Measurement of the Z^0 Forward-Backward Asymmetry in muon pairs with the ATLAS experiment at LHC

Giulio Cornelio Grossi

Università degli studi di Roma Tor Vergata

January 20 2012

Summary

- A brief introduction to the Standard Model of particle physics.
- The ATLAS experiment at LHC.
- The Forward-Backward asymmetry A_{FB} of $Z o \mu^+ \mu^-$ events.
- Data sample.
- Event selection.
- Raw A_{FB} measurement and unfolding procedure.
- Extraction of $\sin^2 \theta_W^{eff}$.
 - $^{\circ}~$ The 1D fit method.
- Conclusions.

The Standard Model and the Electroweak theory

- The Standard Model is the theory that describes matter and its interactions in terms of elementary particles.
- The electroweak theory plays an important role in the Standard Model.
 - Is based on a symmetry group $SU(2)_L \times U(1)_Y$.
 - The invariance of the Lagrangian in reached with the introduction of four bosons, W^{μ}_{i} with i = 1, 2, 3 and B^{μ} .
 - $\circ~$ The electroweak interactions, charged and neutral, are mediated by vector bosons that are a combination of the W^{μ} and of $B^{\mu}.$

$$W^{\pm\mu} = \frac{1}{\sqrt{2}} \left(W_1^{\mu} \pm i W_2^{\mu} \right) \qquad \begin{pmatrix} Z^{\mu} \\ A^{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_W & -\sin \theta_W \\ \sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} W_3^{\mu} \\ B^{\mu} \end{pmatrix}$$

- The particles W^+ , W^- and Z^0 were discovered at CERN by the UA1 and UA2 experiments in 1983 and studied at LEP and Tevatron.
 - Their mass values agree with the prediction from the SM.

$$M_Z = \frac{M_W}{\cos \theta_W}$$

The Large Hadron Collider at CERN

- The LHC is a proton-proton collider of 27 Km circumference.
 - Since March 2010 is collecting interactions at the energy of 7 TeV in the center of mass.

CERN Accelerator Complex

- Presently an integrated luminosity of about 5 fb⁻¹ has been collected.
- Peak luminosity of 3.3×10³³ cm⁻² s⁻¹.

The ATLAS experiment

- General purpose detector to explore all proton-proton collisions.
- Main goals:
 - The discovery of the Higgs Bosons.
 - The discovery of physics Beyond Standard Model.

- Composed of different sub-detectors.
- Inner Detector. Three technologies:
 - Si pixel.
 - Si strips.
 - Straw tubes.
 - Central solenoid.
- Electromagnetic calorimeter.
 - Pb/LAr+Cu/LAr.
- Hadronic calorimeter.
 - Pb/Tiles.
- Muon spectrometer.
 - Precision muon tracking (MDT+CSC).
 - $\circ~$ Dedicated trigger system (RPCs at $|\eta|<$ 1.05 and TGCs at 1.05< $|\eta|<$ 2.7)
- Magnet system.
 - Air-core toroidal magnets.

The Forward-Backward asymmetry A_{FB} in $pp \rightarrow Z/\gamma^* \rightarrow \mu^+\mu^-$ events

- It is due to the V A nature of the electroweak interaction.
- Neutral current coupling: $J_{Zf} = \overline{f}(g_V^f + g_A^f \gamma_5) f$.
 - Differential cross-section:

$$\frac{d\sigma}{d\cos\theta} = \frac{4\pi\alpha^2}{3s} \left[\frac{3}{8}A(1+\cos\theta^2) + B\cos\theta\right]$$

$$A = Q_{I}^{2}Q_{q}^{2} + 2Q_{I}Q_{q}g_{V}^{q}g_{V}^{I}Re(\chi(s)) + (g_{V}^{I^{2}} + g_{A}^{I^{2}})(g_{V}^{q^{2}} + g_{A}^{q^{2}})|\chi(s)|^{2} \qquad B = \frac{3}{2}g_{A}^{q}g_{A}^{I}(Q_{I}Q_{q}Re(\chi(s)) + 2g_{V}^{q}g_{V}^{I}|\chi(s)|^{2})$$

the cos θ term gives rise to the forward-backward asymmetry

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = \frac{\int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta - \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta}{\int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta + \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta} = \frac{N_F - N_B}{N_F + N_B} = \frac{3B}{8A}$$

• Forward Event: $\cos \theta > 0$. Backward Event: $\cos \theta < 0$.

