Gibbs and Helmholtz ensembles for flexible and semiflexible polymers with elastic bonds

Fabio Manca

Dipartimento di Fisica, Università di Cagliari

Dottorato di Ricerca in Fisica della Materia

Tutore: Luciano Colombo Cotutori: Stefano Giordano (CNRS Lille, Francia), Pierluca Palla (IEMN, Francia)

<ロト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<1/19</p>

Introduction and motivations

2 Models of polymers

3 Theory results

4 Numerical results

5 Conclusions and future work

<□▶ < □▶ < □▶ < 三▶ < 三▶ < 三▶ 2/19

Numerical results

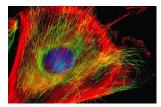
Conclusions and future work

Introduction to the problem

Stretching experiments on arbitrarily long single polymer molecules

Stretching experiments on single polymer molecules of arbitrary length opened the way for studying the statistical mechanics of **finite systems** with relevant applications to structured materials of **biological interest**

Results of **stretching on DNA** have been found to be in **very good agreement** with **models**



These results suggested that the mechanical properties of DNA, and in particular its **flexibility** have a **relevant role in many biological processes** This importance has attracted many theoretical physicists who produced several **models and relationships** to explain the experimental results

⇒ understanding the force-extension relationship in polymers play an important role for the natural sciences

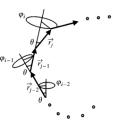
Numerical results

Conclusions and future work

Models of polymers Ideal chains: FJC, FRC, HRM

Freely-joined chain model (FJC)

- is the simplest model of a polymer
- fixed length polymer segments are linearly connected, and all bond and torsion angles are equiprobable
- the polymer can therefore be described by a simple random walk and ideal chain



Freely rotating chain model (FRC)

 $\begin{array}{c} & & & \\ & & & \\ H & & & \\ H & & & \\ H & & & \\ &$

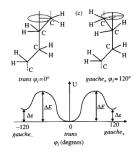
- takes into account that polymer segments make a fixed angle to neighbouring units because of specific chemical bonding
- under this fixed angle the segments are still free to rotate and all torsion angles are equally likely

Hindered rotation model (HRM)

the hindered rotation model assumes that

the torsion angle is hindered by a potential energy

• this makes the probability of each torsion angle proportional to a **Boltzmann factor**



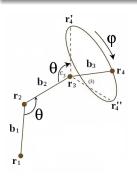
Numerical results

Conclusions and future work

Models adopted in literature FJC and WLC

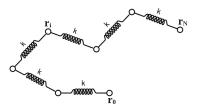
Models adopted in literature: polymer as an ideal chain

- freely jointed chain (FJC) and Worm-like chain (WLC) are tipically studied [2]
- these models describe a wide range of experimental results on molecules of biological interest including **DNA**



Two assumptions

- Main assumption 1: inextensibility of the bond
- Main assumption 2: infinite number of monomers



Our contribution deals with the thermoelastic response of a single chain **under stretching** with two specific features: the **extensibility of the bonds** between the monomers and the possibility to be **far from the thermodynamic limit** (arbitrary number of monomers) [1].

Out of the thermodynamic limit different boundary conditions applied yield to different constitutive equations

- definition of flexible and semiflexible polymer models
- comparison between different boundary conditions \Rightarrow Helmholtz and Gibbs ensembles
- characterisation of the **convergence to the thermodynamic limit** with **power laws** and **scaling exponent**

Analytical approach: Statistical Mechanics foundation of polymers elasticity Definition of the problem

Disordered polymers are too complex to be described using a deterministic method

\Rightarrow Statistical approach is indeed mandatory

Main definitions and hypotheses

- A single monomer is characterized by **positions** $\bar{r}_i (i = 1, ..., N)$ and **momenta** $\bar{p}_i (i = 1, ..., N)$
- The hamiltonian of the system is: $H = \sum_{i=1}^{N} \bar{p}_i \cdot \bar{p}_i / 2m_i + V(\bar{r}_1, ..., \bar{r}_N)$
- We consider the system in contact with a thermal bath at temperature T
- At thermal equilibrium, the **density probability** in the phase space is described by the Gibbs distribution:

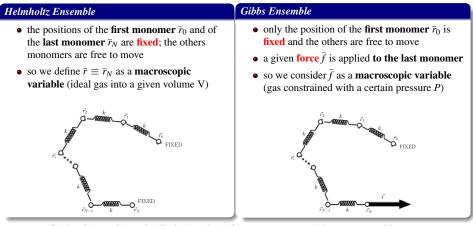
$$\rho(q,p) = \frac{1}{Z}e^{-\frac{H(q,p)}{k_BT}}$$

where $Z = \iint_{\Gamma} e^{-\frac{H}{k_B T}} dq dp$ is the **partition function**.

Original development: analytical approach

OUR GOAL

Obtain the **thermodynamics** of the system starting from the above **Gibbs distribution**: two **dual approaches** are possible



In the thermodynamics limit (number of monomers $\rightarrow \infty$) the two ensembles are equivalent

H

Theory results

Numerical results

Conclusions and future work

Original development: analytical approach

Helmoltz and Gibbs ensemble

elmnouz, Ensemble									
1	Hypotheses : \bar{r}_0 fixed, \bar{r}_N and $\bar{p}_N = 0$ fixed								
2	Hamiltonian:								
	(

$$H = H(\bar{r}_1, ..., \bar{r}_N - 1, \bar{p}_1, ..., \bar{p}_N - 1; \bar{r}_N)$$

8 Partition function:

$$Z_r = Z(\bar{r}, T) = \iint_{\Gamma} e^{-\frac{H(q, p, \bar{r})}{k_B T}} dq dp$$

Equation of state:

$$\bar{f} = \langle \frac{\partial H}{\partial \bar{r}_N} \rangle = -k_B T \frac{\partial}{\partial \bar{r}} ln Z_r(\bar{r}, T)$$

Gibbs Ensemble

- **1** Hypotheses: \bar{r}_0 fixed, \bar{f} applied to \bar{r}_N
- **2** Augmented Hamiltonian:

$$H = H(\bar{r}_1, \dots, \bar{r}_N, \bar{p}_1, \dots, \bar{p}_N) - \bar{f} \cdot \bar{r}_N$$

S Partition function:

$$Z_f = Z(\bar{f}, T) = \iint_{\Gamma} e^{-\frac{H(q, p, \bar{f})}{k_B T}} dq dp$$

Equation of state:

$$\bar{r} = -\langle \frac{\partial H}{\partial \bar{f}} \rangle = k_B T \frac{\partial}{\partial \bar{f}} ln Z_f(\bar{f}, T)$$

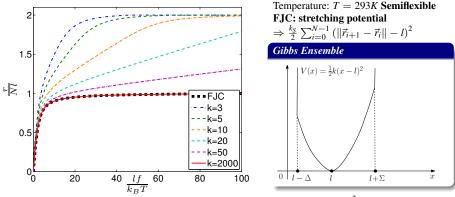
- we found an **analytic form of the partition function** Z for each ensemble (Z_r, Z_f)
- we found the two Laplace transforms that allow us to switch between the two ensembles

Numerical results

Original developement: analytical approach

Results for the FJC, Gibbs and Helmholtz ensemble (thermodinamic limit)

Elongation vs. traction curve for different values of the spring constant



The elongation *r* and the traction *f* varying in the range $3 \le k_S \le 2000 k_B T/m^2$. Three different regimes:

- very small applied force: entropic zone, linear relation: $r = Nl^2 f / (3k_B T)$
- **2** elastic region characterized by a slope proportional to k_S
- finally it is reached the saturation at the energy barrier $l + \Sigma$.

