Gravitational Waves: the Science of Einstein Telescope

Michele Maggiore

FACULTÉ DES SCIENCES Département de physique théorique Giornate di Studio Piano Triennale INFN 2026-2028 Perugia, 7-8 luglio , 2025

Exploring the Universe with gravitational waves

 first direct detection of GWs by the LIGO-Virgo Collaboration in 2015 after 50+ yr of developments

VIRGO detector in Cascina a great INFN success

First detection of a BH-BH coalescence, Sept. 14, 2015

parameter estimation from matched filtering:

primary BH mass	$36^{+5}_{-4} M_{\odot}$
secondary BH mass	$29^{+4}_{-4}M_{\odot}$
final BH mass	$62^{+4}_{-4}M_{\odot}$
final BH spin $\hat{a} \equiv Jc/(GM^2)$	$0.67^{+0.05}_{-0.07}$
luminosity distance	$410^{+160}_{-180} \mathrm{Mpc}$
source redshift	$0.09\substack{+0.03 \\ -0.04}$

3 solar masses radiated in GWs in a few ms !!

 $v/c \sim 0.4$ at merger !

Nobel Prize 2017

Another milestone was the first NS-NS binary, GW170817

Observed in coincidence with a GRB

detection and follow-up of the counterpart in all wavelengths of the EM spectrum

⇒ multi-messenger astronomy

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

After 3 observing runs, LVK has detected 90 BBHs, 2 BNS and 2 NS-BH During O3, detections made every few days O4 run ongoing

What have we learned ? Some highlights:

Astrophysics

- GW170817 solved the long-standing problem of the origin of (at least some) short GRB
- NS-NS mergers are a site for the formation of some of the heaviest elements through r-process nucleosynthesis
- BH-BH binaries exist and merge within the age of the Universe
- discovered a new population of stellar-mass BHs, much heavier than those detected through X-ray binaries

Cosmology/fundamental physics

- speed of GWs equal to speed of light $(1:10^{15})$
- first measurement of the Hubble constant with GWs
- the tail of the waveform of GW150914 consistent with the prediction from General Relativity for the quasi-normal modes of the final BH
- deviations from GR (graviton mass, post-Newtonian coefficients, modified dispersion relations, etc.) could be tested and bounded

Still, 2G detectors lack the sensitivity to make really stringent tests of fundamental physics/cosmology

2G detectors have opened a new window 3G detectors (ET, CE) will look deeply into this window

``Qualunque sia la prospettiva da cui si osservi, fare ricerca in fisica fondamentale significa superare i limiti. Spingere, e spingersi, oltre i confini."

(dalla pagina Indico delle giornate di studio INFN)

useful references for ET

• MM et al "Science Case for the Einstein Telescope", JCAP, 1912.02622

(written for the ESFRI RoadMap)

- Iacovelli, Mancarella, Foffa, MM, ApJ, 2207.02771
- M. Branchesi, MM et al, JCAP, 2303.15923
- Abac et al, ET Collaboration, 2503.12263
 880 pages, 200 figures, 4 yrs of work, 490 authors coordinated by M. Branchesi, A. Ghosh and MM

(the "Science-CoBA" paper)

(the "BlueBook")

Einstein Telescope: the concept and the current situation

- single-site triangle, or 2L in different sites
- arms: $3 \rightarrow 10(15)$ km
- 200-300 m underground
- two instruments, LF (cryogenic) and HF

ongoing studies on the best geometry and configurations

Infrastrutture di ricerca in Europa: ESFRI

ESFRI	ABOUT	ESFRI ROADMAP EVENTS	Login ESFRI MOS Contact NEWS WORLD OF RIS LIBRARY	Search O in
Strategy Report on Research Infrastructures	Part 1 STRATEGY REPORT	Part 2 LANDSCAPE ANALYSIS	Part 3 Ann PROJECTS & LANDMARKS PE	ex COPLE
Part 3 PROJECTS & LANDMARKS				DOWNLOAD PART 3
Browse the catalogue	RESE	ARCH INFRAS	TRUCTURES MAP	
View the Table				
Explore the map				
	 	Marie .		

Nel 2021 ESFRI ha approvato la proposta a guida del governo italiano di inserire Einstein Telescope nella roadmap delle più importanti infrastrutture di ricerca da realizzarsi nei prossimi 10 anni. Altre 4 nazioni (NL, BE, ES, PL) hanno cofirmato la proposta.

e di Fisica Nuclear

The ET Collaboration

• Currently the ET Collaboration has > 1800 members, organized in 93 Research Units, over 264 institutions and 31 countries

ETC organization: Specific Boards

40 km and 20 km L-shaped surface observatories 10x sensitivity of today's observatories (Advanced LIGO+) Global network together with Einstein Telescope 1 th . 1 .

