 
categories

Classifying a whale species based on its call sequences

7. Output Layer Final Softmax (multi-class) or Sigmoid (binary) layer gives the final 
classification decision

Assigns a probability to each possible sound category Output: 🐦  "This is a Robin (95%)" or 🦇  "This is a Bat Echolocation 
Call (99%)"

CRNNs Are Useful in Bioacoustics:

✓ Better at capturing temporal patterns → Ideal for sounds with structure (songs, sequences, alarms).

✓ Handles noise more effectively → CNN filters out irrelevant background, RNN focuses on important sequences.

✓Works on varying sound durations → Unlike CNNs, which process fixed-length spectrograms, RNNs adapt to variable durations.

✓ Improves species & call type classification → Recognizes species based on full vocal sequences, not just isolated sounds.



CRNN (Convolutional-Recurrent Neural Networks):  
combine CNNs with LSTM/GRU units to model temporal sequences

LSTM (Long Short-Term Memory):

ideal for long sequences (complex bioacustic audio)


memory cells that allow information to be maintained and updated over time

GRU (Gated Recurrent Units):

short-to-medium sequences


• lighter and faster than LSTMs

• speech recognition

• automatic translation

gate

input: decides what new information to add to memory.

output: determines what to send to the output

forget: determines what information to delete from memory

gate
update: regulates the flow of data in time steps

reset: how much previous data is transferred and how much is lost

Neural Network Architectures



Feature CNN CRNN

Strength Detects local patterns (harmonics, syllables) Captures long-term sound patterns (syllable 
sequences, call rhythms)

Best for Species classification (single call) Call sequence analysis (songs, communication 
patterns)

Weakness Ignores long-term dependencies Slower and more computationally intensive

Example Task "What species made this sound?" "Is this an alarm call or a mating call?"

If sound patterns depend on sequences (e.g., a series of chirps or pulses), CRNNs outperform standard CNNs

CNN vs CRNN

Neural Network Architectures

Transformer networks:

• recently adopted

• processes sequences all at once 

• tokenization: divide into small time-frequency chunks for efficient processing

• self-attention mechanism: focus on important parts of the input




Classification, Detection, Clustering

Task What It Does Common Models Example in Bioacoustics

Classification Assigns a label to a sound CNN, CRNN, Transformers "Is this a bird, bat, or whale?"

Detection Finds when a sound occurs in a recording Binary Classification (Occupancy Detection), 
SED, Object Detection "When did the bat call happen?"

Clustering Groups similar sounds without labels K-Means, Autoencoders, Siamese Networks "Are these frog calls from the same species?"

 sound event detection



Acoustic features: spectrograms, waveforms, and more

Audio data can be represented for deep learning models but the choice of acoustic features greatly affects the performance of models in 
bioacoustics.

The most commonly used representations include:

1. Spectrograms → The most widely used feature, converting sound into an image-like format.

2. Waveforms → Raw audio input, directly used in some deep learning models.

3. Other Representations → Alternatives like wavelets and learnable filterbanks.

Feature Type Description ✅ Pros ❌  Cons Best Used For

Spectrogram 2D time-frequency representation •Works well with CNNs

•Easy to interpret

•Can lose phase information

•Needs manual transformation

General bioacoustics (birds, whales, 
insects)

Mel Spectrogram Spectrogram with Mel-scale 
frequencies

•Mimics human hearing 

•Used in speech/music

May not be optimal for animals Speech-like animal sounds

Log-Frequency 
Spectrogram

More resolution in low frequencies Good for low-frequency sounds Less common in DL models Whale calls, elephant sounds

Raw Waveform Direct 1D sound signal •No transformation needed

•End-to-end learning

•Requires large datasets 

•Computationally expensive

Advanced DL models like WaveNet, 
wav2vec 2.0

Wavelets Captures multi-resolution features Good for dynamic sounds Less studied in DL Frog calls, complex bird songs

Learnable Filterbanks DL learns the best frequency filters Optimized automatically Needs large datasets Cutting-edge DL approaches (LEAF, 
SincNet)



Acoustic features: spectrograms

Linear 

Mel 

Log-frequency

Mel Spectrogram is a spectrogram that uses the Mel 
scale, which compresses high frequencies while giving 
more resolution to low frequencies.
• matches human hearing perception
• common in deep learning models

A Log-Frequency Spectrogram is similar to a standard 
spectrogram, but the frequency axis is logarithmic instead of 
linear.

