
Updates

- 1. Tested the transaction with repetitive start
- 2. Tested the configuration files to give commands:
 - 1. "RD" command need NACK at the end instead of an ACK
 - 2. A waiting time is necessary after each command
 - 3. Test all types of transactions
- 3. Convert the temperature sensor output into degrees

Last update

Clock out @160MHz

Output line (DOUT0)

2^{OUTPUTMODE} = number of serializer lines activated

OUTPUTMODE = controlled with jumpers on the proximity board

Registers Configuration

Name	Bits	Reset	Description	
SEL_PHASE	7-4	0	320 MHz Clock phase adjustment to adjust internal and external 40 MHz clocks	
EN_SYNC	3	0	Enable synchronization of multiple MIMOSIS1 through SYNC_IN_P and SYNC_IN_N SLVS pads	
SEL_START	2-1	0	Start mode selection: Automatic: 0 (by default after PLL locked) Software: 1 (by sending 03 to INSTR CMDID see section 2 page 10) External: 2 or 3 (via START_IN_P and START_IN N SLVS pad)	- ?
SEL_CLOCK	0	0	Clock selection: Main @ 40 MHz (CLK_P and CLK_N SLVS pad): 0 Rescue @ 320 MHz ⁴ (CLKRESCUE_P CLKRESCUE_N SLVS pad): 1	
Name	Bits	s Reset	Description	
Not Used	7-6	0		
EN_START_SYNC_TERM	5	0	Enable START_IN and SYNC_IN SLVS 100 Ω termination	
FILTER_VAL	4-1	. 0	Filter glitches on PLL lock flag of N times main clock period (25 ns)	
DIS_LOCK_GATING	0	0	Disable generated clocks gating with filtered PLL lock flag	

Name	Bits	Reset	Description
EN_CLKRESCUE_TERM	7	0	Enable rescue clock (320 MHz) SLVS 100 Ω termination
EN_CLKSER	6	0	Enable output clock serializer (160 MHz) test option
EN_CUSTOM_FLV	5	0	Enable custom fill level for elastic buffer test option
EN_CUSTOM_BW	4	0	Enable custom bandwidth for frame generator test option
EN_PATTERN	3	0	Enable pattern for serializer test mode
EN_PULSEINJ	2	0	Enable external pulse injection test option
EN_PIXELMASK	1	1	Enable Pixel Masked (1) or Pulsed (0) mode for pixel array
EN_MFE	0	0	Enable Multi Frame Emulator test mode

1. Random responses from the chip when the registers are read (every command is checked with the oscilloscope):

- 1. Random responses from the chip when the registers are read (every command is checked with the oscilloscope):
 - Problems in the writing stage
 — We have no control over what we activate and deactivate, but
 we can have control by reading the register every time after
 writing it.

- 1. Random responses from the chip when the registers are read (every command is checked with the oscilloscope):
 - Problems in the writing stage
 — We have no control over what we activate and deactivate, but
 we can have control by reading the register every time after
 writing it.
 - 2. Problems in the reading stage —— We don't have robust control over what we have written, but it doesn't significantly affect the use of the chip.

- 1. Random responses from the chip when the registers are read (every command is checked with the oscilloscope):
 - Problems in the writing stage
 — We have no control over what we activate and deactivate, but
 we can have control by reading the register every time after
 writing it.
 - 2. Problems in the reading stage —— We don't have robust control over what we have written, but it doesn't significantly affect the use of the chip.
 - 3. Problems in the writing/reading stages ——— We have no control over what we are doing.

- 1. Random responses from the chip when the registers are read (every command is checked with the oscilloscope):
 - Problems in the writing stage
 — We have no control over what we activate and deactivate, but
 we can have control by reading the register every time after
 writing it.
 - 2. Problems in the reading stage —— We don't have robust control over what we have written, but it doesn't significantly affect the use of the chip.
 - 3. Problems in the writing/reading stages ——— We have no control over what we are doing.
- 2. Meaning of the signals on the output lines

- 1. Random responses from the chip when the registers are read (every command is checked with the oscilloscope):
 - Problems in the writing stage
 — We have no control over what we activate and deactivate, but
 we can have control by reading the register every time after
 writing it.
 - 2. Problems in the reading stage —— We don't have robust control over what we have written, but it doesn't significantly affect the use of the chip.
 - 3. Problems in the writing/reading stages ——— We have no control over what we are doing.
- 2. Meaning of the signals on the output lines
- 3. What is the meaning of the start, and how can I control it?