Artist: Eddie Anava (Cal State Fullerton)

NSF

Detection distance of BBHs

SNR distribution and examples of parameter reconstruction (BBH) Iacovelli et al. 2022

GW170817 at LVC-O2 and at ET

we can trigger e.m. observations before the emission of photons

Keyword: low frequency sensitivity!

The combination of

- distances and masses explored
- number of detections
- detections with very high SNR

will provide a wealth of data that have the potential of triggering revolutions in astrophysics, cosmology and fundamental physics

see the "BlueBook" for a >800 pages description of the science case of ET

A summary of the Science of ET

Astrophysics

- Black hole properties
 - origin (stellar vs. primordial)
 - evolution, demography
- Neutron star properties
 - demography, equation of state
- Multi-messenger astronomy
 - joint GW/EM observations (GRB, kilonova,...)
 - multiband GW detection (LISA)
- Detection of new astrophysical sources
 - core collapse supernovae
 - isolated neutron stars
 - stochastic background of astrophysical origin

Fundamental physics and cosmology

- testing the nature of gravity
 - perturbative regime
 - inspiral phase of BBH, post-Newtonian expansion
 - strong field regime

physics near BH horizon

exotic compact objects

• QCD

interior structure of neutron stars probe:

- QCD at ultra-high temperatures and densities
- exotic states of matter

- Dark matter/new particles
 - primordial BHs
 - axions, dark matter accreting on compact objects

- Dark energy and modifications of gravity on cosmological scales
 - DE equation of state
 - modified GW propagation

- Stochastic backgrounds of cosmological origin and connections with high-energy physics
 - inflation
 - phase transitions
 - cosmic strings

- ...

and we should not forget that ET will be a `discovery machine': expect the unexpected!

In the following, we elaborate just on some `selected highlights'

1. The nature of Gravity

BHs are one of the most extraordinary predictions of GR (e.g. 10M_☉ concentrated in 30 km) how can we be sure that the compact objects observed by LIGO/Virgo are the BHs predicted by GR?

- can we `quantify' the existence of horizons?
- can we test the existence of Exotic Compact Objects?

no shortage of proposals in the literature: boson stars (self-gravitating fundamental fields) firewalls, fuzzballs... (quantum effects near the horizon motivated by the Hawking information loss problem): BH quasi-normal modes (QNM) the elasticity of space-time in the regime of strong gravity! GR predicts frequency and damping time as a function of mass and spin classic chapter of GR: Regge-Wheeler, Chandrasekhar, Teukolsky...

already observed in GW150914 (LVC)

consistent with GR, but we cannot say much more

- accurate BH spectroscopy already from single events
- 10³ events/yr with detectable ringdown
- 20-50 events/yr with detectable higher multipoles or overtones

2. The origin of BHs: astrophysical vs primordial

ET will uncover the full population of coalescing stellar BBH since the end of the cosmological dark ages BBH $m_1 = m_2$; $y_{12} = y_{22} = 0$

BHs can also be generated by the collapse of large over-densities in the early Universe (PBHs) → window on inflationary scales PBHs might also contribute to dark matter Disentangle astrophysical from primordial BH

• the PBH merger rate increases with redshift, up to $z = O(10^3)$

Any BBH merger at z>30 will be of primordial origin

ET can reach z~ 50-100 !!

• subsolar mass BH must be primordial

3. QCD with neutron stars

the key: the GW signal from a coalescing binary allows us to measure the distance to the source (this is difficult with electromagnetic probes)

(inis is difficult with clockondglictic probe

- low z: Hubble law, $d_L \simeq H_0^{-1} z$
- moderate z: access $\Omega_M, \rho_{\rm DE}(z)$

low z: measuring H₀

Observational tensions, in particular early- vs late-Universe probes of H_0

O(50-100) standard sirens at 2G needed to arbitrate the discrepancy

already solved by the time of 3G detectors? (possible, but not sure, no counterpart in O3, no BNS candidate currently in O4)

depending on the network of electromagnetic facilities at the time of ET, ET can detect several tens BNS with counterpart per year

