

Track reconstruction in liquid Argon TPC experiments

Alice Campani on behalf of the ICARUS collaboration

Istituto Nazionale di Fisica Nucleare

Overview of the content this talk

- Introduction to LArTPC experiments and SBN physics program •
- General description of TPC event reconstruction chain and main steps •
- Two *parallel* event reconstruction paths: •
 - **Pandora-based** event reconstruction: • overview of the hierarchy, insights on the main stages
 - Machine Learning- (ML) based event reconstruction: • overview of the full reconstruction chain
- Conclusions and perspectives

2

The Short Baseline Neutrino (SBN) program

Liquid Argon Time Projection Chambers (LArTPCs)

- Proposed by C. Rubbia in 1977, LArTPCs are ۲ high granularity, continuously sensitive, self-triggering detectors
 - **Dense medium:** high rate of ν interactions •
 - 2/3 wire planes (3-5 mm wire pitch) • with different orientation to generate 2D views of particle tracks
 - 3D imaging with mm-scale resolution •
 - **Calorimetric** reconstruction capabilities •
 - Scalable to large detector volumes O(10) kton •

Ideal for ν interaction studies in a wide energy range

Typical LArTPC detector components: ICARUS detector as example

Two identical cryostats (3.6 x 3.9 x 19.6 m³) housing two TPCs each, 760 tons of ultra pure liquid argon for a total active mass of 470 ton

360 PMTs behind the wires to collect scintillation light and trigger events

5

Event reconstruction in LAr TPCs: ICARUS reconstruction chain

Event reconstruction in LAr TPCs: ICARUS reconstruction chain

To reduce noise, keep only hits that are **consistent** with 3D points using 2 wire planes combinations.

Pandora-based

reconstruction

Downstream reconstruction is based on cluster, *slice* (groups of tracks related to the same particle interaction) and pattern recognition.

Track and shower reconstruction, calorimetry

Signal processing: foreseen change from 1D to 2D deconvolution

Wire signals are a convolution of electric field and electronics responses: •

- - - for specific track classes

- Multi-algorithm pattern-recognition software

Boosted Decision Tree (BDT)

We mentioned several places where Pandora uses this algorithm for the reconstruction.

- Idea: Identify a signal and a background class and a set of input features on which you • expect there could be a good separation between them.
- <u>Method</u>: BDT is first trained on a sample where the true class is known and input features • are used to have the power to distinguish between signal and background, then for a new sample with unknown class the same set of features is computed to define a score that quantifies how "signal-like" the sample is.
- Signal: Leonardo da Vinci art work Example: Background: Pablo Picasso art work (from the cubism period) Sample: a generic painting Input parameters: use of colors, light and shadow, presence of geometric shapes

Boosted Decision Tree (BDT)

<u>Example</u>: Signal: Leonardo da Vinci art work
<u>Background</u>: Pablo Picasso art work (from the cubism period)
<u>Sample</u>: a generic painting
<u>Input parameters</u>: use of colors, light and shadow, geometric shapes, ...

Background

11

Pandora-based event reconstruction: new BDT training to discriminate tracks and showers

 Training based on 8 geometrical variables (5 calorimetrical) from the 3D coordinates (charge) of the hits

New training based on BNB $\nu\text{-only MC}$

	$\varepsilon_{\text{classification}}$	Old training	New training	Δ
Preliminary	BNB v only	72.3%	80.3%	8.0%
	NuMI v only pre-tuning [*]	67.8%	79.9%	12.1%
	NuMI v only tuned [*]	66.7%	79.2%	12.5%

Pandora event reconstruction: visual scanning and data/MonteCarlo comparison to evaluate performance/improvements

- •

We employ visual scan ν events selection and Monte Carlo simulations to identify reconstruction pathologies, explore reconstruction improvements and tune our selection algorithms for analyses

Pandora-based event reconstruction: track splitting

- Several studies to mitigate the problem of track splitting: e.g. the single track of a μ is reconstructed as $n \ge 1$ segments
 - Track splitting happening at detector boundaries: z = 0, at the cathode

 - Study of the systematic induced by track-splitting:

Ongoing study of a stitching algorithm to join track pieces post-reconstruction based on MC

Study of a stitching algorithm on cosmic μ in data: TPC tracks are identified after CRT-PMT info

Pandora-based event reconstruction: data-driven systematics study

- Goal: understand and account for differences in reconstruction between data and MC
- Foreseen goal: data driven validation of ML algorithms
- Hit Activity Removal from Particles for Systematics (HARPS): operate on specific particles and reduce their size ↔ similar to starting with a lower energy particle and analyse the impact on reconstructed quantities

Cartoon of the idea: HARPS on a sample of **protons** from

 ν + cosmics MC

Residual range

15

Pandora-based event reconstruction: summary and next steps

- Strong interplay with the needs/results of the ongoing analysis efforts in defining our goals: • we are increasing our effort towards evaluating reconstruction (detector) systematics
- Several efforts to mitigate the effects of the most relevant reconstruction pathologies at • different levels including track splitting, track vs shower misidentification, vertex reconstruction
- Next steps foreseen: continuous validation of the reconstruction chain and (re)training of the • ML algorithms employed in several points of the reconstruction any time relevant changes to signal processing at previous stage are included in the data processing chain

Machine Learning (ML) based LArTPC event reconstruction

ML-based LArTPC event reconstruction: end to end reconstruction chain

ML-based event reconstruction: hierarchical feature extraction

ML-based event reconstruction: hierarchical feature extraction

identify vertex, start/end points

- fragments at PPN

ML-based event reconstruction: hierarchical feature extraction

ML-based event reconstruction: performance

ML-based event reconstruction: current effort and next steps

- Continuous effort to improve the performance of the end-to-end ML-based reconstruction • chain as a whole exploiting both MC simulations and visual scanning info
- Several physical analyses underway in ICARUS using ML-based reconstruction: •
 - Beyond Standard Model physics: Higgs-portal scalar decays, $S \rightarrow ee$, (J.Dyer) • see her talk tomorrow!

23

Thank you for your attention!