6 of 19

The Collins-Soper reference frame

Consider the incoming quark. There are two possibilities

No transverse momentum

∜

 θ is determined unambiguously from the four-momenta of the leptons. ${}_{\rm JL}$

 θ is the angle that the lepton makes with the proton beam in the center-of- mass frame of the lepton pair.

proton $\overrightarrow{P_p}$ $\overrightarrow{P_q}$ quark $\overrightarrow{P_T}$

Significant transverse momentum

exists an ambiguity in the four-momenta of the incoming quarks in the frame of the dilepton pair.

∜

The Collins-Soper formalism: the polar axis is defined as the bisector of the proton beam momentum and the negative of the anti-proton beam momentum when they are boosted into the center-of-mass frame of the dilepton pair.

$$\cos\theta^* = \frac{2}{Q\sqrt{Q^2 + Q_T^2}} (P_1^+ P_2^- - P_1^- P_2^+)$$

$\sin^2 \theta_W^{eff}$ measurement from A_{FB}

$$A_{FB} = \frac{3B}{8A}$$

$$A = Q_I^2 Q_q^2 + 2Q_I Q_q g_V^q g_V^J Re(\chi(s)) + (g_V^{I^2} + g_A^{I^2})(g_V^{q^2} + g_A^{q^2})|\chi(s)|^2$$

$$B = \frac{3}{2} g_A^q g_A^J (Q_I Q_q Re(\chi(s)) + 2g_V^q g_V^J |\chi(s)|^2)$$

$$\frac{g_V^f}{g_A^f} = 1 - \frac{2Q_f}{l_f^3} \sin^2 \theta_W^{eff}$$

• A_{FB} directly related with the value of the sin² θ_W^{eff} .

Data and Monte Carlo samples

•	An integrated luminosity of 4.8 fb $^{-1}$
	were analyzed corresponding to about
	1.3M $Z/\gamma^* ightarrow \mu^+\mu^-$ events.

- Pythia Monte Carlo sample used for signal events and background events (QCD, Z → ττ, W → μν, W → τν).
- Mc@NLO sample used for background events (WW, WZ, ZZ).
- PowHeg_Pythia sample used for $t\bar{t}$ channel.

Channel	Number of Events	Cross Section (nb)
$Z \rightarrow \mu \mu$	4999129	0.85525
$Z \to \tau \tau$	1998042	0.854
$W \to \mu \nu$	6965567	8.9379
$W \to \tau \nu$	998368	8.9291
$WW \to l l \nu \nu$	1399724	0.000505
$W^+Z \rightarrow l\nu ll$	24995	0.011126
$W^+Z \to l\nu q q$	24989	0.011231
$W^-Z \rightarrow l \nu l l$	99972	0.0060414
$W^-Z \rightarrow l\nu q q$	24993	0.0060842
$ZZ \rightarrow llqq$	24990	0.0056683
$ZZ \to llll$	99982	0.0056757
$ZZ \rightarrow l l \nu \nu$	99978	0.0056702
cc	1499511	28.0305
bb	4482783	72.6217
tt	998771	0.1458

MC statistic used

$Z/\gamma^* ightarrow \mu^+\mu^-$ event selection

M =

Single muon trigger.

 $\circ p_T^\mu > 18 \text{ GeV}.$

- Vertex:
 - \circ N_{tracks} > 3.
 - z_{vertex} < 150 mm.
- Preselection:
 - $^{\circ}$ $p_T > 20$ GeV.
 - Muon reconstructed using both ID and MS.
- η < 2.4.
- (z₀ − z_{vertex}) < 10 mm.
- Isolation:

$$\sum_{\substack{p \neq T \\ p_T^{\mu}}} \sum_{p \neq T} < 0.2 \text{ in a cone of } \\ \Delta R < 0.4$$

- Opposite charge.
- Z mass window:

$$^{\circ}$$
 66 < $M_{\mu\mu}$ < 110 GeV.