Original development: simulation approach Montecarlo Simulations

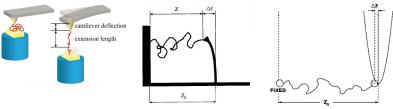
Original simulation results

- Gibbs case: straightforwardly analytical/numerical results
- Helmholtz case: much more difficult to handle because of numerical instabilities

 \Rightarrow a numerical approach can **bypass** such problems

We developed a Metropolis Monte Carlo benchmark for the two ensembles

we imposed the **stretching** of the polymer under a force provided by a **cantilever** [3] with a proper adjustable **elastic stiffness** k_{trap}



- mean force on the polymer: $\langle f \rangle = k_{trap} \langle \Delta z \rangle$
- soft cantilever: Gibbs ensemble $(k_{trap} = 0.01 \ k_B T/m^2)$
- stiff cantilever: Helmholtz ensemble $(k_{trap} = 100 k_B T/m^2)^{<\Box} \rightarrow \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

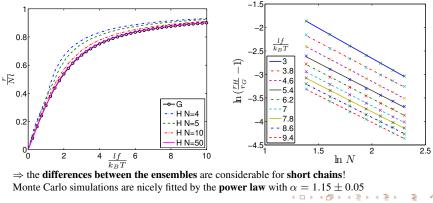
Freely Jointed Chain Original results

Elastic response curves

- FJC $\Rightarrow k_S = 2000 k_B T/m^2$
- Gibbs ensemble: **single curve** (independence of N)
- Helmholtz ensemble: **different curves** for different numbers of monomers

Elongations comparison at a fixed force

- $\frac{r_H(N)}{r_G} = 1 + \frac{a}{N^{\alpha}}$
- each curve corresponds to a different value of the **normalized force**



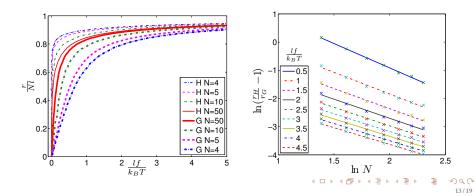
Worm Like Chain Original results

Elastic response curves

- WLC: bending potential $\Rightarrow \frac{\kappa}{2} \sum_{i=1}^{N-1} (\vec{t}_{i+1} - \vec{t}_i)^2$
- $\Rightarrow k_S = 2000 \ k_B T / m^2$, $\kappa = 1 \ k_B T$
- Gibbs ensemble: different curves for different numbers of monomers → dependence of N

Elongations comparison at a fixed force

- $\frac{r_H(N)}{r_G(N)} = 1 + \frac{a}{N^{\alpha}}$
- $\alpha = 1.30 \pm 0.05$



Numerical results

Conclusions and future work

Comparison with literature Simulations details

Marko and Siggia - Rosa et al.

Marko and Siggia interpolation formula [6]

$$\frac{fl}{k_BT} = \frac{l}{L_p} \left[\frac{1}{4(1-\zeta)^2} - \frac{1}{4} + \zeta \right]$$

 $\zeta = r/(Nl)$: polymer extension normalized to the contour length $L_p = l\kappa/(k_B T)$:persistence length

asymptotically exact both in the large- and small-force limits of the continuous WLC model

Rosa et al. interpolation formula [7,8]

For the **discrete version** of the WLC model, where finite size of the equilibrium length *l* is accounted:

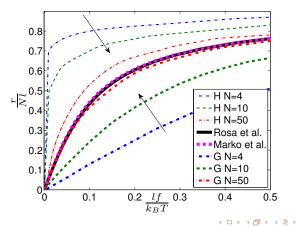
$$\frac{fl}{k_BT} = \frac{2L_p}{l} \left[\sqrt{1 + \left(\frac{l}{2L_p}\right)^2 \frac{1}{(1-\zeta)^2}} - \sqrt{1 + \left(\frac{l}{2L_p}\right)^2} \right] + \left[3\frac{1-\mathcal{L}\left(\frac{L_p}{l}\right)}{1+\mathcal{L}\left(\frac{L_p}{l}\right)} - \frac{\frac{l}{2L_p}}{\sqrt{1 + \left(\frac{l}{2L_p}\right)^2}} \right] \zeta$$

