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Exploring the Universe with gravitational waves

» first direct detection of GWs by the LIGO-Virgo Collaboration in
2015 after 50+ yr of developments




First detection of a BH-BH coalescence, Sept. 14, 2015
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Another milestone was the first NS-NS binary, GW170817
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Masses in the Stellar Graveyard
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After 3 observing runs, LVK has detected 90 BBHs, 2 BNS and 2 NS-BH

During O3, detections made every few days
O4 run ongoing




What have we learned ? Some highlights:

Astrophysics

e GW170817 solved the long-standing problem of the origin of (at
least some) short GRB

* NS-NS mergers are a site for the formation of some of the
heaviest elements through r-process nucleosynthesis

 BH-BH binaries exist and merge within the age of the Universe

e discovered a new population of stellar-mass BHs, much heavier
than those detected through X-ray binaries



Cosmology/fundamental physics

* speed of GWs equal to speed of light (1:101°)
* first measurement of the Hubble constant with GWs

* the tail of the waveform of GW150914 consistent with the
prediction from General Relativity for the quasi-normal modes
of the final BH

e deviations from GR (graviton mass, post-Newtonian
coefficients, modified dispersion relations, etc.) could be tested
and bounded



Still, 2G detectors lack the sensitivity to make really stringent tests
of fundamental physics/cosmology

2G detectors have opened a new window
3G detectors (ET, CE) will look deeply into this window

“"Qualunque sia la prospettiva da cui si osservi, fare ricerca in fisica fondamentale
significa superare 1 limiti. Spingere, e spingersi, oltre 1 confini.”
(dalla pagina Indico delle giornate di studio INFN)

useful references for ET

* MM et al “Science Case for the Einstein Telescope”, JCAP, 1912.02622
(written for the ESFRI RoadMap)

* lacovelli, Mancarella, Foffa, MM, ApJ, 2207.02771

* M. Branchesi, MM et al, JCAP, 2303.15923 (the “Science-CoBA” paper)

* Abacetal, ET Collaboration, 2503.12263 (the “BlueBook”)
880 pages, 200 figures, 4 yrs of work, 490 authors
coordinated by M. Branchesi, A. Ghosh and MM



Einstein Telescope: the concept and
the current situation

* single-site triangle, or 2L in different sites
e arms: 3 — 10(15) km
e 200-300 m underground

e two instruments, LF (cryogenic) and HF

ongoing studies on the best geometry and configurations
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EINSTEIN
TELESCOPE

The ET Collaboration

* Currently the ET Collaboration has > 1800 members, organized in 93 Research
Units, over 264 institutions and 31 countries
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ETC organization: Specific Boards

SPB 0SB ISB EIB

Site Preparation Board Observation Science Board Instrument Science Board E-Infrastructure Board




40 km and 20 km L-shaped surface observatories

10x sensitivity of today’s observatories (Advanced o
LIGO+) -
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Detection distance of BBHSs
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GW170817 at LVC-O2 and at ET

Signal including rotation

we can trigger e.m. observations before
the emission of photons

Keyword: low frequency sensitivity!




The combination of
e distances and masses explored
e number of detections

e detections with very high SNR

will provide a wealth of data that have the potential of
triggering revolutions in astrophysics, cosmology and
fundamental physics

see the “BlueBook” for a >800 pages description of the science
case of ET



A summary of the Science of ET
Astrophysics
* Black hole properties

— origin (stellar vs. primordial)
— evolution, demography
* Neutron star properties

— demography, equation of state

* Multi-messenger astronomy

— joint GW/EM observations (GRB, kilonova,...)
— multiband GW detection (LISA)

* Detection of new astrophysical sources
— core collapse supernovae
— 1solated neutron stars

— stochastic background of astrophysical origin



Fundamental physics and cosmology

* testing the nature of gravity
— perturbative regime
inspiral phase of BBH, post-Newtonian expansion
— strong field regime
physics near BH horizon
exotic compact objects

. QCD
interior structure of neutron stars probe:

— QCD at ultra-high temperatures and densities

— exotic states of matter



* Dark matter/new particles
— primordial BHs

— axions, dark matter accreting on compact objects

* Dark energy and modifications of gravity on
cosmological scales
— DE equation of state
— modified GW propagation



* Stochastic backgrounds of cosmological origin and
connections with high-energy physics

— 1inflation
— phase transitions

— cosmic strings

and we should not forget that ET will be a "discovery
machine’: expect the unexpected!

