

VONGOLA Project

(Visual and nOise-eNhanced AI analysis for marine biodiversity MonitorinG, Observation and LeArning)

General goals:

- To development of advanced technologies to monitor marine life in the Ionian Sea
- To enhance real-time identification of marine fauna via environmental sensing
 - acoustic monitoring
 - video recording
 - chemical-physical CTD (Conductivity, Temperature and Depth) probes

Acoustic Monitoring Station

Distributed Acoustic Sensing (DAS)

Distributed Acoustic Sensing (DAS)

Goals with DAS:

- Detection of Fin whales
- Assess the acoustic pollution levels:
 - Marine soundscape
 - Vessel traffic

DAS characteristics:

- Continuous real-time recording and streaming
- High resolution in space (~ 5 m) and time (0.5 ms)
- Huge volume of data (~ 2.9 TB per day) => deleting after 2 days

AIS (automatic identification system) positioning data

Spectrogram of Fin whale calls recorded with DAS

Time – Distance plots

Frequency – Distance plots

Frequency - Distance plots

AIS (automatic identification system) positioning data

ML-based algorithms

- 1) Classify different events based on signal properties:
- **Distance frequency plots**: frequency content + signal distribution along the cable
- **f k plots**: speed of the source + direction of propagation + frequency content

INPUT: signal distribution in space, time and frequency + apparent speed and relative orientation from the cable

OUTPUT: type of signal (Fin whale, ship, earthquake, unknown)

- 2) Use f- k analysis to infer properties of the source:
- How far is the source from the cable based on the angle?
- Type of source: ships and Fin whales

INPUT: apparent speed and relative orientation from the cable

OUTPUT: distance between source and receiver