 $\mathcal{L}(x) = \operatorname{coth} x - 1/x$ (Langevin function)

Worm Like Chain: comparison with literature

MC vs analytical approximation

- the analytical approximation curves are **contained** between the Gibbs and Helmholtz Monte Carlo solutions for *N* **small**
- very good agreement with the behaviour of the WLC model at the **thermodynamic limit** (N > 50 in this case)



Semiflexible Freely Jointed Chain Original results

Main assumption in both the standard FJC and WLC models: inextensibility of the bonds but when considering large forces elasticity of chemical bonds becomes important

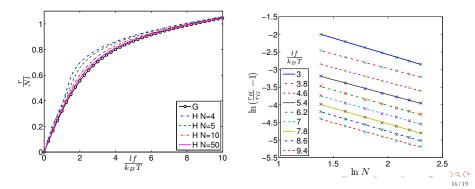
- \rightarrow we set a small value for the elastic constant of the spring between the monomers
- \rightarrow from the pure FJC model to a **Gaussian-FJC model** (extensible bonds)

Elastic response curves

• stretching constant: $k_S = 10 k_B T/m^2$

Elongations comparison at a fixed force

•
$$\frac{r_H(N)}{r_G} = 1 + \frac{a}{N^{\alpha}}$$



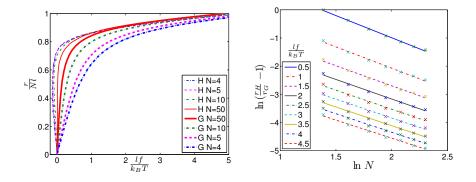
Semiflexible Worm Like Chain Original results

Elastic response curves

- stretching constant: $k_S = 10 k_B T/m^2$
- bending constant: $\kappa = 1 k_B T$

Elongations comparison at a fixed force

- $\frac{r_H(N)}{r_G(N)} = 1 + \frac{a}{N^{\alpha}}$
- $\alpha = 1.40 \pm 0.05$



Conclusions and future work

Analytical development and results

- WE HAVE:
 - considered the differences in the force-extension curves between the Gibbs and Helmholtz ensembles
 - explicitly formulated flexible and semiflexible polymer models, with and without extensible bonds

Computational development and results

- WE HAVE:
 - **1** set a workbench for molecular simulations: Metroplolis Monte Carlo
 - 2 checked our previous theoric results by way of the simulation feedback
 - Oproved that different ensembles lead to the same results when stretching a polymer chain if the number of monomers is large enough
 - Showed how the convergence to the thermodynamic limit upon increasing N follows a suitable power law

Future works

- WE PLAN TO:
 - 1 extend the models to more complex, eventually with nonlinear springs
 - 2 consider models able to describe conformational transitions of a polymer chain
 - Study the statistical mechanics of flexible chains immersed in a solvent

Outline	Introduction and motivations	Models of polymers	Theory results	Numerical results	Conclusions and future work
Biblic	ography				

- [1] F. Manca, S. Giordano, P. L. Palla, R. Zucca, F. Cleri and L. Colombo, *Thermoelastic behaviour of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles*, J. Chem. Phys., **submitted**, (2011).
- [2] Rubinstein, M.; Colby, R. H. Polymer Physics; Oxford University Press, New York, 2003.
- [3] H. J. Kreuzer and S. H. Payne, Phys. Rev. E 63, 021906 (2001).
- [4] D. Frenkel and B. Smit, Understanding Molecular Simulation; Academic Press, San Diego, 1996.
- [5] M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids; Clarendon Press, Oxford, 1987.
- [6] J. F. Marko and E. D. Siggia, Macromolecules 28, 8759 (1995).
- [7] A. Rosa, T. X. Hoang, D. Marenduzzo and A. Maritan, Macromolecules 36, 10095 (2003).
- [8] A. Rosa, T. X. Hoang, D. Marenduzzo and A. Maritan, Biophys. Chem. 115, 251 (2005).