Measurement of the Z^{0} Forward-Backward Asymmetry in muon pairs with the ATLAS experiment at LHC

UNIVERSITA' degli STUDI di ROMA

TOR VERGATA

Giulio Cornelio Grossi

Università degli studi di Roma Tor Vergata

January 202012

Summary

- A brief introduction to the Standard Model of particle physics.
- The ATLAS experiment at LHC.
- The Forward-Backward asymmetry $A_{F B}$ of $Z \rightarrow \mu^{+} \mu^{-}$events.
- Data sample.
- Event selection.
- Raw $A_{F B}$ measurement and unfolding procedure.
- Extraction of $\sin ^{2} \theta_{W}^{\text {eff }}$.
- The 1D fit method.
- Conclusions.

The Standard Model and the Electroweak theory

- The Standard Model is the theory that describes matter and its interactions in terms of elementary particles.
- The electroweak theory plays an important role in the Standard Model.
- Is based on a symmetry group $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$.
- The invariance of the Lagrangian in reached with the introduction of four bosons, W_{i}^{μ} with $i=1,2,3$ and B^{μ}.
- The electroweak interactions, charged and neutral, are mediated by vector bosons that are a combination of the \mathbf{W}^{μ} and of B^{μ}.

$$
W^{ \pm \mu}=\frac{1}{\sqrt{2}}\left(W_{1}^{\mu} \pm i W_{2}^{\mu}\right) \quad\binom{Z^{\mu}}{A^{\mu}}=\left(\begin{array}{cc}
\cos \theta_{W} & -\sin \theta_{W} \\
\sin \theta_{W} & \cos \theta_{W}
\end{array}\right)\binom{W_{3}^{\mu}}{B^{\mu}}
$$

- The particles W^{+}, W^{-}and Z^{0} were discovered at CERN by the UA1 and UA2 experiments in 1983 and studied at LEP and Tevatron.
- Their mass values agree with the prediction from the SM.

$$
M_{Z}=\frac{M_{W}}{\cos \theta_{W}}
$$

The Large Hadron Collider at CERN

- The LHC is a proton-proton collider of 27 Km circumference.
- Since March 2010 is collecting interactions at the energy of 7 TeV in the center of mass.

CERN Accelerator Complex

- Presently an integrated luminosity of about $5 \mathrm{fb}^{-1}$ has been collected.
- Peak luminosity of $3.3 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.

4 of 19

The ATLAS experiment

- General purpose detector to explore all proton-proton collisions.
- Main goals:
- The discovery of the Higgs Bosons.
- The discovery of physics Beyond Standard Model.

- Magnet system.
- Air-core toroidal magnets.
- Composed of different sub-detectors.
- Inner Detector. Three technologies:
- Si pixel.
- Si strips.
- Straw tubes.
- Central solenoid.
- Electromagnetic calorimeter.
- $\mathrm{Pb} / \mathrm{LAr}+\mathrm{Cu} / \mathrm{LAr}$.
- Hadronic calorimeter.
- $\mathrm{Pb} /$ Tiles.
- Muon spectrometer.
- Precision muon tracking (MDT+CSC).
- Dedicated trigger system (RPCs at $|\eta|<1.05$ and TGCs at $1.05<|\eta|<2.7$)
Semiconductor tracker

The Forward-Backward asymmetry $A_{F B}$ in $p p \rightarrow Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$events

- It is due to the $V-A$ nature of the electroweak interaction.
- Neutral current coupling: $J_{Z f}=\bar{f}\left(g_{V}^{f}+g_{A}^{f} \gamma_{5}\right) f$.
- Differential cross-section:

$$
\begin{gathered}
\frac{d \sigma}{d \cos \theta}=\frac{4 \pi \alpha^{2}}{3 s}\left[\frac{3}{8} A\left(1+\cos \theta^{2}\right)+B \cos \theta\right] \\
A=Q_{l}^{2} Q_{q}^{2}+2 Q_{l} Q_{q} g_{V}^{q} g_{V}^{\prime} R e(\chi(s))+\left(g_{V}^{\prime 2}+g_{A}^{\prime 2}\right)\left(g_{V}^{q 2}+g_{A}^{q 2}\right)|\chi(s)|^{2} \quad B=\frac{3}{2} g_{A}^{q} g_{A}^{\prime}\left(Q_{l} Q_{q} R e(\chi(s))+2 g_{V}^{q} g_{V}^{\prime}|\chi(s)|^{2}\right)
\end{gathered}
$$