• higher resolution for low frequencies
• compresses high frequencies (like a piano keyboard, where 

lower notes are spaced further apart).
• it preserves fine frequency details

Linear spectrogram is a time-frequency representation of sound
shows true frequency values




Acoustic features: waveforms and more

Raw waveform is simply the 1D time-domain representation of sound—
how air pressure changes over time

Wavelet transform is a technique that decomposes audio into different time-frequency scales:


• better for non-stationary signals (e.g., bird songs, dolphin clicks, bat echolocation)
• multi-resolution analysis (long and short sounds)

Learnable Filterbanks in deep learning models 

learn the best frequency filters automatically:


• Self-supervised learning models (like wav2vec 2.0, 
SincNet, and LEAF)


• More efficient for deep learning (removes the need for 
predefined spectrograms)

Learnable Audio Frontend

F(ω)=∫f(t)e−jωtdt

W(a,b)=∫f(t)ψa,b∗ (t)dt

Fuorier analyzes the signal in terms of frequency, loses time because of infinite sinusoids as a basis.

Wavelet analyzes the signal in both time and frequency with a variable scale because of localized waves with variable width.



Signal Processing Using Deep Learning

Task Problem Deep Learning Solution Example

Noise Reduction Background noise affects analysis Denoising Autoencoders, Wave-U-Net Removing wind noise from bird calls

Sound Separation Overlapping sounds make classification hard Deep Clustering, U-Net Separating multiple bird species in a forest

Feature Extraction Hand-crafted features are limited CNNs, Wav2Vec 2.0 Learning unique bat echolocation features

Compression Large datasets are hard to store Autoencoders, VAEs Reducing storage size of whale song datasets

• Traditional signal processing in bioacoustics relied on hand-crafted features (e.g., spectrogram analysis, filtering etc.)


• Deep learning improves signal processing by automating noise reduction, separation, and feature extraction


• Large-scale analysis of wildlife sounds for  species monitoring, conservation, and ecoacoustic studies.


Oppliger, Jens, et al. "Weak signal extraction enabled by deep neural network denoising of diffraction data." Nature Machine Intelligence 6.2 (2024): 180-186.



Small Data: Data Augmentation, Pre-Training, Embeddings

Bioacoustic studies usually have small datasets because labelling animal sounds is time-consuming and expensive

but…Deep learning models need a lot of data, so they can struggle with small datasets.


To improve performance with limited data, researchers use three key techniques:

Method What It Does? How It Helps with Small Data? Example in Bioacoustics

Data 
Augmentation

Creates new training samples 
from existing data

Expands dataset without collecting 
new recordings

Adding background noise to whale songs to 
make models more robust

Pre-Training Uses a model trained on a 
large dataset

Reduces the need for lots of labeled 
data

Fine-tuning a speech-trained model for dolphin 
calls

Embeddings Uses pre-trained feature 
representations

Allows small datasets to be classified 
with better accuracy

Using VGGish embeddings to classify bird 
species



Generalisation and domain shift

A model trained on one dataset might not work well on new data from different locations, species, or recording conditions.

Improving Generalization:

the model should work well across different conditions, species, and environments

Generalisation refers to a model’s ability to correctly classify new, unseen data that wasn’t in the training set:

• A well-generalised model can detect bird calls in different forests, at different times of the year, or with different microphones.


1. Data Augmentation: artificially simulate different environments in training data

2. Transfer Learning (Pre-Training on Large Datasets): use a pre-trained model that has already learned general sound patterns

3. Domain Adaptation (Fine-Tuning with New Data): adapt a model trained in one domain to work in another

4. Active Learning (Ask Humans to Correct Mistakes): have experts correct wrong classifications and retrain the model

How to Reduce Domain Shift and Improve Generalisation?

Domain shift is when a model performs well in one setting but poorly in another:

it happens when the conditions of the training data don’t match the conditions of the test data.




What happens when a deep learning model encounters a sound it has never heard before?

Develop open-set recognition techniques so models can detect novel (unknown) sounds

Scenario Closed-Set Model Open-Set Model

A model trained on 10 bird 
species hears a new species

Misclassifies it as one 
of the 10 known 
species

Flags it as 
"unknown"

Whale sound classifier 
detects a new call type

Assigns it to the 
closest known 
category

Recognizes it as a 
new type of 
vocalization

Novelty Detection is the ability of a model to detect new, unseen sounds without prior training on them.

instead of misclassifying an unknown sound, the model flags it as novel so researchers can analyze it

How do we handle Open-Set and Novelty Detection?