 1.282M Z/γ* candidates found in data sample.

10 of 19

$$p_T = \sqrt{p_X^2 + p_y^2}$$
$$\eta = -\log \tan \frac{\theta}{2}$$
$$y = \frac{1}{2} \log \frac{E + p_z}{E - p_z}$$
$$\sqrt{(\sum E_i)^2 - (\sum p_{Ti})^2}$$

 $Z/\gamma^*
ightarrow \mu^+\mu^-$ invariant mass distribution

Raw A_{FB} measurement

- Divide the mass spectrum in bins.
- In each bin count the number of forward and backward events.
- Subtract the number of forward and backward events due to the background estimated by MC.
- Compute the raw A_{FB} value using the relation:

$$A_{FB} = \frac{N^F - N^B}{N^F + N^B}$$

Unfolding of the A_{FB} distribution.

- Two effects to be taken into account:
- Z Mass migration.
 - Final state radiation (FSR) of muons and detector resolution.
- Dilution.
 - Lack of knowledge on which of the beam contributes with a quark to the interaction.
- Corrections are applied by means of response matrices.
 - Matrices are built using Monte Carlo truth information.
- After the unfolding perfect agreement with Standard Model prediction.
 - A deviation from SM could be a signal for new physics.

Unfolded A_{FB} distribution

12 of 19

Extraction of $\sin^2 \theta_W^{eff}$

• We use an expansion of A_{FB} around the Z pole in terms of the center-of-mass energy s.

$$A_{FB}(s) \simeq A_{FB}(m_Z^2) + \frac{(s - m_Z^2)}{s} \frac{3\pi\alpha(s)}{\sqrt{2}G_F m_Z^2} \frac{2Q_q Q_f g_{Aq} g_{A\mu}}{\left(g_{Vq}^2 + g_{Aq}^2\right) \left(g_{V\mu}^2 + g_{A\mu}^2\right)} \quad \frac{g_V^f}{g_A^f} = 1 - \frac{2Q_f}{l_f^3} \sin^2 \theta_W^{eff}$$

• To extract $\sin^2 \theta_W^{eff}$ fit the A_{FB} vs. $M_{\mu\mu}$ distribution with the expression:

$$A_{FB}(s) \simeq A_{FB}\left(m_Z^2\right) + \frac{s - m_Z^2}{s} \frac{3\pi\alpha(s)}{\sqrt{2}G_F m_Z^2}.$$
(1)

$$\cdot \left[\frac{2\left(x_u + x_c + x_t\right)}{1 + \left(1 - \frac{8}{3}\sin^2\theta_W^{eff}\right)^2} + \frac{x_d + x_s + x_b}{1 + \left(1 - \frac{4}{3}\sin^2\theta_W^{eff}\right)^2}\right] \cdot \left[\frac{1}{1 + \left(1 - 4\sin^2\theta_W^{eff}\right)^2}\right]$$

A logarithmic expansion is used for the running of the electromagnetic coupling.

$$lpha(s) = rac{lpha}{1 - \Delta lpha - rac{lpha}{3\pi} rac{38}{9} \log rac{s}{m_Z^2}}$$

13 of 19

$\sin^2 \theta_W^{eff}$ measurement

- The mass range chosen to perform the fit is 88.5 $< M_{\mu\mu} <$ 94.5 GeV.
- Need to fit the fully unfolded A_{FB} vs. M_{μμ} distribution.
- Results in agreement with Pythia Monte Carlo prediction.