- the $\cos \theta$ term gives rise to the forward-backward asymmetry
$A_{F B}=\frac{\sigma_{F}-\sigma_{B}}{\sigma_{F}+\sigma_{B}}=\frac{\int_{0}^{1} \frac{d \sigma}{d \cos \theta} d \cos \theta-\int_{-1}^{0} \frac{d \sigma}{d \cos \theta} d \cos \theta}{\int_{0}^{1} \frac{d \sigma}{d \cos \theta} d \cos \theta+\int_{-1}^{0} \frac{d \sigma}{d \cos \theta} d \cos \theta}=\frac{N_{F}-N_{B}}{N_{F}+N_{B}}=\frac{3 B}{8 A}$
- Forward Event: $\cos \theta>0$. Backward Event: $\cos \theta<0$.

The Collins-Soper reference frame

- Consider the incoming quark. There are two possibilities

No transverse momentum

\Downarrow
θ is determined unambiguously from the four-momenta of the leptons.
θ is the angle that the lepton makes with the proton beam in the center-of- mass frame of the lepton pair.

Significant transverse momentum

exists an ambiguity in the four-momenta of the incoming quarks in the frame of the dilepton pair.

$$
\Downarrow
$$

The Collins-Soper formalism: the polar axis is defined as the bisector of the proton beam momentum and the negative of the anti-proton beam momentum when they are boosted into the center-of-mass frame of the dilepton pair.

$$
\cos \theta^{*}=\frac{2}{Q \sqrt{Q^{2}+Q_{T}^{2}}}\left(P_{1}^{+} P_{2}^{-}-P_{1}^{-} P_{2}^{+}\right)
$$

$\sin ^{2} \theta_{W}^{e f f}$ measurement from $A_{F B}$

$$
\begin{gathered}
A_{F B}=\frac{3 B}{8 A} \\
A=Q_{I}^{2} Q_{q}^{2}+2 Q_{I} Q_{q} g_{V}^{q} g_{V}^{\prime} \operatorname{Re}(\chi(s))+\left(g_{V}^{\prime 2}+g_{A}^{\prime 2}\right)\left(g_{V}^{q 2}+g_{A}^{q 2}\right)|\chi(s)|^{2} \\
B=\frac{3}{2} g_{A}^{q} g_{A}^{\prime}\left(Q_{I} Q_{q} \operatorname{Re}(\chi(s))+2 g_{V}^{q} g_{V}^{\prime}|\chi(s)|^{2}\right) \\
\frac{g_{V}^{f}}{g_{A}^{f}}=1-\frac{2 Q_{f}}{l_{f}^{3}} \sin ^{2} \theta_{W}^{e f f}
\end{gathered}
$$

- $A_{F B}$ directly related with the value of the $\sin ^{2} \theta_{W}^{e f f}$.

Data and Monte Carlo samples

MC statistic used

Channel	Number of Events	Cross Section (nb)
$Z \rightarrow \mu \mu$	4999129	0.85525
$Z \rightarrow \tau \tau$	1998042	0.854
$W \rightarrow \mu \nu$	6965567	8.9379
$W \rightarrow \tau \nu$	998368	8.9291
$W W \rightarrow l l \nu \nu$	1399724	0.000505
$W^{+} Z \rightarrow l \nu l l$	24995	0.011126
$W^{+} Z \rightarrow l \nu q q$	24989	0.011231
$W^{-} Z \rightarrow l \nu l l$	99972	0.0060414
$W^{-} Z \rightarrow l \nu q q$	24993	0.0060842
$Z Z \rightarrow l l q q$	24990	0.0056683
$Z Z \rightarrow l l l l$	99982	0.0056757
$Z Z \rightarrow l l \nu \nu$	99978	0.0056702
$c c$	1499511	28.0305
$b b$	4482783	72.6217
$t t$	998771	0.1458

$Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$event selection

- Single muon trigger.

$$
p_{T}^{\mu}>18 \mathrm{GeV}
$$

- Vertex:
$\begin{array}{ll} & N_{\text {tracks }}>3 . \\ & z_{\text {vertex }}<150 \mathrm{~mm} .\end{array}$
- Preselection:

○ $p_{T}>20 \mathrm{GeV}$.
O Muon reconstructed using both ID and MS.

- $\eta<2.4$.
- $\left(z_{0}-z_{\text {vertex }}\right)<10 \mathrm{~mm}$.
- Isolation:

○ $\frac{\sum p_{T}}{p_{T}^{\mu}}<0.2$ in a cone of

$$
\Delta R<0.4
$$

- Opposite charge.
- Z mass window:

○ $66<M_{\mu \mu}<110 \mathrm{GeV}$.

