

UNIVERSIDAD **DE GRANADA**

Expected performance of the **Photon Detection System in** SBND

SENSE General meeting

Diego Garcia-Gamez

April 1st 2025

The University of Granada

SBND detector

• Drawing of the SBND TPCs:

- Field Cage
- Two TPCs separated by a central cathode
- ▶2 m maximum drift distance
- Field cage covering the active volume to ensure homogeneous electron field (0.5 kV/cm)
- Note that part of the vertical field cage has been removed to reveal the active volume

Photon Detection System design

Components of the PDS:

- Active: PMTs and XARAPUCAs both coated and uncoated
- *Passive*: TPB-coated reflector foils

Able to detect the two different light components:

- *Direct*: VUV photons
- *Re-emitted*: Visible photons

PMTs and X-ARAPUCAs arrangement in the PDSbox

4x Coated PMT

1x Uncoated PMT

View of the SBND's photon detection system as described by the GDML package

Scintillation Light Simulation

Number of photons detected

In SBND we use a **Hybrid** approach with the Semi-Analytic model for the active volume (inside the TPCs) and the Optical-Library for the LAr outside the TPCs

Arrival time distributions

Emission: $\tau_{fast} = 6 ns$ and $\tau_{slow} = 1300 ns$ **Propagation**: using the Semi-Analytic model WLS delay: TPB and pTP

of y-voxels

Detector Response Simulation

Detector effects simulated in our light signals:

• Transit time

ARAPUCAs (Right) in SBND

Detector Response Simulation

Example of signal processing stages for PMTs (left) and X-ARAPUCAs (right)

Waveform deconvolution to remove the signal bipolarity introduced by our AC-coupled readout

Light Signal Reconstruction

Optical Hit and Flash objects

Example of the OpHit finder algorithm performance for a PMT waveform.

Illustration of the OpFlash finder reconstruction algorithm.

Calorimetry

Number of reconstructed PE after deconvolution at OpHit level as a function of the total number of simulated photons within one channel

• The non-linear behaviour of PMTs is clearly visible from 3000 PEs onwards.

(right) flavours

Expected LY in SBND as a function of the mean drift distance for the different PMT (left) and X-ARAPUCA

OpFlash reconstruction efficiency

The OpFlash reconstruction efficiency is defined as the ratio between the number of interactions with a reconstructed OpFlash and the total number of interactions

OpFlash reconstruction efficiency as a function of the deposited energy (left) and drift distance (right) for **PMTs (top**) and X-ARAPUCAs (bottom).

10³ C 1.00 0.95 0.90

 10^{5}

 10^{5}

104

10³

events

#

Position resolution

- (Y, Z) reconstruction
 - from the hottest one by less than a $20\% \Rightarrow$ To minimize border effects

Bias and resolution in the estimation of the interaction point in the beam direction (Z) for the PMTs (full marks) and X-ARAPUCAs (empty marks) flashes 10

A simple threshold algorithm: we averaged the (Y, Z) coordinates of the PDs whose signal differs

Position resolution		0.30 -	
		0.25 -	
•	Drift distance (X in our coordinates	_ 0.20 -	
	system)	0.15 -	
		0.10 -	
•	A fairly unique feature of SBND's PDS design	0.05 -	
			ò
	We do it by defining the <i>n</i> parameter		
	(for both PMTs and X-ARAPUCAs)	0.6	
		0.5 -	
	$n_{\text{DMT}} \equiv \frac{\#PE_{uncoated}}{\#PE_{uncoated}}$	5 0.4 -	
	$#PE_{coated}$	- 5.0 ^A RAF	
$\eta_{\rm x}$	$= \frac{\#PE_{uncoated}}{\#DE}$	0.1 -	
# F E _{coated} + # F E _{uncoated}		0.0	0

Time resolution

Time resolution of the **PMTs system** as a function of the drift distance and deposited energy after corrections for propagation effects

• Once $\langle X_{rec} \rangle$ has been estimated (using η curve), we can correct for the light propagation delay:

Summary

- In the LArTPC community, light signals have been traditionally used only for triggering purposes.
- SBND is the LArTPC detector using the most advanced Photon Detection System so far
 Its innovative design allows us to explore and develop new applications of the
 - Its innovative design allows us to exp scintillation light signals.
 - ► 3D reconstruction of the events (using only light signal)
 - ~1ns Time resolution
 - Calorimetry (Q+L)