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Overview of the content this talk

Introduction to LArTPC experiments and SBN physics program
General description of TPC event reconstruction chain and main steps
Iwo parallel event reconstruction paths:

Pandora-based event reconstruction:
overview of the hierarchy, insights on the main stages

Machine Learning- (ML) based event reconstruction:
overview of the full reconstruction chain

Conclusions and perspectives
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The Short Baseline Neutrino (SBN) program
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Liquid Argon Time Projection Chambers (LArTPCs)
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Typical LArTPC detector components: ICARUS detector as example

Two identical cryostats (3.6 x 3.9 x 19.6 m3) housing two T

PCs each, 760 tons of ultra pure

iquid argon for a total active mass of 470 ton
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Event reconstruction in LAr TPCs: ICARUS reconstruction chain
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Event reconstruction in LAr TPCs: I[CARUS reconstruction chain

combinations.
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Signal processing:

foreseen change from 1D to 2D deconvolution

Wire signals are a convolution of electric field and electronics responses:

M(t) = J OOR(t, t') - S(¢)dt

/ - / \

Measured signal Response function| |Original wire signal

Original wire signal extracted with

1D deconvolution after applying a filter for noise
|

2D deconvolution to account for induced charge

effects, I.e. charge drifting in nearby wire regions

’ .

improvement of the charge resolution
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Pandora-based
event reconstruction

Multi-algorithm pattern-recognition software
Goal: reconstruct interaction hierarchies
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https://qgithub.com/PandoraPFA

9 Boosted Decision Trees (BDTs), i.e. ML algorithms, employed in three steps of the chain



https://github.com/PandoraPFA

Boosted Decision Tree (BDT)

We mentioned several places where Pandora uses this algorithm for the reconstruction.

|[dea: Identify a signal and a background class and a set of input features on which you
expect there could be a good separation between them.

Method: BDT is first trained on a sample where the true class is known and input features
are used to have the power to distinguish between signal and background, then for a new
sample with unknown class the same set of features iIs computed to define a score that

guantifies how “signal-like" the sample Is.

Signal: Leonardo da Vinci art work
EXample: gackground: Pablo Picasso art work (from the cubism period)
Sample: a generic painting
Input parameters: use of colors, light and shadow, presence of geometric shapes

10



Boosted Decision Tree (BDT)

Example: Signal: Leonardo da Vinci art work

Background: Pablo Picasso art work (from the cubism period)
Sample: a generic painting
Input parameters: use of colors, light and shadow, geometric shapes, ...

3;_ Leonardo
25— Picasso
15[
05E-
Oo: 1 2 :13 4 5 5 7 8 9 10

Signal (Leonardo da Vinci) score

Background




Pandora-based event reconstruction:

new BDT training to discriminate tracks and showers

Training based on 8 geometrical variables
(5 calorimetrical) from the 3D coordinates

(charge) of the hits
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Pandora event reconstruction: visual scanning and data/MonteCarlo
comparison to evaluate performance/improvements

We employ visual scan v events selection and Monte Carlo simulations to identify reconstruction
pathologies, explore reconstruction improvements and tune our selection algorithms for analyses

Most frequent pathology is track splitting ©(6-7%), Collection plane
followed by wrong vertex ID O(4%) and track/shower ID | ¢ ,é/ v, CC
Validation w/ visual scan based on the 3D position of X ;rim‘ary\ candidate
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https://doi.org/10.1140/epjc/s10052-023-11610-y
https://doi.org/10.1140/epjc/s10052-023-11610-y

Pandora-based event reconstruction: track splitting

Several studies to mitigate the problem of track splitting:

e.g. the single track of a u is reconstructed as n > 1 segments

- Track splitting happening at detector boundaries:
z = 0, at the cathode

Reco tracks

-+ Ongoing study of a stitching algorithm to join track pieces post-reconstruction based on MC

- Study of a stitching algorithm on cosmic i in data: TPC tracks are identified after C

- Study of the systematic
induced by track-splitting: .’