- $1.282 \mathrm{M} Z / \gamma^{*}$ candidates found in data sample.
$\mathrm{Z} / \boldsymbol{\gamma}^{*} \rightarrow \mu^{+} \mu^{-}$invariant mass distribution

$\mathrm{Z} / \boldsymbol{\gamma}^{\boldsymbol{*}} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$rapidity distribution

Raw $A_{F B}$ measurement

- Divide the mass spectrum in bins.
- In each bin count the number of forward and backward events.
- Subtract the number of forward and backward events due to the background estimated by MC.
- Compute the raw $A_{F B}$ value using the relation:

$$
A_{F B}=\frac{N^{F}-N^{B}}{N^{F}+N^{B}}
$$

Unfolding of the $A_{F B}$ distribution.

- Two effects to be taken into account:
- Z Mass migration.

O Final state radiation (FSR) of muons and detector resolution.

- Dilution.

O Lack of knowledge on which of the beam contributes with a quark to the interaction.

- Corrections are applied by means of response matrices.
- Matrices are built using Monte Carlo truth information.
- After the unfolding perfect agreement with Standard Model prediction.

O A deviation from SM could be a signal for new physics.

Unfolded $\mathrm{A}_{\text {FB }}$ distribution

Extraction of $\sin ^{2} \theta_{W}^{\text {eff }}$

- We use an expansion of $A_{F B}$ around the Z pole in terms of the center-of-mass energy s.

$$
A_{F B}(s) \simeq A_{F B}\left(m_{Z}^{2}\right)+\frac{\left(s-m_{Z}^{2}\right)}{s} \frac{3 \pi \alpha(s)}{\sqrt{2} G_{F} m_{Z}^{2}} \frac{2 Q_{q} Q_{f} g_{A q} g_{A \mu}}{\left(g_{V q}^{2}+g_{A q}^{2}\right)\left(g_{V \mu}^{2}+g_{A \mu}^{2}\right)} \quad \frac{g_{V}^{f}}{g_{A}^{f}}=1-\frac{2 Q_{f}}{l_{f}^{3}} \sin ^{2} \theta_{W}^{e f f}
$$

- To extract $\sin ^{2} \theta_{W}^{\text {eff }}$ fit the $A_{F B}$ vs. $M_{\mu \mu}$ distribution with the expression:

$$
\begin{align*}
& A_{F B}(s) \simeq A_{F B}\left(m_{Z}^{2}\right)+\frac{s-m_{Z}^{2}}{s} \frac{3 \pi \alpha(s)}{\sqrt{2} G_{F} m_{Z}^{2}} \tag{1}\\
& \cdot\left[\frac{2\left(x_{u}+x_{c}+x_{t}\right)}{1+\left(1-\frac{8}{3} \sin ^{2} \theta_{W}^{e f f}\right)^{2}}+\frac{x_{d}+x_{s}+x_{b}}{1+\left(1-\frac{4}{3} \sin ^{2} \theta_{W}^{e f f}\right)^{2}}\right] \cdot\left[\frac{1}{1+\left(1-4 \sin ^{2} \theta_{W}^{e f f}\right)^{2}}\right]
\end{align*}
$$

- A logarithmic expansion is used for the running of the electromagnetic coupling.

$$
\alpha(s)=\frac{\alpha}{1-\Delta \alpha-\frac{\alpha}{3 \pi} \frac{38}{9} \log \frac{s}{m_{Z}^{2}}}
$$

$\sin ^{2} \theta_{W}^{\text {eff }}$ measurement

- The mass range chosen to perform the fit is 88.5 $<M_{\mu \mu}<94.5 \mathrm{GeV}$.
- Need to fit the fully unfolded $A_{F B}$ vs. $M_{\mu \mu}$ distribution.
- Results in agreement with Pythia Monte Carlo prediction.

Pythia Monte Carlo prediction

$m_{\mu \mu}$

$\sin ^{2} \theta_{W}^{\text {eff }}$	$x_{u}+x_{c}+x_{t}$	$x_{d}+x_{s}+x_{b}$
0.232	0.430	0.570

$$
\sin ^{2} \theta_{\mathrm{W}}^{\text {eff }} \text { measurement }
$$

$\sin ^{2} \theta_{\mathrm{W}}^{\text {eff }}$	$\sin ^{2} \theta_{\mathrm{W}}^{\text {eff }}$ PDG value	$\mathrm{x}_{\mathbf{u}}+\mathrm{x}_{\mathbf{c}}+\mathrm{x}_{\mathbf{t}}$	$\mathrm{x}_{\mathbf{d}}+\mathrm{x}_{\mathbf{s}}+\mathrm{x}_{\mathbf{b}}$	$\boldsymbol{\Delta} \boldsymbol{\alpha}$
0.23200 ± 0.00043 (stat.)	0.23153 ± 0.00016	0.3131 ± 0.0095 (stat.)	0.471 ± 0.011 (stat.)	0.020 ± 0.013 (stat.)