In the following, we elaborate just on some
‘selected highlights’



1. The nature of Gravity

BHs are one of the most extraordinary predictions of GR

(e.g. 10M4 concentrated in 30 km)

how can we be sure that the compact objects observed by
LIGO/Virgo are the BHs predicted by GR?

— can we quantify’ the existence of horizons?

— can we test the existence of Exotic Compact Objects?

no shortage of proposals in the literature:
boson stars (self-gravitating fundamental fields)
firewalls, fuzzballs... (quantum effects near the horizon motivated by the

Hawking information loss problem):



the elasticity of space-time in the regime of strong gravity!

GR predicts frequency and damping time as a function of mass and spin
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BBH post-merger at E'T

BBH post-merger
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* accurate BH spectroscopy already from single events
103 events/yr with detectable ringdown

* 20-50 events/yr with detectable higher multipoles or overtones



2. The origin of BHs: astrophysical vs primordial

ET will uncover the full population of coalescing stellar BBH since
the end of the cosmological dark ages
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BHs can also be generated by the collapse of large over-densities
in the early Universe (PBHs) — window on inflationary scales

PBHs might also contribute to dark matter



Disentangle astrophysical from primordial BH

the PBH merger rate increases with redshift, up to z =0(107)

Any BBH merger at z>30
will be of primordial origin

n(z) (Gpe~’yr™)

ET can reach z~ 50-100 !!

subsolar mass BH must be primordial
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4. Cosmology and dark energy

IR 26.8%

cosmology determines the relation
between (luminosity) distance and redshift

DE A 08.3%

dz
/ VO (14 2)3 + ppr(2)/po

1+z

dr(z)

the key: the GW signal from a coalescing binary allows us to
measure the distance to the source

(this 1s difficult with electromagnetic probes)

+ low z: Hubble law, dr ~ Hy 'z

* moderate z: access s, ppg(2)



low z: measuring H,

flat ACDM
g
Observational tensions, o
in particular early- vs g
late-Universe probes of Hy | iz, —

68 70 72 74
Hy [kms~! Mpc ]

O(50-100) standard sirens at 2G needed to arbitrate the discrepancy

already solved by the time of 3G detectors? (possible, but not sure, no
counterpart in O3, no BNS candidate currently in O4)

depending on the network of electromagnetic facilities at the time of ET,
ET can detect several tens BNS with counterpart per year



* At higher z, accessible only to 3G detectors or LISA, we access
the redshift evolution of the dark energy density

* A potentially even more interesting observable:

» ‘M ! Belgacem, Dirian, Foffa, MM 1712.08108 , 1805.08731
mOdlﬁed G propagatlon Belgacem, Dirian, Finke, Foffa, MM ,1907.02047, 2001.07619

Belgacem et al, LISA CosWG, 1907.01487

if gravity is modified at cosmologogical distances, GWs propagates differently
and coalescing binaries measure a “GW luminosity distance”, different from the

standard (electromagnetic) luminosity distance !




5. Dark matter, new fundamental fields

Several DM candidates can be studied (only?) by ET

e primordial BHs

— BBH at z~30-100,
— masses down to (0.1-1) Mg

— correlation with Large Scale Structures

* DM particles captured in NS/BH
— DM core in NS, drag in binary systems



Ultralight particles

particles with m ~ 10-2°-10-1° eV have Compton wavelength of order of the
Schwartzschild radius of BHs with masses billions Mg to a few M,

10-22-10-19 ¢V : lower range — viable DM candidates
upper range — QCD axions

ultralight axions from string theory possibly covering the whole range

because of a super-radiance instability, they extract energy from rotating BHs
and form a long-lived Bose condensate rotating with the BH

o <l figure: Brito, Cardoso, Pani 2014



6. Stochastic GW backgrounds

GWs can carry uncorrupted information from the very earliest
moments after the big bang and corresponding high-energy physics

* photons decouple from primordial plasma when
z=~=1090, T=0.26¢eV
CMB gives a snapshot of the Universe at this epoch

