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● Neutrino oscillates as it propagates through space

● (νe, νμ, ντ) are linear combinations of (ν1, ν2, ν3)

● Direct evidence that neutrinos have mass

● Contradicts original minimal SM predictions 

Neutrinos and neutrino oscillations

Standard Model (SM) neutrinos:

● Massless, electrically neutral leptons

● Only weak interaction

● 3 flavor eigenstates: νe, νμ, ντ
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Anomalies in oscillation experiments
● LSND Anomaly: unexpected excess of νe̅ in a νμ̅ beam

● Gallium Anomaly: GALLEX and SAGE with Mega-Curie radioactive 

source, νe observed/predicted = 0.84 ± 0.05 (confirmed by BEST)

● Reactor Antineutrino Anomaly: app. deficit wrt expected νe̅ flux

● MiniBooNE Anomaly: low energy excess of νe and νe̅

● Neutrino-4 (Nu-4) Anomaly: reported signal of Δm² ~ 7 eV²

● Tension between appearance/disappearance experiments

● 4th neutrino (sterile): explains observed 

anomalies through additional oscillations

● Does not interact via weak force

● Much more elusive than active ν
● Mixes with active ν
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● Investigates ν oscillations at short baselines L/E ~ 1m/MeV

● Booster Neutrino Beam (BNB) + Neutrino at the Main Injector (NuMI, off-axis) only in ICARUS at 0-3 GeV

● Confirms or rules out the existence of eV-scale sterile ν
● Measures ν-Ar cross sections (SBN & DUNE programs) + BSM searches

● 3 LArTPC detectors placed at different baselines along the beam (SBND, MicroBooNE, ICARUS):

● νμ→νe appearance and νμ disappearance comparing ν events at different distances from the source

● initial ICARUS standalone program (Nu-4): νμ disappearance (BNB), νe disappearance (NuMI, off-axis)



Liquid Argon Time Projection Chamber

● Accurate 3D spatial reconstruction 

(~mm³ resolution) + calorimetry

● Liquid Argon (X0 = 14 cm): target and 

detection medium for ν interactions 

● ν-Ar interaction: charged particles ionize 

Argon atoms and create free e- that drift 

under a uniform electric field

● e- collected by 3 mm-spaced anode wire planes 

(Induction-1, Induction-2, Collection) oriented 

at different angles (0°, 60°, -60°)

● PMTs detect scintillation light, providing 

precise timing information
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The ICARUS-T600 detector

● Largest and farthest SBN detector

● Originally operated at LNGS 

● 760 tons of LAr at 89 K

● 2 adjacent modules (EAST and WEST)

● 2 TPC/module with a central cathode 

● Edrift = 500 V/cm (uniform)

● 360 PMTs TBP-WLS coated

● Event reconstruction: multi-step process that transforms 

raw detector signals into meaningful physics data

● Main steps: signal processing, hit finding, pattern recognition 

and energy reconstruction
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● Energy of charged particles reconstructed via calorimetry 

from e- ionization charge collected on TPC wires

● Energy loss per unit of distance of a charged particle 

traversing matter is given by the Bethe-Bloch equation

where                              and

Calorimetric energy reconstruction

● dQ/dx correction: measured dQ/dx is corrected to compensate for signal attenuation along the drift by 

electronegative impurities that absorb e-, variable electronic gains and induction plane transparency

● Energy calibration: converts corrected dQ/dx into dE/dx using parameters such as electronic gain and 

electron recombination fraction

● Total energy deposition: sum of dE/dx multiplied by the pitch of each deposition point
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● Relies on the total length travelled in the detector

● Residual range = distance of a given energy deposit 

from the track endpoint

● Charged particles slow down due to ionization energy 

loss as described by Bethe-Bloch equation 

● If particles stop inside the detector, kinetic energy K is 

determined by summing up deposited energy along track

● Continuous slowing-down approximation (CSDA): 

direct relationship between K and range, leading to 

an accurate measurement of particle momentum 

● Once computed the kinetic energy, the momentum is

○ Only feasible for fully contained particles! 

Range-based energy reconstruction
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Multiple Coulomb Scattering (MCS)
Additional method for estimating momentum of charged particles (muons) 

→ the only suitable technique for uncontained muons

● μ traversing a medium undergoes multiple small-angle deflections due to 

Coulomb interactions with atomic nuclei: overall angular deviation from 

the initial direction

● For N(scatterings) > 20, θ distribution approximately Gaussian

● The standard deviation θMCS depends on the medium and is inversely 

proportional to μ momentum

● Empirical approximation: the Highland formula 

→ S2 = 13.6 MeV and ε = 0.038 empirical coefficients
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○ ICARUS: no B field → no momentum measurement via track curvature, but... 