14 of 19

$\sin ^{2} \theta_{W}^{\text {eff }}$ systematics

- Also studied some systematic errors.
- Use of different PDF sets $\Delta \sin ^{2} \theta_{\mathrm{W}}^{\text {eff }}=\mathbf{0 . 0 0 0 3}$
- Use of different unfolding algorithm $\Delta \boldsymbol{\operatorname { s i n }}^{2} \theta_{\mathrm{W}}^{\text {eff }}=\mathbf{0 . 0 0 4 2}$
- Other systematic error studies are ongoing

$$
\sin ^{2} \theta_{\mathrm{W}}^{\mathrm{eff}}=0.2320 \pm 0.0045 \text { (sys.) } \pm 0.0004 \text { (stat.) }
$$

Conclusions

The ATLAS experiment at LHC is collecting proton-proton collisions at 7 TeV and successfully remeasuring SM processes

- Analyzed $\sim 1.3 \mathrm{M} \mathrm{Z} \rightarrow \mu \mu$ events collected in 2010-2011 and measured the $A_{F B}$
- This is an important test to search for new physics BSM
- From the $A_{F B}$ extracted, at the Z pole, a preliminary measurement of the $\sin ^{2} \theta_{W}^{e f f}$.
- Result in agreement with the SM expectation and precision measurement at Tevatron
- Some systematics studies already done.
- Goal is to produce a paper in February.

Backup slides

$A_{F B}$ expansion

- On the Z pole

$$
A_{F B}=\frac{3}{4} \mathcal{A}_{q} \mathcal{A}_{\mu} \quad \mathcal{A}_{q, \mu}=\frac{2 \frac{g_{V}^{q, \mu}}{g_{A}^{q, \mu}}}{1+\left(\frac{g_{V}^{q, \mu}}{g_{A}^{q, \mu}}\right)^{2}}
$$

- For a pp collider

$$
A_{F B}=\sum_{q=u, d, s, c, t, b} x^{q} A_{F B}^{q} \quad x^{q}=\frac{N_{q}^{+}+N_{q}^{-}}{N^{+}+N^{-}} \quad A_{F B}^{q}=\frac{N_{q}^{+}-N_{q}^{-}}{N_{q}^{+}+N_{q}^{-}}
$$

\Downarrow

$$
A_{F B}=\frac{3}{4}\left[\frac{2\left(1-\frac{8}{3} \sin ^{2} \theta_{W}^{\text {eff }}\right)}{1+\left(1-\frac{8}{3} \sin ^{2} \theta_{W}^{e f f}\right)^{2}} \cdot\left(x_{u}+x_{c}+x_{t}\right)+\frac{2\left(1-\frac{4}{3} \sin ^{2} \theta_{W}^{\text {eff }}\right)}{1+\left(1-\frac{4}{3} \sin ^{2} \theta_{W}^{e f f}\right)^{2}} \cdot\left(x_{d}+x_{s}+x_{b}\right)\right] \frac{2\left(1-4 \sin ^{2} \theta_{W}^{\text {eff }}\right)}{1+\left(1-4 \sin ^{2} \theta_{W}^{\text {eff }}\right)^{2}}
$$

Monte Carlo closure test (1D fit)

- The mass range chosen to perform the fit is $82<M_{\mu \mu}<97.5 \mathrm{GeV}$.
- Need to fit the fully unfolded $A_{F B}$ vs. $M_{\mu \mu}$ distribution.
- Results in agreement with Pythia true values.

	Fit Results(Monte Carlo truth)		
$\sin ^{2} \theta_{\mathrm{W}}^{\text {eff }}$	$\mathrm{x}_{\mathrm{u}}+\mathrm{x}_{\mathbf{c}}+\mathrm{x}_{\mathbf{t}}$	$\mathrm{x}_{\mathbf{d}}+\mathrm{x}_{\mathbf{s}}+\mathrm{x}_{\mathbf{b}}$	\mathbf{b}
0.2328 ± 0.0033	0.31 ± 0.24	0.50 ± 0.12	0.00497 ± 0.00088