* neutrinos decouple at T = MeV

* GWs are already decoupled below the Planck scale, 10'° GeV

ET improves the sensitivity to stochastic backgrounds by 2-3
orders of magnitude compared to LIGO/Virgo



vacuum fluctuations from
slow-roll inflation too small,
but other inflation-related
mechanisms can produce
detectable signals

* cosmic strings

* It order phase transitions

at T ~107-10'1°GeV

* anisotropies, multipole expansion

hQew

40
T

GW Energy Density vs PLS
30 20

1
\
\ \
\ ET / ,
\ ; ./
\
' /
LISA /
“
— Qow
Gw axion
106 0.01 100
f [Hz]

10! 10?

10°




Take-away messages

ET has an exciting and broad science program,
ranging from astrophysics to cosmology and

fundamental physical

Thank you!
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The Science Case of ET is very broad

a “teaser”: a glimpse from the table of content of the BlueBook chapters
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Figure 4.2: The physical process ongoing in the merger of a binary system of neutron stars
(or a neutron star and a black hole), their multi-messenger observational signals and the sci-
entific insight enabled from them (updated from an original concept by [2173]). Gravitational
wave observations provide robust measurement of the component masses, and constraints on
their sizes and spins. Many possible electromagnetic signals are also possible, including the
detection of associated GRBs, cocoon emission, and kilonova signatures.
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Figure 6.9: Left panel: Orientation-averaged spectra of the GW signal for different EOSs
and the Adv LIGO (red dashed) and ET (black dashed) sensitivity curves. The inset shows
the GW amplitude of the + polarization at a distance of 20 Mpec for one of the EOSs. Figure
from ref. [2932]. Right panel: Peak frequency of the postmerger GW emission as a function
of tidal deformability A for a 1.35Mg — 1.35Mg NS-NS merger. Black symbols are for purely
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Figure 6.18: Examples of constraints on the nuclear EOS obtained by joint multimessenger
analysis combining astrophysical observations of pulsars, NICER measurements, GW170817
and GW190425, kilonova AT2017gfo and GRB170817A modeling. Left: Posteriors for the
pressure as a function of number density with (purple) and without (blue) NICER and XMM
observations of PSR J0740+6620. Right: Posteriors in the M-R diagram of the GW-only
(blue), joint (red), and NR-informed joint analysis (green). Figures adapted from [3132] (left)
and [3138] (right).
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Figure 8.4: Selection of binary neutron star waveforms from NR simulations showcas-
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black hole; the middle panel shows the formation of a hypermassive neutron star (HMNS),
and the bottom panel shows the formation of a stable neutron star. The simulations are
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9 Tools for assessing the scientific potentials of detector configurations
9.1 Basic formalism

9.1.1 Detection and parameter estimation of resolved signals
9.1.2 Fisher information matrix formalism
9.2 Software tools for CBC sources
9.2.1 Sky location-polarisation-inclination averaged SNR
9.2.2 Fisher Matrix pipelines
9.2.3 Improvements of Fisher baseline models
9.2.4 Inference at the population level
9.3 Metrics for CBCs
9.3.1 Pattern functions and Earth rotation
9.3.2 Horizons and Signal to Noise Ratios
9.3.3 Distance reconstruction and merger and pre-merger sky localization
9.3.4 Inference of intrinsic parameters, and golden binaries
9.3.5 Detection of population features
9.4 Tools for the ringdown phase of binary mergers
9.5 Stochastic searches
9.5.1 Characterization of stochastic backgrounds
9.5.2 Power-Law Sensitivity
9.5.3 Subtraction of the astrophysical background
9.6 Tools for the null stream
9.7 Conclusions
9.8 Executive summary
‘ GWBench GWFast GWFish TiDoFM GW Julia
link | GWBench CosmoStatGW /gwfast ~ GWFish TiDoFM GW Julia
domain | Frequency Frequency Frequency Time Frequency
language | Python Python Python Python Julia
waveforms | LALSimulation self+LALSimulation LALSimulation+num. Pycbc self
derivatives | an.+fd. an.4+AD or +fd. an.+fd. num. AD
inversion | mpmath Cho.,LU,SVD-+mpmath ~ SVD Cho.
reference | [4633] [2275] [256] [4634, 4635]  [4636]

