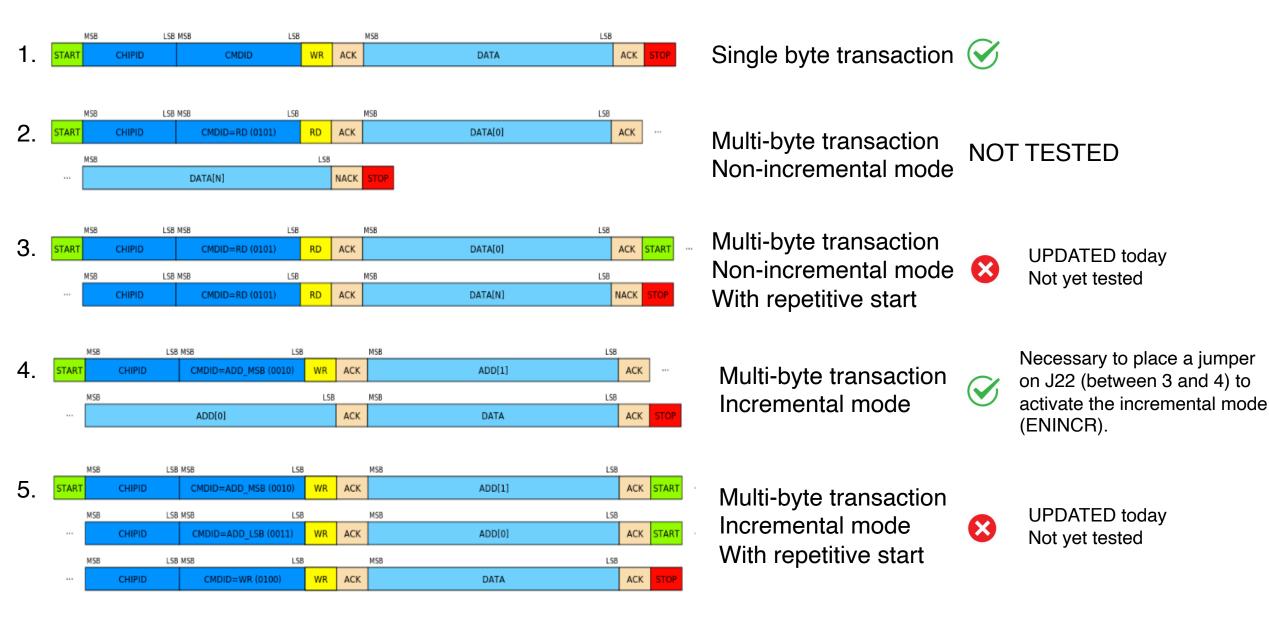
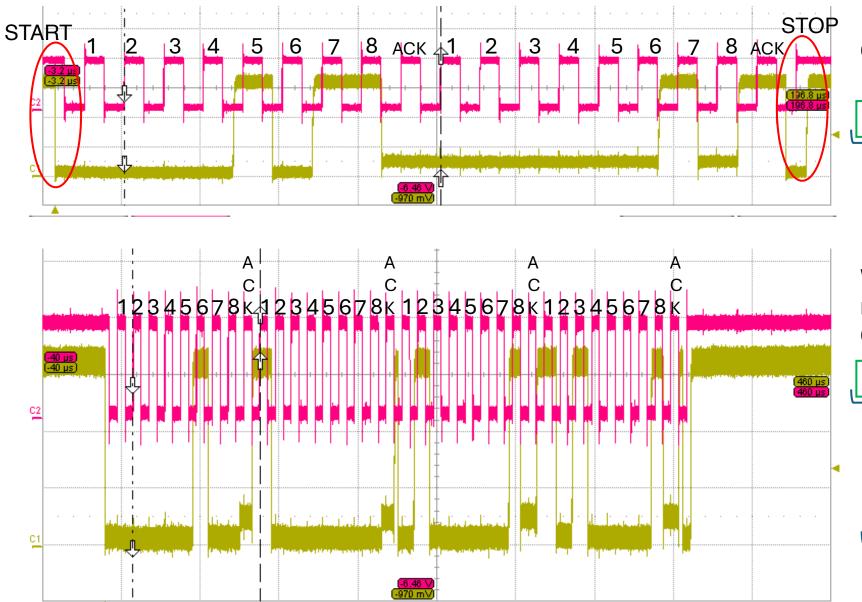

What we have changed to initiate the communications:

2. RESET_IN, SYNC_IN, START_IN can be controlled through SWITCHES (1, 2, 3) [controllable also with 3 bit (24, 8, 16) in the register 0]



