
Outline Introduction and motivations Models of polymers Theory results Numerical results Conclusions and future work

Gibbs and Helmholtz ensembles for flexible and semiflexible
polymers with elastic bonds

Fabio Manca

Dipartimento di Fisica, Università di Cagliari
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Introduction to the problem
Stretching experiments on arbitrarily long single polymer molecules

Stretching experiments on single polymer molecules of arbitrary length opened the way for
studying the statistical mechanics of finite systems with relevant applications to structured
materials of biological interest

Results of stretching on DNA have been
found to be in very good agreement

with models

These results suggested that the
mechanical properties of DNA, and in

particular its flexibility have a relevant
role in many biological processes

This importance has attracted many
theoretical physicists who produced
several models and relationships to

explain the experimental results

⇒ understanding the force-extension relationship
in polymers play an important role for the natural

sciences
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Models of polymers
Ideal chains: FJC, FRC, HRM

Freely-joined chain model (FJC)

is the simplest model of a polymer

fixed length polymer segments are
linearly connected, and all bond
and torsion angles are
equiprobable

the polymer can therefore be
described by a simple random walk
and ideal chain

Freely rotating chain model (FRC)

takes into account that polymer
segments make a fixed angle to
neighbouring units because of
specific chemical bonding

under this fixed angle the segments
are still free to rotate and all
torsion angles are equally likely

Hindered rotation model (HRM)

the hindered rotation model assumes
that
the torsion angle is hindered by a
potential energy

this makes the probability of each
torsion angle proportional to a
Boltzmann factor
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Models adopted in literature
FJC and WLC

Models adopted in literature: polymer as an ideal chain

freely jointed chain (FJC) and Worm-like chain (WLC) are tipically studied [2]

these models describe a wide range of experimental results on molecules of biological
interest including DNA

Two assumptions

Main assumption 1: inextensibility of the bond

Main assumption 2: infinite number of monomers
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Contributions to the problem
Flexible and semiflexible polymers out from the thermodinamic limit

Our contribution deals with the thermoelastic response of a single chain under stretching with
two specific features: the extensibility of the bonds between the monomers and the possibility
to be far from the thermodynamic limit (arbitrary number of monomers) [1].

Out of the thermodynamic limit
different boundary conditions applied yield to

different constitutive equations

definition of flexible and semiflexible polymer models
comparison between different boundary conditions⇒ Helmholtz and Gibbs ensembles

characterisation of the convergence to the thermodynamic limit with power laws and
scaling exponent
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Analytical approach: Statistical Mechanics foundation of polymers elasticity
Definition of the problem

Disordered polymers are too complex to be described using a
deterministic method

⇒ Statistical approach is indeed mandatory

Main definitions and hypotheses

A single monomer is characterized by positions r̄i(i = 1, ...,N) and momenta
p̄i(i = 1, ...,N)

The hamiltonian of the system is: H =
∑N

i=1 p̄i · p̄i/2mi + V(r̄1, .., r̄N)

We consider the system in contact with a thermal bath at temperature T
At thermal equilibrium, the density probability in the phase space is described by the
Gibbs distribution:

ρ(q, p) =
1
Z

e
− H(q,p)

kBT

where Z =
∫∫
Γ e

− H
kBT dqdp is the partition function.
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Original developement: analytical approach
Our goal

OUR GOAL
Obtain the thermodynamics of the system starting from the above Gibbs distribution: two

dual approaches are possible

Helmholtz Ensemble

the positions of the first monomer r̄0 and of
the last monomer r̄N are fixed; the others
monomers are free to move

so we define r̄ ≡ r̄N as a macroscopic
variable (ideal gas into a given volume V)

~rN

~r0

~r1
~r2

~ri

~rN−1 k

k

k
k

k

FIXED

FIXED

Gibbs Ensemble

only the position of the first monomer r̄0 is
fixed and the others are free to move

a given force f̄ is applied to the last monomer
so we consider f̄ as a macroscopic variable
(gas constrained with a certain pressure P)

~r0

~r1
~r2

~ri

~rN−1 k

k

k
k

k

FIXED

~f

~rN

In the thermodynamics limit (number of monomers→∞) the two ensembles are
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Original developement: analytical approach
Helmoltz and Gibbs ensemble

Helmholtz Ensemble
1 Hypotheses: r̄0 fixed, r̄N and p̄N = 0 fixed
2 Hamiltonian:

H = H(r̄1, .., r̄N − 1, p̄1, .., p̄N − 1; r̄N)

3 Partition function:

Zr = Z(r̄, T) =

∫∫
Γ

e
− H(q,p,̄r)

kBT dqdp

4 Equation of state:

f̄ = 〈
∂H
∂ r̄N
〉 = −kBT

∂

∂ r̄
lnZr(r̄, T)