1. Outlier Detection with Confidence Scores: assign a confidence score (fin whale 90% accepted; fin whale 40% unknown)

2. Anomaly Detection Models:

- Autoencoders → train on known calls; if an unknown sound doesn’t fit, it’s flagged as novel.

- One-Class SVMs → learn a normal pattern, then detect anything that doesn’t match

3. Using Embeddings to Compare Similarity: comparison to known sounds

- Siamese Networks & Triplet Loss → If a sound is too different from known species, mark it as novel

- Pre-trained Embeddings → Use embeddings to measure sound similarity

Open-set and novelty



Context and auxiliary information 


Additional information can improve deep learning models for bioacoustics!

Incorporate auxiliary (extra) data—such as time, location, and environmental conditions—alongside the acoustic features.

This helps models make better predictions by understanding the context of a sound event.


Multi-Modal Learning: combining Audio + Metadata (e.g., time, location, weather) reduces errors and misclassifications




Perception and on-device DL

Deep learning models perceive and process sounds differently from animals and humans

Challenge Why It’s a Problem? How to Solve It?

Deep learning models "hear" 
differently from animals

Models detect frequencies outside an 
animal’s hearing range

Use species-specific frequency filters

Noise affects machine detection 
differently than animal perception

Animals can focus on meaningful 
signals

Use bio-inspired auditory features 
(PCEN, wavelets)

No ecological context in deep learning 
models

Animals process sound based on 
behavior and habitat

Combine contextual + perceptual data

https://www.earthspecies.org/what-we-do/publications

https://www.earthspecies.org/what-we-do/publications


Perception and on-device DL

Feature Benefits ✅ Challenges ❌

Real-time processing Immediate detection of 
species or threats

Requires fast, optimized 
models

No need for internet Works in remote 
environments

Cannot update models 
easily

Energy-efficient Reduces power 
consumption

Must balance accuracy 
with efficiency

Cost-effective Avoids expensive cloud 
processing

Limited storage and 
memory

Instead of sending audio recordings to a cloud server for processing, the entire deep learning model runs locally on a 
small, embedded device (Raspberry Pi, AudioMoth, and NVIDIA Jetson Nano)


Brinkløv, Signe MM, et al. "Open‐source workflow approaches to passive acoustic monitoring of bats." Methods in Ecology and Evolution 14.7 (2023): 1747-1763.



Workflows and other practicalities

Stage What Happens? Example in Bioacoustics

1. Data Collection Record audio in the field using microphones, 
hydrophones, or remote sensors

Collecting whale songs using underwater 
hydrophones

2. Data Preprocessing Clean, filter, and prepare the audio for training Removing background noise from rainforest 
recordings

3. Feature Extraction Convert raw waveforms into spectrograms or 
embeddings

Creating Mel spectrograms of bird calls

4. Model Training Train a deep learning model (CNN, CRNN, 
Transformer) on labeled data

Training a CNN to classify frog species based on 
calls

5. Model Evaluation Test performance using accuracy, F1-score, 
confusion matrix

Checking if the model correctly classifies known 
bird songs

6. Deployment Run the trained model on real-world audio (on-
device or cloud)

Deploying a real-time bat detector on a 
Raspberry Pi

7. Model Updates & Maintenance Fine-tune the model as new data becomes 
available

Updating a whale call classifier with new 
recordings

A typical bioacoustic deep learning pipeline consists of the following stages:




Roadmap Focus Key Challenges Solutions & Actions Expected Benefits
1.  Expand and Share Large-
Scale Bioacoustic Datasets

➡ Many datasets are small, private, or 
poorly labeled 


➡ Limited diversity in training data leads to 
poor generalization

✓ Create open-access bioacoustic 
databases (e.g., Xeno-Canto, Macaulay 
Library) 

✓ Use crowdsourcing & citizen science to 
collect more labeled data 

✓ Train with self-supervised learning (SSL) 
to learn from unlabeled recordings

✴ More data improves AI accuracy 


✴ Enables better species identification 
Reduces need for large labeled datasets

2. Improve Generalization & 
Domain Adaptation

➡ Models trained in one location fail in new 
environments


➡ Microphone types, background noise, 
and geography cause domain shift

✓ Train on diverse datasets from multiple 
locations 

✓ Use domain adaptation (fine-tuning, 
active learning) 