< 0.15	· · · · · · /	4
		-
0.1		_
Ē		-
0.05		-
0		_
-	Part7 Data2011 (Stace) Mass-Migration+Diration Unfolding	-
-0.05		_

m_{μμ}

Pythia Monte Carlo prediction

$\sin^2 heta_{W}^{eff}$	$x_u + x_c + x_t \\$	$x_{d} + x_{s} + x_{b}$
0.232	0.430	0.570

$\sin^2 \theta_W^{\text{eff}}$ measurement				
$\sin^2 heta_{W}^{eff}$	$\sin^2 heta^{ ext{eff}}_{ ext{W}}$ PDG value	$x_{u} + x_{c} + x_{t}$	$x_{d} + x_{s} + x_{b}$	Δα
0.23200±0.00043(stat.)	$0.23153 {\pm} 0.00016$	0.3131 ± 0.0095 (stat.)	0.471 ± 0.011 (stat.)	0.020±0.013(stat.)

- Also studied some systematic errors.
- Use of different PDF sets $\Delta \sin^2 \theta_{W}^{eff} = 0.0003$
- Use of different unfolding algorithm $\Delta \sin^2 \theta_{W}^{eff} = 0.0042$
- Other systematic error studies are ongoing

 $\sin^2 \theta_{\rm W}^{\rm eff} = 0.2320 \pm 0.0045 ({\rm sys.}) \pm 0.0004 ({\rm stat.})$

Conclusions

The ATLAS experiment at LHC is collecting proton-proton collisions at 7 TeV and successfully remeasuring SM processes

- Analyzed ${\sim}1.3{\rm M}$ Z ${\rightarrow}$ $\mu\mu$ events collected in 2010-2011 and measured the ${\cal A}_{FB}$
 - $\circ~$ This is an important test to search for new physics BSM
- From the A_{FB} extracted, at the Z pole, a preliminary measurement of the sin ${}^{2}\theta_{W}^{eff}$.
 - Result in agreement with the SM expectation and precision measurement at Tevatron
 - $\circ~$ Some systematics studies already done.
- Goal is to produce a paper in February.

Backup slides

A_{FB} expansion

• On the Z pole

$$egin{aligned} \mathcal{A}_{FB} &= rac{3}{4} \mathcal{A}_q \mathcal{A}_\mu \qquad \mathcal{A}_{q,\mu} &= rac{2 rac{g_V^{q,\mu}}{g_A^{q,\mu}}}{1 + \left(rac{g_V^{q,\mu}}{g_A^{q,\mu}}
ight)^2} \end{aligned}$$

For a pp collider

$$A_{FB} = \sum_{q=u,d,s,c,t,b} x^{q} A_{FB}^{q} \qquad x^{q} = \frac{N_{q}^{+} + N_{q}^{-}}{N^{+} + N^{-}} \qquad A_{FB}^{q} = \frac{N_{q}^{+} - N_{q}^{-}}{N_{q}^{+} + N_{q}^{-}}$$

₩

$$A_{FB} = \frac{3}{4} \left[\frac{2\left(1 - \frac{8}{3}\sin^{2}\theta_{W}^{eff}\right)}{1 + \left(1 - \frac{8}{3}\sin^{2}\theta_{W}^{eff}\right)^{2}} \cdot (x_{u} + x_{c} + x_{t}) + \frac{2\left(1 - \frac{4}{3}\sin^{2}\theta_{W}^{eff}\right)}{1 + \left(1 - \frac{4}{3}\sin^{2}\theta_{W}^{eff}\right)^{2}} \cdot (x_{d} + x_{s} + x_{b}) \right] \frac{2\left(1 - 4\sin^{2}\theta_{W}^{eff}\right)}{1 + \left(1 - 4\sin^{2}\theta_{W}^{eff}\right)^{2}}$$

Monte Carlo closure test (1D fit)

- The mass range chosen to perform the fit is 82 < M_{μμ} < 97.5 GeV.
- Need to fit the fully unfolded A_{FB} vs. M_{µµ} distribution.
- Results in agreement with Pythia true values.

Fit Results(Monte Carlo truth)				
$\sin^2 heta_{W}^{eff}$	$x_{u} + x_{c} + x_{t}$	$x_{d} + x_{s} + x_{b}$	b	
$0.2328 {\pm} 0.0033$	0.31±0.24	$0.50 {\pm} 0.12$	0.00497±0.00088	