Gibbs Ensemble

1 Hypotheses: r̄0 fixed, f̄ applied to r̄N

2 Augmented Hamiltonian:

H = H(r̄1, ..., r̄N , p̄1, ..., p̄N)− f̄ · r̄N

3 Partition function:

Zf = Z(f̄ , T) =

∫∫
Γ

e
− H(q,p,̄f)

kBT dqdp

4 Equation of state:

r̄ = −〈
∂H
∂ f̄
〉 = kBT

∂

∂ f̄
lnZf (f̄ , T)

we found an analytic form of the partition function Z for each ensemble (Zr , Zf )

we found the two Laplace transforms that allow us to switch between the two ensembles
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Original developement: analytical approach
Results for the FJC, Gibbs and Helmholtz ensemble (thermodinamic limit)

Elongation vs. traction curve for different values of the spring constant
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Temperature: T = 293K Semiflexible
FJC: stretching potential
⇒ kS

2

∑N−1
i=0 (‖~ri+1 −~ri‖ − l)2

Gibbs Ensemble

l l+Σ xl −∆0

V (x) = 1
2k(x− l)2

The elongation r and the traction f varying in the range 3 6 kS 6 2000 kBT/m2.
Three different regimes:

1 very small applied force: entropic zone, linear relation: r = Nl2f/(3kBT)

2 elastic region characterized by a slope proportional to kS

3 finally it is reached the saturation at the energy barrier l +Σ.
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Original developement: simulation approach
Montecarlo Simulations

Original simulation results
Gibbs case: straightforwardly analytical/numerical results
Helmholtz case: much more difficult to handle because of numerical instabilities
⇒ a numerical approach can bypass such problems

We developed a Metropolis Monte Carlo
benchmark for the two ensembles

we imposed the stretching of the polymer under a force provided by a cantilever [3] with a
proper adjustable elastic stiffness ktrap

mean force on the polymer: 〈f 〉 = ktrap〈∆z〉
soft cantilever: Gibbs ensemble (ktrap = 0.01 kBT/m2)
stiff cantilever: Helmholtz ensemble (ktrap = 100 kBT/m2)
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Freely Jointed Chain
Original results

Elastic response curves

FJC⇒ kS = 2000 kBT/m2

Gibbs ensemble: single curve
(independence of N)

Helmholtz ensemble: different curves for
different numbers of monomers
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Elongations comparison at a fixed force
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each curve corresponds to a different
value of the normalized force
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⇒ the differences between the ensembles are considerable for short chains!
Monte Carlo simulations are nicely fitted by the power law with α = 1.15± 0.05
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Worm Like Chain
Original results

Elastic response curves

WLC: bending potential
⇒ κ

2

∑N−1
i=1

(
~ti+1 −~ti

)2

⇒ kS = 2000 kBT/m2 , κ = 1 kBT

Gibbs ensemble: different curves for
different numbers of monomers→
dependence of N
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α = 1.30± 0.05
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Comparison with literature
Simulations details

Marko and Siggia - Rosa et al.
Marko and Siggia interpolation formula [6]

fl
kBT

=
l

Lp

[
1

4(1− ζ)2
−

1
4
+ ζ

]
ζ = r/(Nl): polymer extension normalized to the contour length
Lp = lκ/(kBT):persistence length

asymptotically exact both in the large- and small-force limits of the continuous WLC model

Rosa et al. interpolation formula [7,8]

For the discrete version of the WLC model, where finite size of the equilibrium length l is accounted:

fl
kBT

=
2Lp

l

√1 +

(
l

2Lp

)2 1
(1− ζ)2

−

√
1 +

(
l

2Lp

)2


+

3
1− L

(
Lp
l

)
1 + L

(
Lp
l

) − l
2Lp√

1 +
(

l
2Lp

)2

 ζ
L(x) = coth x− 1/x (Langevin function)
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Worm Like Chain: comparison with literature
Original results

MC vs analytical approximation

the analytical approximation curves are contained between the Gibbs and Helmholtz
Monte Carlo solutions for N small
very good agreement with the behaviour of the WLC model at the thermodynamic limit
(N > 50 in this case)
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Semiflexible Freely Jointed Chain
Original results

Main assumption in both the standard FJC and WLC models: inextensibility of the bonds
but when considering large forces elasticity of chemical bonds becomes important
→ we set a small value for the elastic constant of the spring between the monomers
→ from the pure FJC model to a Gaussian-FJC model (extensible bonds)

Elastic response curves

stretching constant: kS = 10 kBT/m2
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α = 0.80± 0.05
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Semiflexible Worm Like Chain
Original results

Elastic response curves

stretching constant: kS = 10 kBT/m2

bending constant: κ = 1 kBT
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Conclusions and future work

Analytical development and results

WE HAVE:
1 considered the differences in the force-extension curves between the Gibbs and Helmholtz

ensembles
2 explicitly formulated flexible and semiflexible polymer models, with and without extensible

bonds

Computational development and results

WE HAVE:
1 set a workbench for molecular simulations: Metroplolis Monte Carlo
2 checked our previous theoric results by way of the simulation feedback
3 proved that different ensembles lead to the same results when stretching a polymer chain if the

number of monomers is large enough
4 showed how the convergence to the thermodynamic limit upon increasing N follows a suitable

power law

Future works

WE PLAN TO:
1 extend the models to more complex, eventually with nonlinear springs
2 consider models able to describe conformational transitions of a polymer chain
3 study the statistical mechanics of flexible chains immersed in a solvent
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