- At higher z, accessible only to 3G detectors or LISA, we access the redshift evolution of the dark energy density
 - A potentially even more interesting observable: modified GW propagation
 Belgacem, Dirian, Foffa, MM Belgacem, Dirian, Finke, Foffa

Belgacem, Dirian, Foffa, MM 1712.08108, 1805.08731 Belgacem, Dirian, Finke, Foffa, MM, 1907.02047, 2001.07619 Belgacem et al, LISA CosWG, 1907.01487

if gravity is modified at cosmologogical distances, GWs propagates differently and coalescing binaries measure a "GW luminosity distance", different from the standard (electromagnetic) luminosity distance !

$$\frac{d_L^{\rm gw}(z)}{d_L^{\rm em}(z)} = \Xi_0 + \frac{1 - \Xi_0}{(1 + z)^n}$$

5. Dark matter, new fundamental fields

Several DM candidates can be studied (only?) by ET

- primordial BHs
 - BBH at z~30-100,
 - masses down to (0.1-1) M_{\odot}
 - correlation with Large Scale Structures

- DM particles captured in NS/BH
 - DM core in NS, drag in binary systems

Ultralight particles

particles with m ~ 10^{-20} - 10^{-10} eV have Compton wavelength of order of the Schwartzschild radius of BHs with masses billions M_{\odot} to a few M_{\odot}

 $10^{-22}-10^{-10} \text{ eV}$: lower range \rightarrow viable DM candidates upper range \rightarrow QCD axions ultralight axions from string theory possibly covering the whole range

because of a super-radiance instability, they extract energy from rotating BHs and form a long-lived Bose condensate rotating with the BH

figure: Brito, Cardoso, Pani 2014

6. Stochastic GW backgrounds

GWs can carry uncorrupted information from the very earliest moments after the big bang and corresponding high-energy physics

• photons decouple from primordial plasma when $z \simeq 1090$, $T \simeq 0.26 \text{ eV}$

CMB gives a snapshot of the Universe at this epoch

- neutrinos decouple at $T \simeq MeV$
- GWs are already decoupled below the Planck scale, 10¹⁹ GeV

ET improves the sensitivity to stochastic backgrounds by 2-3 orders of magnitude compared to LIGO/Virgo

vacuum fluctuations from slow-roll inflation too small, but other inflation-related mechanisms can produce detectable signals

- cosmic strings
- 1^{st} order phase transitions at T ~10⁷-10¹⁰ GeV
- anisotropies, multipole expansion

Take-away messages

ET has an exciting and broad science program, ranging from astrophysics to cosmology and fundamental physical

Thank you!
bkup slides

The Science Case of ET is very broad

a "teaser": a glimpse from the table of content of the BlueBook chapters

1	Fun	Fundamental Physics with ET			
	1.1	Introduction	4		
	1.2	Testing the fundamental principles of the gravitational interaction	5		
		1.2.1 Tests of the inspiral dynamics	5		
		1.2.2 Extra polarizations	7		
		1.2.3 Anomalous gravitational-wave propagation, tests of Lorentz violation			
		and minimal length	8		
		1.2.4 Gravitational-wave memory	10		
		1.2.5 Fundamental aspects of the two-body problem	11		
	1.3	Testing the nature of compact objects & horizon-scale physics	15		
		1.3.1 Inspiral tests	16		
		1.3.2 Ringdown and post-merger tests	18		
		1.3.3 Neutron stars and fundamental physics	24		
	1.4	Searches for dark-matter candidates & new fields	26		
		1.4.1 Direct detection of ultralight dark matter with interferometers	26		
		1.4.2 Environmental effects	27		
	1.5	Synergies with other Divisions	33		
	1.6	Executive summary 35			

2 Cosmology with ET

2.1	Stoch	astic gravitational-wave backgrounds	37
	2.1.1	Definition and characterisation	38
	2.1.2	Anisotropies of the GWB	41
	2.1.3	Polarization of the GWB and parity violation	46
	2.1.4	Source separability	48
	2.1.5	Impact of correlated noise on GWB	50
	2.1.6	Reconstruction of GWBs in presence of correlated noise	51
2.2	Probi	ng the early Universe	54
	2.2.1	GWs from inflation	54
	2.2.2	GWs from phase transitions	61
	2.2.3	GWs from cosmic strings	65
	2.2.4	GWs from domain walls	70
	2.2.5	Primordial black holes	73
	2.2.6	GWs as probes of the early Universe expansion history	78
2.3	Probi	ng the late Universe with Einstein Telescope	85
	2.3.1	Cosmography with coalescing binaries	85
	2.3.2	Modified GW propagation	96
	2.3.3	GW lensing	104
2.4	Probi	ng the large scale structure of the Universe	108
	2.4.1	Cross-correlation GWxLSS	108
	2.4.2	Cross-correlation of AGWB with CMB	115
	2.4.3	Probing LSS with GWs alone	116