Table 9.1: Summary of main characteristics of the five Fisher matrix codes. Abbreviations
used are: an. for analitical, fd. for finite differences method, num. for numerical, AD for
automatic differentiation, Cho. for Cholesky. See text for other pipeline-specific features.
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Figure 10.2: Posterior PDFs for total mass and mass ratio, for the GW150914-like signal
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Figure 10.4: Representation of the posteriors obtained with the approach from [4799] (red)
and the posteriors obtained with traditional approaches (blue) for a system with a chirp
mass of 5 Mg injected in an LVK network. A good agreement is obtained between the two
posteriors, which required an adapted training procedure due to the relatively low mass of the
system. To obtain this agreement, the priors during the training process have been adapted
to have an effectively uniform coverage of the mass parameter space.
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Modified GW propagation

nGR:  pt + 2HK, + k*ha =0
~ 1
hA(nak) — m)@l(ﬁak)
X4+ (K2 —d"/a) xa =0

inside the horizon o /a « k?,s0 X'4 + k? xa =20
1. GWs propagate at the speed of light

2. haocl/a For coalescing binaries this gives h oc 1/dy(2)



In several modified gravity models:
N+ 2H[L — 5(n)|hy + k2ha =0

1

. a/
ha(n, k) = —=xa(n,k — =H[1—-9d(n
10 = s Al k) & = o)
a4+ (k2 —a"/a)xa a'/a < k?
1. cqw =C ok with GW 170817  (otherwise the model is ruled out)

2. iLA X 1/&

All dynamical theories of DE will display this effect!

(Belgacem et al., LISA CosmoWG, JCAP 2019)



coalescing binaries measure a = "GW luminosity distance" different
from the standard (electromagnetic) luminosity distance !

in terms of 0(z) :

1+ 2/

45" (2) = dg™ (=) exp {_ / " _d 5(Z,)}

a general parametrization of modified GW propagation
Belgacem, Dirian, Foffa, MM
W e > ’ >
d:" (2) 1 - = PRD 2018, 1805.08731

— 5 +
dg™(z) 0 (14 2)n

This parametrization 1s very natural, and fits the result of (almost)
all modified gravity models Belgacem et al (LISA CosmoWG), 2019



» for scalar perturbations, deviations from GR are bounded at the level (5-10)%

e one would expect similar deviations in the tensor sector. Instead, in a viable
model (non-local gravity) the deviations at the redshifts explored by ET can
reach 80% !
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Belgacem, Dirian, Finke, Foffa, MM , 2020

— 3G detectors could be the best experiments for
studying dark energy



“Dark sirens”: cosmology with the BNS mass

function at ET

GW detectors measure the combination mget = (1 + 2)m
and do not measure directly z but d, = here cosmology enters
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Echoes from Exotic Compact Object
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even possible to have signals from the Planck scale. Eg:

enew physics — gPla M = 60M@ — Techo == 50 ms

* quite different from accelerator physics, where the Planck scale 1s
unreachable

* detecting echoes might require SNR=0O(100) in the ringdown phase,
achievable only with 3G detectors (ET, CE)
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Xl Einstein Telescope Symposium

(The birth of the ET Collaboration)

The XII symposium of the Einstein Telescope (ET) took place in Budapest, at the Hungarian Academy of
Sciences, on the 7th - 8th of June. The ET scientific community met in Budapest for a crucial step in the
long Einstein Telescope journey: the formal establishment of the ET Collaboration.

More than 400 scientists, out of more than 1200 members of the Collaboration, participated in the
meeting in person or remotely. The ET members discussed the status of the experiment, the technical
challenges, the scientific case, and the scientific and technical progresses made by each of the ET
boards. The ET Project Directorate presented the perspective of the funding agencies. Finally, the
approved INFRA-DEV Horizon EU project, for supporting the preparation phase of the experiment, and
the INFRA-TECH Horizon EU proposal, recently submitted to Brussels for supporting technological R&D
activities, were introduced to the whole Collaboration.

The 12th ET symposium is a milestone of the Einstein Telescope project. The ET project is on the ESFRI
roadmap since July 2021. A collection of European research institutions, universities and research
teams is on the way to establishing the Einstein Telescope Collaboration. That is the primary goal of the