✓ Apply data augmentation (adding noise, 
time shifting, pitch scaling)

✴ Models work across different 
environments Reduces errors in new 
habitats 


✴ Improves real-world applicability

3.  Develop Open-Set 
Recognition & Novelty Detection

➡ Most models assume all species are 
known 


➡ New, unseen vocalizations get 
misclassified

✓ Implement confidence-based thresholds 
to flag new sounds  Train models using 
few-shot learning 

✓ Use clustering & anomaly detection to 
group unknown sounds

✴ Helps discover new species & call types 
Reduces misclassification errors 


✴ Improves wildlife monitoring

4. Integrate Contextual and 
Perceptual Information

➡ Models don’t consider environmental 
context (e.g., season, time of day)


➡ AI does not "hear" like animals

✓ Combine acoustic data with contextual 
metadata (e.g., time, weather, location) 

✓ Train models to mimic animal auditory 
perception 

✓ Use bio-inspired auditory features (e.g., 
PCEN, wavelets)

✴ AI makes more biologically accurate 
predictions


✴ Fewer false detections due to seasonal 
or behavioral factors


✴ Models align with real-world animal 
hearing

5.  Enable On-Device and Real-
Time Processing

➡ Most models require cloud computing & 
high power 


➡ Remote locations lack internet & 
electricity

✓ Deploy models on low-power edge 
devices (e.g., Raspberry Pi, AudioMoth, 
Jetson Nano) 

✓ Use model compression (quantization, 
pruning) 

✓ Implement event-based processing to 
save battery life

✴ AI works without internet


✴ Enables real-time wildlife monitoring  
Energy-efficient for long-term 
conservation

Future perspective and what to improve



1. Software for Bioacoustic Data Management & Annotation

‣PAMGuard: used for data management and marine mammal passive acoustic 

monitoring.

‣Audacity: free, open-source tool for audio exploration and basic editing.

‣Raven Pro: software for manual annotation of audio recordings.


2. Software for Automated Species Detection

‣Kaleidoscope Pro (Wildlife Acoustics): commercial tool for                                           

species classification and call detection.

‣BirdNET: deep learning-based system for bird sound classification.

‣Ketos: package for underwater acoustic classification.

‣Koogu: Python-based package for general acoustic analysis.

‣aviaNZ: designed for the classification of New Zealand birds.

‣ANIMAL-SPOT: deep learning tool for species-independent sound detection.

‣gibbonfindR: specialized tool for gibbon vocalization detection.

‣soundClass: machine learning tool for general biodiversity monitoring.

‣OpenSoundscape (OPSO): free and open source Python utility library                            

analyzing bioacoustic data


3. Software Using Alternative (Non-Deep Learning) Methods

‣ARBIMON: template matching for species detection.

‣monitoR: R package for energy-based sound detection.


Existing Software for Automated Species Detection"



DL application on DAS

1. Fully Connected Artificial Neural Networks (FC-ANNs)
2. Convolutional Neural Networks (CNNs)
3. Recurrent Neural Networks (RNNs) (CNN+LSTM combination)

Training dataset: labeled seismic data from traditional broadband seismometers (STEAD) 
Test data: real DAS earthquake measurements.

Fin whale calls

DAS

waveform

spectrogram 



Cool project in bioacoustics DL

Project CETI Earth Species Project (ESP)

NatureLM-audio is compiling and training on a large dataset of millions of audio-text pairs.      
Majority of this data comes from bioacoustic archives such as Xeno-canto, iNaturalist, the Watkins 
Marine Mammal Sound Database, and the Animal Sound Archive. Also general audio, human speech, 
and music data are included aiming to transfer learned abilities from human audio processing to 
animal sounds. NatureLM-audio is trained on this comprehensive dataset by connecting a self-
supervised pretrained audio encoder to a leading language model (LLaMA 3.1-8B).

https://www.youtube.com/watch?v=hph9OeKjg3w
https://www.youtube.com/watch?v=TGWFr-6JCDk
https://xeno-canto.org/
https://www.inaturalist.org/
https://go.whoi.edu/marine-mammal-sounds
https://go.whoi.edu/marine-mammal-sounds
https://www.museumfuernaturkunde.berlin/en/science/animal-sound-archive
https://arxiv.org/abs/2407.21783