2 state-of-the-art MCS-based algorithms allow momentum measurement for uncontained μ



1. The “Gran Sasso” algorithm
● Developed for ICARUS at Gran Sasso National Lab.

● Originally used 2D signal hits only in Collection view, I developed an improved approach:

● 2D - projected 2D signal hits from the Induction-1, Induction-2, and Collection TPC wire planes

● 3D - 3D signal hits reconstructed in the (x, y, z) reference frame

● Divides the μ track into nseg segments and measures deflections between consecutive segments

● Builds χ²-like function to estimate momentum 
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○ nseg segments of variable length Lseg (Lseg = X0 = 14 cm in this analysis)

○ 2 different approaches to compute deflection angles:

○ polygonal approach: barycenter of 3 consecutive segments connected by 2 

straight lines → θpol y is the difference between their slopes (nseg-2)

○ linear-fit approach: 2 consecutive segments are fitted with 2 straight lines  

→ θlin  is the difference between their slopes (nseg-1)

○ Ends up with 2nseg-3 measured deflection angles! 



1. The “Gran Sasso” algorithm, cont’d

● θpoly and θlin: observed angular deflections

● θMCS(p) ⊕ θerr: expected angular deflections

● θerr accounts for uncertainty on the drift coordinate, for 2D projected hit points from individual planes

● Parameter δ3P: dispersion wrt local straight-line fit over 3 consecutive points

● Parameter σ3P: RMS of δ3P distribution, track-dependent 
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○ C2 function (χ²-like) compares observed deflections 

to expectation for a given momentum p

○ Best estimate of pMCS obtained by minimizing the 

discrepancy between observed/expected deflection 

○ For p → pMCS the C2 function follows the condition



● Originally developed for the MicroBooNE detector

● Only relies on reconstructed 3D signal hits 

● Divides μ track into fixed-length segments Lseg = X0 

● Only uses linear-fit approach to compute deflections 

● Maximizes a likelihood function to measure momentum

○ Tuning of Highland formula and Highland coefficients S2

○ At higher momenta S2  asymptotically approaches ~11 MeV

○ Momentum-dependent correction factor κ(p) that replaces S2  

○ For ICARUS: κ1 = 0.131 MeV and κ2 = 10.457 MeV 

○ Expected deflections: θMCS(p) ⊕ θerr with θerr = 10 mrad

2. The “MicroBooNE” algorithm
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Comparing the two algorithms
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“Gran Sasso” algorithm “MicroBoone” algorithm

Input data format both 2D and 3D version only 3D version

Measured deflection both θpoly and θlin only θlin

Expected deflection θMCS(p) ⊕ θerr θMCS(p) ⊕ θerr

Highland formula standard version θMCS(p) tuned version θMCS(p) with S2 → κ(p)

Angular resolution term variable θerr based on measurement 

errors along the drift path

fixed θerr = 10 mrad

Segment length variable, but set at X0  = 14 cm fixed Lseg = X0  = 14 cm

Statistical method builds a χ²-like function maximizes likelihood function



Event selection criteria

● Use cosmic stopping muons: range-based momentum prange as benchmark to validate MCS

● Defined start time t0  (track position along drift direction) to ensure correct spatial reconstruction

● L > 40 cm and large ionization deposit near the track endpoint to ensure μ stops inside the detector 

● Reconstructed starting point above ending point (downgoing μ)

● Last 3 angles (~50 cm) excluded to prevent fluctuations near Bragg peak and mimic uncontained tracks 

to avoid overestimation of algorithms performance 
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total number of tracks (MC sample) 2072

tracks in Induction-1 plane 1786

tracks in Induction-2 plane 1772

tracks in Collection plane 1794

tracks in all planes 1721

total number of tracks (data sample) 2061

tracks in Induction-1 plane 1737

tracks in Induction-2 plane 1630

tracks in Collection plane 1713

tracks in all planes 1519



MC μ tracks sample: sanity checks
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● Sample of simulated cosmic muons generated by CORSIKA

● Track length: 1.5 m < L < 4.0 m, momentum: 0.45 GeV/c < prange < 1.00 GeV/c

● Low statistics for high L and prange → 1 GeV/c

● As expected cosθy → -1 (vertical direction), μ downgoing

● No preferred direction over cosθx (drift direction) and cosθz (beam direction)



Comparison between true and range momentum
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○ prange/ptrue - 1 peaked at zero, resolution ~2% 

prange good approximation of ptrue (only available in MC)



“Gran Sasso” 2D algorithm performance (MC)