3	Pop	ulation studies and astrophysical background	120
	3.1	Introduction: formation channels of binary compact objects	120
		3.1.1 Isolated channel: compact binary mergers from pairs and multiples in	
		galactic fields	120
		3.1.2 Dynamical channel: stellar systems as factories of merging compact	
		objects	126
		3.1.3 Fingerprints of different formation channels	131
	3.2	Merger rate density of CBC across cosmic time	132
		3.2.1 The key ingredients of compact binary coalescence rates	133
		3.2.2 Part (i): cosmic star formation history as a function of metallicity and	
		environment	136
		3.2.3 Part (ii): intrinsic properties of the CBC populations set by binary	
		compact object formation efficiencies and delay times	140
		3.2.4 Future outlook	142
	3.3	Mass function of BHs and its evolution with redshift	144
		3.3.1 The scientific potential of the mass function	144
		3.3.2 Reconstructing the mass distribution	146
		3.3.3 BH mass spectrum and outstanding questions	148
	3.4	Constraining the mass function of neutron stars	152
		3.4.1 Observations of radio pulsars and accreting NSs	152
		3.4.2 Overall shape of empirical NS mass distribution	153
		3.4.3 Theoretical expectations	154
		3.4.4 Anticipated impact from ET data	155
	3.5	Spins of stellar-origin BHs and NSs	156
		3.5.1 BH spins – theoretical expectations	156
		3.5.2 BH spins – empirical evidence from X-ray binaries and GWs	158
		3.5.3 NS spin periods – theoretical expectations and limitations	159
		3.5.4 Spins of double NS systems: evidence from Galactic sources and ex-	
		pectations for mergers	160
		3.5.5 BH/NS spin-axis direction and core collapse	161
		3.5.6 BH/NS spins in light of ET	161
	3.6	Primordial versus stellar-origin BHs	161
		3.6.1 Constraints on high-redshift merger rate evolution	164
		3.6.2 Subsolar PBH binary searches	166
		3.6.3 Spins of primordial black holes	168
		3.6.4 Tests based on mass and spin distributions	168
	3.7	Revealing Population III stars with the first BHs	170
		3.7.1 The nature of Pop III stars	170
		3.7.2 The evolution of Pop III stars and binary black holes	174
		3.7.3 Gravitational waves from Pop III remnants	176
	3.8	Intermediate-mass BHs (IMBHs): formation channels and merger rate	177
		3.8.1 Formation Scenarios	178
		3.8.2 IMBH binaries	182
		3.8.3 Can ET decipher the origin of IMBHs?	182
	3.9	The host galaxies of binary compact object mergers	186

3.9 ′.	I'he host	galaxies of	binary	compact	object	mergers			
--------	-----------	-------------	--------	---------	--------	---------	--	--	--

	3.9.1	Multi-messenger detections and sky localization of the host galaxies	186
	3.9.2	Formation channels and their link with galaxy properties	187
3.10	Popula	ations backgrounds	188
	3.10.1	Study of BBH formation channels	190
	3.10.2	Study of Population III stars	191
	3.10.3	Primordial black hole contribution	193
	3.10.4	Astrophysical Uncertainties in background description	194
	3.10.5	Sources other than CBCs	195
	3.10.6	Anisotropies and cross-correlation with electromagnetic observables	195
	3.10.7	Spectral shape reconstruction	198
3.11	Execut	tive summary	199

 ${\bf Figure \ 3.1:} \ Evolutionary \ pathways \ to \ form \ a \ GW \ source \ for \ isolated \ binary \ evolution. \ Left:$ the common-envelope channel and the stable mass transfer channel. Stage 1) Zero-Age-Main-Sequence (ZAMS) 2) First phase of mass transfer 3) Formation of BH or NS 4) Second phase of mass transfer 5) Formation of double compact object 6) GW merger. Right: chemically homogeneous evolution. Stage 1) ZAMS 2) Formation of binary BH 3) GW merger.