8Basic Idea; break tracks

study how reco is affected |Cartoon of the stitching algorithm

TFMT

Cosmic entering

RT-

PMT Info

ICRT walls
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Pandora-based event reconstruction:
data-driven systematics study

Goal: understand and account for differences in reconstruction between data and MC
Foreseen goal: data driven validation of ML algorithms

Hit Activity Removal from Particles for Systematics (HARPS): operate on specific particles and

reduce thelir size <> similar to starting with a lower energy particle
and analyse the impact on reconstructed quantities

= ¥ Cartoon of the idea:
HARPS on a sample

of protons from
LU + cosmics MC

Residual range Residual range




Pandora-pbased event reconstruction: summary and next steps

Strong interplay with the needs/results of the ongoing analysis efforts in defining our goals:
we are increasing our effort towards evaluating reconstruction (detector) systematics

Several efforts to mitigate the effects of the most relevant reconstruction pathologies at
different levels including track splitting, track vs shower misidentification, vertex reconstruction

Next steps foreseen: continuous validation of the reconstruction chain and (re)training of the
ML algorithms employed in several points of the reconstruction any time relevant changes to
signal processing at previous stage are included in the data processing chain

16



Machine Learning (ML) based LArTPC event reconstruction

Hierarchical feature extraction v,, CC, 800 MeV 4

Image classifier
Convolutional Neural Network

Separate voxels based on the topology | 2 |Find important points (vertex V, start/end P)| | 3 |Cluster particles

17




ML-based LArTPC event reconstruction:
end to end reconstruction chain

> Voxels classified in different abstract particle classes EI Assemble shower objects and
+ identification of the points of interest identity primary fragments
Convolutional NN Graph NN
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w/ deghosting ' ~ 3., “%“ 5.,

2D views from
wire planes

3 NN to build individual dense particle clusters

5]

Particles aggregation into
interactions and |1D
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https://arxiv.org/abs/2102.01033

1 | ML-based event reconstruction: hierarchical feature extraction

Cluster 3D: make all valid

Lst Induction S~ wLIEe el | (time-compatible & intersecting)
| combinations of hits

across 2 wire planes

2nd Induction

Collection

------ ICARUS simulation .,
.
Run 7924, Event 4966 RS L 1 3 ., .,
. zlcm]
a H \Wire

Deghosting: use U-ResNet
to identify and remove
artifacts of the reconstruction
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ML -based event reconstruction:
hierarchical feature extraction
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Cluster particle fragments that

belong to a common semantic
| g. Hreak track/sh (GNN) to aggregate fragments
class, I.e. break track/shower and form particles
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Distinguish different particle types
based on topological features and
identify vertex, start/end points

Use a Graph Neural Network



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004

ML -based event reconstruction:
hierarchical feature extraction

1
Interactions 5 Photon

Muon
Pion
Proton

ICARUS simulation

S0

ICARUS simulation

C N - v
Ty o o) o
C o o

; (cm] i

)’50
300

& N -

N Jo
™~ o o
Z

(cm]

L~ -
L QO
H‘_l 2

0
oot

O

Secondary
Primary

ICARUS simulation

- ~ -

N J
™ o o
Z

(cm]

0
o0t

=) o
) o
) 'r-

Interaction aggregation

Use a Graph Neural Network
(GNN) to aggregate particles and
form interactions

Particle identification

Use GNN to identify particles
e, v, U, T, p In context

Primary identification
Separate particle(s) which
originate from the vertex. This is
fundamental for analyses.
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004

ML -based event reconstruction:

performance
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ML-based event reconstruction: current effort and next steps

Continuous effort to improve the performance of the end-to-end ML-based reconstruction
chain as a whole exploiting both MC simulations and visual scanning info

Several physical analyses underway in ICARUS using ML-based reconstruction:

Beyond Standard Model physics: Higgs-portal scalar decays, S — ee, (J.Dyer) E
see her talk tomorrow!
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Thank you for your attention!
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