Tests: Commands



EACH COMMUNICATION IS DISPLAYED ON THE OSCILLOSCOPE TO CHECK THE COMMUNICATION PROTOCOL

Single and Multi byte transactions

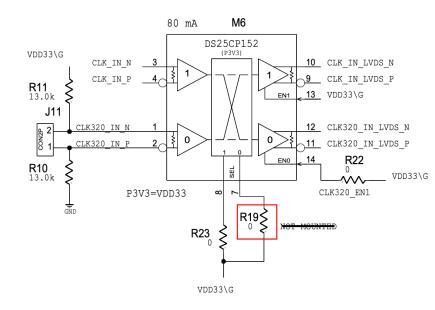
Communication Protocol

READ of the General Configuration/RUNMODE register

$$\begin{array}{c} 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \\ = 02 \\ (default value) \\ Write/Read bit (= 1) \end{array}$$

WRITE "a1" in incremental mode the register 8041 (Read Out Test Configuration/PATTERN1 register)

Tests: Registers


Function	Bank number				
General Configuration	1	Read the Reset value of all the registers			
DAC	2	NOT TESTED			
Sequencer Configuration	3	NOT TESTED	Name	Bits	Reset
Pixel Control	4 NOT TESTED	NOT TESTED	Not Used	7-6	
Monitoring	7	$\longrightarrow MON_PAD \bigotimes \longrightarrow NOT TESTED$	DISPOR ENINCR	5	-
Multi-Frame Emulation	8		SYNC_IN START_IN	3 2	-
Analogue Pixel Selection	9	NOT TESTED	OUTPUTMODE	1-0	-
Readout Configuration	10	→ Read/Write on the re	egisters (IDs: 8	8040	-8053)

In general, sometimes, regardless of the register we are reading, the chip responds with incorrect data. Everything remains consistent with the communication protocol, so it seems to be an issue with the chip itself rather than the way we are communicating.

Problems with even registers

Register ID	Written word	Read word	
8040	a0	40	\bigotimes
8041	a1	a1	\checkmark
8042	a2	42	\bigotimes
8043	a3	a3	\checkmark

Tests: Clock-in/out

-			_/
CLKGEN1	0027	00	
CLKGEN2	0028	00	
PLL	0029	11	
PLLLOCK	002A	38	

External clock (R19 mounted) Clock Rescue mode (not used the PLL) New firmware with 320 MHz clock

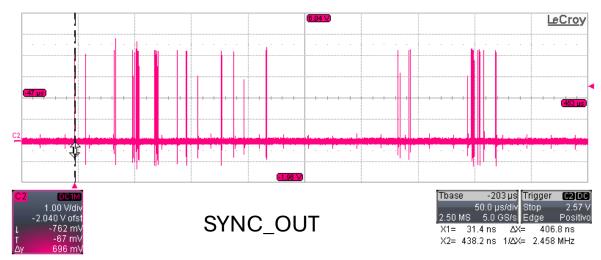
Nai

SEL

EN

SEL

clock out.


We still can't see the

ime	Bits	Reset	Description
L_PHASE	7-4	0	320 MHz Clock phase adjustment to adjust internal and external 40 MHz clocks
_SYNC	3	0	Enable synchronization of multiple MIMOSIS1 through SYNC_IN_P and SYNC_IN_N SLVS pads
L_START	2-1	0	Start mode selection: Automatic: 0 (by default after PLL locked) Software: 1 (by sending 03 to INSTR CMDID see section 2 page 10) External: 2 or 3 (via START_IN_P and START_IN N SLVS pad)
L_CLOCK	0	0	Clock selection: Main @ 40 MHz (CLK_P and CLK_N SLVS pad): 0 Rescue @ 320 MHz ⁴ (CLKRESCUE_P CLKRESCUE_N SLVS pad): 1

	Name	Bits	Reset	Description
	Not Used	7-6	0	
×	EN_START_SYNC_TERM	5	0	Enable START_IN and SYNC_IN SLVS 100 Ω termination
	FILTER_VAL	4-1	0	Filter glitches on PLL lock flag of N times main clock period (25 ns)
	DIS_LOCK_GATING	0	0	Disable generated clocks gating with filtered PLL lock flag

Next steps...

- Tests of the new firmware with the possibility of multiple START
- Tests of the configuration files as input
- Try to understand the meaning of some signals: SYNC_OUT, TMON, ...
- Understand the actual configuration of the board and the significant bit to change to see the clock-out