4	Mu	llti-messenger observations in the ET era				
	4.1	State of the art				
		4.1.1	Multi-messenger Astronomy	202		
		4.1.2	GW170817	203		
		4.1.3	GRBs and KN as counterparts of compact binary mergers	210		
		4.1.4	Alternative signatures of mergers	211		
	4.2	Mode	ling the EM counterparts of ET detected CB mergers	212		
		4.2.1	Dynamics and emission components of compact binary mergers	213		
		4.2.2	Multi-messenger BNS & BHNS population models	216		
		4.2.3	EM properties of the GW-detectable sub-population	220		
		4.2.4	GW sky localization of multi-messenger events	225		
		4.2.5	ET in a network with Cosmic Explorer	229		
	4.3	Obser	vational facilities/strategies	230		
		4.3.1	The ET change of paradigm	230		
		4.3.2	Kilonovae	230		
		4.3.3	Off-axis afterglows	232		
		4.3.4	On-axis GRBs	233		
		4.3.5	ET pre-merger detection and ET and early warnings alerts	233		
		4.3.6	ET as an alert receiver	234		
	4.4	Neutr	inos from Compact Binary Coalescence	235		
		4.4.1	Common environments for neutrinos and GWs	235		
		4.4.2	Current and future neutrino telescopes	237		
		4.4.3	Multi-messenger neutrino and GW frameworks	238		
	4.5	Multi	-messenger infrastructure challenges	239		
	4.6	Execu	Executive Summary 240			

Figure 4.2: The physical process ongoing in the merger of a binary system of neutron stars (or a neutron star and a black hole), their multi-messenger observational signals and the scientific insight enabled from them (updated from an original concept by [2173]). Gravitational wave observations provide robust measurement of the component masses, and constraints on their sizes and spins. Many possible electromagnetic signals are also possible, including the detection of associated GRBs, cocoon emission, and kilonova signatures.

5	Syn	Synergies of ET with other gravitational-wave observatories					
	5.1	Introduction					
	5.2	Comp	act object binaries	246			
		5.2.1	Synergy with ground-based detectors	247			
		5.2.2	Synergies with space-borne detectors	250			
		5.2.3	Stochastic background from compact binaries	251			
	5.3	Nuclea	ar physics	252			
		5.3.1	Population approaches for nuclear physics	253			
		5.3.2	Measurability of the post-merger phase signal	254			
		5.3.3	Interring exotic nuclear phenomena with binary neutron star mergers	254			
	5.4	Funda	mental physics	256			
		5.4.1	Tests of the inspiral phase	257			
		5.4.2	Tests of the merger and ringdown	258			
		5.4.3	Tests of frequency-dependent speed of GWs	259			
		5.4.4	Tests of the GW polarization	259			
	5.5	Hubbl	e tension and cosmography	260			
		5.5.1	Bright sirens cosmology	261			
		5.5.2	Dark sirens cosmology	262			
		5.5.3	Multi-band sources	263			
	5.6		rigin of supermassive black holes	264			
		5.6.1	Seed black holes	265			
		5.6.2	Synergies between ET and LISA	267			
		5.6.3	IMBH populations across frequency bandwidths and detectors	269			
	5.7		Universe cosmology	271			
		5.7.1	Synergies between ET and LISA	272			
		5.7.2	Synergies between ET and PTAs	275			
	5.8 Executive summary			277			

Subatomic Physics with ET 6

- 6.1 Introduction
- 6.2Current status of microphysics properties
 - 6.2.1Equation of state modeling
 - Current constraints on EOS and matter composition 6.2.2
 - 6.2.3Reaction rates
- Prospects for constraints on microphysics with ET data 6.3
 - 6.3.1Constraints on low-temperature microphysics
 - Constraints on microphysics at finite temperature 6.3.2
 - 6.3.3Nucleosynthesis and multi-messenger signals
- Uncertainties and degeneracies in our measurements 6.4
 - Impact of waveform-model uncertainties 6.4.1
 - Uncertainties in simulations and microphysics input 6.4.2
 - Degeneracies with modified gravity and Beyond-Standard-Model physics338 6.4.3
- Executive summary 6.5

280

283

283

290

293

298

299

314

322

332

344

Figure 6.14: Characteristic GW spectral amplitudes, h_{char} , for the two models S11.2 (light blue solid lines) and S50 (red solid lines) shown in figure 6.13, assuming a source distance of 10 kpc (left panel) and 50 kpc (right panel). The noise amplitudes of aLIGO (green dashed lines) and ET (grev dashed lines) are plotted as references. Figure reproduced based on data from ref. [3019].