● Performance evaluated by 

comparing pMCS with prange 
● Algorithm efficiency 

ε = N(valid pMCS)/N(total)

● Valid pMCS ∈ (0.1, 1.5) GeV/c
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Induction-1 Induction-2 Collection

total tracks in 2D plane 1786 1772 1794

tracks with valid pMCS 1703 1608 1676

efficiency ε ~95% ~91% ~93%



Example of Gaussian fit for each bin (MC)

● Dominant error in the prange/pMCS ratio from pMCS

● Gaussian behavior in 1/p expected (Highland formula)

● Gaussian fit provides mean, stdev → estimation of bias and resolution 

● 100 MeV/c momentum bins, except for the last (200 MeV/c) → low stat
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2D views: results (MC) 
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Inductions + Collection: results (MC)
● Collection plane: best signal-to-noise ratio

● Incorporate Induction planes to improve performance and to enhance pMCS reconstruction by reducing 

uncertainties and mitigating inefficiencies

● 3 possible combinations:

● Collection ⊕ Induction-2 = averaging the momenta from both planes

● Collection ⊕ Induction-1 = same as above with Induction-1

● Collection ⊕ Induction-2 ⊕ Induction-1 = same as above with Induction-2 and Induction-1 ↴
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“Gran Sasso” 3D algorithm and summary (MC)
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total tracks in 3D 2072

tracks with valid p_MCS 2036

efficiency ε ~98%

● 2D version (single view):

● Few % agreement between pMCS and prange, 

slight negative bias at low p in Induction-2

● Resolution improves from 32% at low p to 16% at high p

● 2D version (combining different views):

● Improves both bias and resolution

● 3D version: performs comparably to the combined 2D views → viable alternative



“MicroBooNE” algorithm (MC)
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total tracks in 3D 2072

tracks with valid p_MCS 2064

efficiency ε ~100%

● Small, nearly constant positive bias

● Better resolution at low p

We confirm validity of MCS momentum measurement for both algorithms! 



Real μ tracks sample: sanity checks
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● Sample of real cosmic muons from Run-9435 (January 29-30, 2023) PMT-triggered

● Track length: 1.5 m < L < 4.0 m, momentum: 0.45 GeV/c < prange < 1.00 GeV/c

● Low statistics for high L and prange → 1 GeV/c

● As expected cosθy → -1 (vertical direction), μ downgoing

● No preferred direction over cosθx (drift direction) and cosθz (beam direction)



“Gran Sasso” 2D algorithm performance (data)

● Performance evaluated by 

comparing pMCS with prange 
● Algorithm efficiency 

ε = N(valid pMCS)/N(total)

● Valid pMCS ∈ (0.1, 1.5) GeV/c
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Induction-1 Induction-2 Collection

total tracks in 2D plane 1737 1630 1713

tracks with valid pMCS 1629 1524 1574

efficiency ε ~94% ~93% ~92%



2D views: results (data) 
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Inductions + Collection: results (data)

● Single view: momentum resolution from 40% at low p to 18% at high p 

● Combining multiple views: 

● Small negative flat bias, not observed in MC

● Momentum resolution from 32% at low p to 16% at high p, slightly worse than MC 
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“Gran Sasso” 3D algorithm and summary (data)
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total tracks in 3D 2061

tracks with valid p_MCS 1846

efficiency ε ~90%

● 3D performs comparably to the combined 2D views 

→ viable alternative

● Small negative bias wrt MC, particularly at low p



“MicroBooNE” algorithm (data)
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total tracks in 3D 2061

tracks with valid p_MCS 1881

efficiency ε ~91%

● Small negative bias (in MC small positive bias)

● Resolution ranging from 16% at low p to 14% at high p



Conclusion and future perspectives
● “Gran Sasso” and “MicroBooNE” algorithms successfully tested on stopping muons in ICARUS, both in 

MC simulations and real experimental muon tracks of momentum 0.45 GeV/c < p < 1 GeV/c

● Results confirm that MCS-based momentum estimation is a valuable technique, with reasonable 

agreement between pMCS  and prange 
● Future improvements:

● Studying performance as a function of track length L rather than just prange, possibly using a fixed 

length to evaluate the resolution dependence on momentum 

● Tuning the segment length (currently set to 14 cm) to enhance resolution and efficiency

● Improving MC simulations to incorporate more detector effects, such as some cathode distortions

● Reject delta rays from the muon track to reduce potential biases 

MCS momentum reconstruction increases the statistics of ν interaction events

→ a factor 2x for BNB and 3x for NuMI ν
crucial for oscillation studies and searches for sterile ν!
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