Figure 6.9: Left panel: Orientation-averaged spectra of the GW signal for different EOSs and the Adv LIGO (red dashed) and ET (black dashed) sensitivity curves. The inset shows the GW amplitude of the + polarization at a distance of 20 Mpc for one of the EOSs. Figure from ref. [2932]. Right panel: Peak frequency of the postmerger GW emission as a function of tidal deformability Λ for a $1.35M_{\odot} - 1.35M_{\odot}$ NS-NS merger. Black symbols are for purely

EoS constraints from multi-messenger observations

Figure 6.18: Examples of constraints on the nuclear EOS obtained by joint multimessenger analysis combining astrophysical observations of pulsars, NICER measurements, GW170817 and GW190425, kilonova AT2017gfo and GRB170817A modeling. Left: Posteriors for the pressure as a function of number density with (purple) and without (blue) NICER and XMM observations of PSR J0740+6620. Right: Posteriors in the M-R diagram of the GW-only (blue), joint (red), and NR-informed joint analysis (green). Figures adapted from [3132] (left) and [3138] (right).

core-collapse SN, PSN oscillations

Figure 7.8: Spectrogram of a typical core-collapse simulation showing the tracks of different oscillation modes of the PNS [2997].

347

388

395

401

409

SNR for SNe with different progenitors

Figure 7.16: Expected SNR as a function of distance for the 15.01 (top plot) and 9a (bottom plot) models corresponding to a progenitor mass of 15.01 M_{\odot} and 9 M_{\odot} [2991], respectively.

8	Waveforms				
	8.1	Introduction	412		
	8.2	Waveform systematics and accuracy requirements for 3G	413		
	8.3	Techniques for waveform modeling: Current state and advances	416		
		8.3.1 Numerical Relativity	416		
		8.3.2 Weak-field Expansions	422		
		8.3.3 Gravitational Self-Force	426		
		8.3.4 Inspiral-Merger-Ringdown Models	430		
		8.3.5 Alternative Theories of Gravity	433		
	8.4	Waveform Models for Specific Sources	436		
		8.4.1 Binary black holes	436		
		8.4.2 Binary Neutron Stars	441		
		8.4.3 Neutron Star – Black Hole Binaries	444		
		8.4.4 Modelled sources beyond binary inspirals	449		
		8.4.5 Waveforms in alternative theories of gravity	453		
	8.5	Waveform Acceleration Techniques	458		
	8.6	Executive summary	461		

NSBH: plunge or tidal disruption

hyperbolic BBH encounters

Figure 8.2: Exemplary waveforms of hyperbolic BBH encounters where the two BHs are initially unbound. The left panel shows a scattering event where the BHs remain unbound,

Figure 8.3: Exemplary IMR waveforms of coalescing binary black holes with mass ratio 1:3 and a total source-frame mass of $60M_{\odot}$ located at a distance of 100 Mpc and viewed under an inclination angle of $\pi/3$ relative to the line-of-sight. The initial GW frequency is

Figure 8.4: Selection of binary neutron star waveforms from NR simulations showcasing three different postmerger phenomenologies: The top panel shows prompt collapse to a black hole; the middle panel shows the formation of a hypermassive neutron star (HMNS), and the bottom panel shows the formation of a stable neutron star. The simulations are BAM:0005 [4448], THC:0084 [3091] and BAM:0080 [2386], publicly available from the CoRE database [2258].

9	Too	ls for	assessing the scientific potentials of detector configurations	463
	9.1 Basic formalism			463
		9.1.1	Detection and parameter estimation of resolved signals	463
		9.1.2	Fisher information matrix formalism	468
	9.2	Softwa	are tools for CBC sources	469
		9.2.1	Sky location-polarisation-inclination averaged SNR	470
		9.2.2	Fisher Matrix pipelines	471
		9.2.3	Improvements of Fisher baseline models	474
		9.2.4	Inference at the population level	481
	9.3	Metrie	es for CBCs	483
		9.3.1	Pattern functions and Earth rotation	483
		9.3.2	Horizons and Signal to Noise Ratios	484
		9.3.3	Distance reconstruction and merger and pre-merger sky localization	489
		9.3.4	Inference of intrinsic parameters, and golden binaries	492
		9.3.5	Detection of population features	494
	9.4	Tools	for the ringdown phase of binary mergers	499
	9.5	Stoch	astic searches	502
		9.5.1	Characterization of stochastic backgrounds	503
		9.5.2	Power-Law Sensitivity	505
		9.5.3	Subtraction of the astrophysical background	507
	9.6	Tools	for the null stream	513
	9.7 Conclusions			

e 9.8: Detection horizons for equal-mass non-spinning binaries as a function of the -frame total mass for different ET configurations.

f [Hz]

f [Hz]

Figure 9.13: Cumulative distributions of the accuracy on angular localization (left panel) and luminosity distance (right panel) for BNSs observed by ET in the different configurations studied in [16].

	GWBench	GWFast	GWFish	TiDoFM	GWJulia
link	GWBench	CosmoStatGW/gwfast	GWFish	TiDoFM	GWJulia
domain	Frequency	Frequency	Frequency	Time	Frequency
language	Python	Python	Python	Python	Julia
waveforms	LALSimulation	self+LALSimulation	LALSimulation+num.	Pycbc	self
derivatives	an.+fd.	an.+AD or +fd.	an.+fd.	num.	AD
inversion	mpmath	Cho.,LU,SVD+mpmath	SVD		Cho.
reference	[4633]	[2275]	[256]	[4634, 4635]	[4636]

9.8 Executive summary

Table 9.1: Summary of main characteristics of the five Fisher matrix codes. Abbreviations used are: an. for analitical, fd. for finite differences method, num. for numerical, AD for automatic differentiation, Cho. for Cholesky. See text for other pipeline-specific features.

10 Data Analysis 52			
10.1 Introduction			
10.2 Challenges	518		
10.2.1 Long duration Compact Binary Coalescence signals	518		
10.2.2 Overlapping signals	521		
10.2.3 Noise Background estimation	522		
10.2.4 Source subtraction for CBCs	523		
10.3 Innovative methods: machine learning applications	523		
10.4 Signal detection method	524		
10.4.1 Data analysis methods for Compact Binary Coalescences	524		
10.4.2 Data analysis for Gravitational Wave Background	526		
10.4.3 Data analysis for Continuous Wave searches	528		
10.4.4 Data analysis for burst signals	530		
10.5 Parameter estimation methods	532		
10.5.1 Analysis of overlapping signals	533		
10.5.2 Innovative methods for faster inference	533		
10.5.3 Computational Requirements	539		
10.6 Peculiarities of a triangular ET	540		
10.6.1 Null stream	540		
10.6.2 Correlated noise	545		
10.7 Simulations and Mock Data Challenges	546		
10.7.1 Description of the first MDC	546		
10.8 Challenges	549		
10.9 Synergies in data analysis developments	549		
10.10Conclusion	550		
10.11Executive summary	551		

first MDC data

effect of overlapping signals on posteriors

Figure 10.2: Posterior PDFs for total mass and mass ratio, for the GW150914-like signal (top panel) and the GW151226-like signal (bottom panel) when they are respectively being overlapped with a BNS signal with SNR = 30 (solid lines), SNR = 20 (dashed lines), and SNR = 15 (dotted lines). The overlaps are made so that the BBH and the BNS end at the

Figure 10.4: Representation of the posteriors obtained with the approach from [4799] (red) and the posteriors obtained with traditional approaches (blue) for a system with a chirp mass of 5 M₀ injected in an LVK network. A good agreement is obtained between the two posteriors, which required an adapted training procedure due to the relatively low mass of the system. To obtain this agreement, the priors during the training process have been adapted to have an effectively uniform coverage of the mass parameter space.

`golden events'

 10^{1}

Modified GW propagation

in GR:
$$\tilde{h}_A'' + 2\mathcal{H}\tilde{h}_A' + k^2\tilde{h}_A = 0$$

 $\tilde{h}_A(\eta, \mathbf{k}) = \frac{1}{a(\eta)}\tilde{\chi}_A(\eta, \mathbf{k})$
 $\tilde{\chi}_A'' + (k^2 - a''/a)\tilde{\chi}_A = 0$

inside the horizon $a''/a \ll k^2$, so $\tilde{\chi}''_A + k^2 \tilde{\chi}_A = 0$

- 1. GWs propagate at the speed of light
- 2. $h_A \propto 1/a$ For coalescing binaries this gives $h_A \propto 1/d_L(z)$

In several modified gravity models:

$$\tilde{h}_{A}^{\prime\prime} + 2\mathcal{H}[1 - \delta(\eta)]\tilde{h}_{A}^{\prime} + k^{2}\tilde{h}_{A} = 0$$

$$\tilde{h}_{A}(\eta, \mathbf{k}) = \frac{1}{\tilde{a}(\eta)}\tilde{\chi}_{A}(\eta, \mathbf{k}) \qquad \frac{\tilde{a}^{\prime}}{\tilde{a}} = \mathcal{H}[1 - \delta(\eta)]$$

$$\tilde{\chi}_{A}^{\prime\prime} + (k^{2} - \tilde{a}^{\prime\prime}/\tilde{a})\tilde{\chi}_{A} = 0 \qquad \tilde{a}^{\prime\prime}/\tilde{a} \ll k^{2}$$

1. $c_{GW} = c$ ok with GW170817 (otherwise the model is ruled out)

2. $\tilde{h}_A \propto 1/\tilde{a}$

All dynamical theories of DE will display this effect!

(Belgacem et al., LISA CosmoWG, JCAP 2019)

coalescing binaries measure a ``GW luminosity distance" different from the standard (electromagnetic) luminosity distance !

in terms of $\delta(z)$:

$$d_L^{\rm gw}(z) = d_L^{\rm em}(z) \exp\left\{-\int_0^z \frac{dz'}{1+z'}\,\delta(z')\right\}$$

a general parametrization of modified GW propagation

$$\frac{d_L^{\rm gw}(z)}{d_L^{\rm em}(z)} = \Xi_0 + \frac{1 - \Xi_0}{(1 + z)^n}$$

Belgacem, Dirian, Foffa, MM PRD 2018, 1805.08731

This parametrization is very natural, and fits the result of (almost)all modified gravity modelsBelgacem et al (LISA CosmoWG), 2019

- for scalar perturbations, deviations from GR are bounded at the level (5-10)%
- one would expect similar deviations in the tensor sector. Instead, in a viable model (non-local gravity) the deviations at the redshifts explored by ET can reach 80% !

Belgacem, Dirian, Finke, Foffa, MM, 2020

⇒ 3G detectors could be the best experiments for studying dark energy

"Dark sirens": cosmology with the BNS mass function at ET

GW detectors measure the combination $m_{det} = (1 + z)m$ and do not measure directly z but $d_{L} \implies$ here cosmology enters

Finke, Foffa, Iacovelli, MM, Mancarella 2021

Echoes from Exotic Compact Object

Cardoso, Franzin, Pani 2016

$$\tau_{\rm echo} = (2R_S/c)\log(R_S/\ell_{\rm new \, physics})$$

even possible to have signals from the Planck scale. Eg:

$$\ell_{\rm new \, physics} = \ell_{\rm Pl}, \quad M = 60 M_{\odot} \rightarrow \tau_{\rm echo} \simeq 50 \, {\rm ms}$$

- quite different from accelerator physics, where the Planck scale is unreachable
- detecting echoes might require SNR=O(100) in the ringdown phase, achievable only with 3G detectors (ET, CE)

Formal birth of the ET Collaboration, Budapest 7-8 June 2022 ET EINSTEIN TELESCOPE

Overview	VII Finatain Talaasana Summa
ET Collaboration Announcement	XII Einstein Telescope Sympo (The birth of the ET Collaborat
Timetable	
Registration	The XII symposium of the Ein
Participant List	Sciences, on the 7th - 8th of J
ET Information	long Einstein Telescope journe
TRAVEL INFORMATION	More than 400 scientists, ou meeting in person or remotel
ACCOMMODATION	challenges, the scientific cas
Code of Conduct GDPR	boards. The ET Project Dire approved INFRA-DEV Horizon the INFRA-TECH Horizon EU activities, were introduced to t
Conference photo	The 12th ET symposium is a r
Some more photos	roadmap since July 2021.

osium

ation)

nstein Telescope (ET) took place in Budapest, at the Hungarian Academy of June. The ET scientific community met in Budapest for a crucial step in the ey: the formal establishment of the ET Collaboration.

ut of more than 1200 members of the Collaboration, participated in the ly. The ET members discussed the status of the experiment, the technical se, and the scientific and technical progresses made by each of the ET ectorate presented the perspective of the funding agencies. Finally, the n EU project, for supporting the preparation phase of the experiment, and proposal, recently submitted to Brussels for supporting technological R&D the whole Collaboration.

milestone of the Einstein Telescope project. The ET project is on the ESFRI A collection of European research institutions, universities and research teams is on the way to establishing the Einstein Telescope Collaboration. That is the primary goal of the

