Collaboration meeting ESRF-INFN 19-20/02/2025

EUPRAXIA@SPARC_LAB S-band injector and X-band LINAC

F. Cardelli, INFN-LNF

fabio.cardelli@Inf.infn.it

INFN-LNF, Frascati, Italy 19/02/2025

Outline

- **1.** Overview of the EuPRAXIA@SPARC_LAB Project
- **2.** Layout of the Linac
- **3.** S-band Injector
- 4. X-band module layout
- 5. RF components designed realized and tested
- 6. TEX Facility and Upgrade
- 7. X-band structure design and first test

EuPRAXIA@SPARC_LAB project

- » The project is one of the pillars of the European Project EUPRAXIA (<u>http://www.eupraxia-project.eu/</u>) European Plasma Research Accelerator with excellence in Applications
- » EuPRAXIA has been included in the ESFRI 2021 Roadmap
- » The project EuPRAXIA@SPARC_LAB is the pillar of the EuPRAXIA project based on beam driven plasma wakefield acceleration (PWFA). It aims at constructing a FEL radiation source (two FEL lines λ_{FEL} =4 nm and 50-180nm) combining:
 - » 1GeV RF X-band Linac with an high brightness injector
 - » Plasma module for PWFA.
- » The project is currently in the preparatory phase of the Technical Design Report.
- » A **new building**, now under executive design phase, will host the new Facility at LNF, the construction should start in September 2026.

Layout of the EuPRAXIA RF LINAC

Courtesy of E. Di Pasquale and M. Del Franco

S-band injector

Side view

S-band RF Gun

- elliptical irises with increased aperture
- Four symmetric ports, one connected to the input waveguide and 3 for vacuum pumping. These ports compensate the dipole and quadrupole magnetic field component induced by the input coupler.
- The coupling hole strongly rounded to reduce the peak surface magnetic field and the pulsed heating.
- The gun will be fabricated w/o brazing using special RF-vacuum gaskets

Parameters	SPARC Gun	CLEAR Gun	
f _{res} [GHz]	2.856	2.99855	
Q ₀	13500	13800	
Nominal Cath. peak field [MV/m]	120		
E _{cathode} /√(P _{diss}) [MV/(mMW ^{0.5})]	37.5		
E _{surf} /E _{cath}	0.9		
Δ freq. 0 / π -mode [MHz]	~ 41	~ 44	
RF input power [MW]	12-16		
RF pulse length [μs]	1-2		
Coupling β	2		
H _{surf} [kA/m]	< 300		
Pulsed heating	< 30 [°C]		
Repetition rate	10 [Hz]		
Working temp.	30 [°C]		
Fill. Time (τ)	~ 500 ns		

The tuning and simulations have been performed with Poisson Superfish and Ansys HFSS.

S-band injector

S-band injector

X-band RF Module Layout

X-band RF Module Layout

X-band RF Module Layout

X-Band Power Sources

Currently we have a test stand based on **CPI VKX8311** Klystron Two other klystrons will be tested at INFN:

- A. CANON E37119
 - » Low modulator peak power requirement
 - Very high repetition rate (Interesting for a future upgrade of the machine)
- **B. CPI High efficiency VKX8311HE** (developed in collaboration with CERN).
 - » High efficiency
 - » High peak power available

Status:

- Test station based on the VKX8311A klystron already commissioned and in operation at TEX facility
- CPI VKX8311HE is **in procurement phase** (expected delivery 08/2025 and test scheduled in Autumn 2025)
- CANON E37119 klystron with modulator
 - FAT of the klystron done @CANON on a PFN modulator 11/2023, 25 MW, 10 Hz, t=1.5us
 - FAT of the RF source @Scandinova 05/2024, full power in diode mode
 - Modulator and klystron positioned at TEX
 - SAT with Scandinova and Canon is scheduled in April

Parameter	Unit	Canon E37119	CPI VKX8311HE	CPI VKX8311
Frequency	MHz		11994	
Vk beam voltage	kV	318	415	430
Ik cathode current	Α	197	201	330
Peak drive power	W		500	
Peak RF output Power	MW	25	50	50
Average RF output power	kW	15	7,5	7,5
Modulator Average power	kW	75,2	25	43
RF pulse length	us		1,5	
Repetition Rate	Hz	400	100	100
Gain	dB	47	50	47
Efficiency	%	40	55	40

Klystron CPI VKX8311HE

X-Band Power Sources

Currently we have a test stand based on CPI VKX8311 Klystron

- Two other klystrons will be tested at INFN:
- A. CANON E37119
 - » Low modulator peak power requirement
 - » Very high repetition rate (Interesting for a future upgrade of the machine)
- **B. CPI High efficiency VKX8311HE** (developed in collaboration with CERN).
 - » High efficiency
 - » High peak power available

Status:

- Test station based on the VKX8311A klystron already commissioned and in operation at TEX facility
- CPI VKX8311HE is in procurement phase (expected delivery 08/2025 and test scheduled in Autumn 2025)
- CANON E37119 klystron with modulator
 - FAT of the klystron done @CANON on a PFN modulator 11/2023, 25 MW, 10 Hz, t=1.5us
 - FAT of the RF source @Scandinova 05/2024, full power in diode mode
 - Modulator and klystron positioned at TEX
 - SAT with Scandinova and Canon is scheduled in April

Parameter	Unit	Canon E37119	CPI VKX8311HE	CPI VKX8311
Frequency	MHz		11994	
Vk beam voltage	kV	318	415	430
lk cathode current	A	197	201	330
Peak drive power	W	500		
Peak RF output Power	MW	25	50	50
Average RF output power	kW	15	7,5	7,5
Modulator Average power	kW	75,2	25	43
RF pulse length	us		1,5	
Repetition Rate	Hz	400	100	100
Gain	dB	47	50	47
Efficiency	%	40	55	40

CANON E37119

FAT of the RF Source

Installation at TEX

Spiral Loads

- Realization by 3D printing based on CERN design: done
- Low Power RF test: done
- High Power test: *done*
- Currently used as load for TW structures
- We procured 6 spiral loads 3D printed. Two has been installed and conditioned up to 35 MW with 200 ns pulse length at 50 Hz.

#	Company	S11@f0 [dB]
001	3t am	-31
002	3t am	-30
003	ISC	-37,7
004	ISC	-36,4
005	ISC	-42
006	ISC	-43,9

Currently, realization is by **additive manufacturing**. We are developing a design that can be implemented by **milling**:

- **Motivation**: the aim is to allow other companies to be able to realize this type of load even without the use of additive manufacturing
- The idea is to replace the vacuum pumping holes by «cutting» the entire load transversely leaving a 1 mm thick gap along the entire length of the waveguide.
- To do this, the thickness of the waveguide walls have been increased from 2 mm to 3 mm to decouple the field between the waveguide windings. The windings of the spiral have been recalculated to keep the overall length of the waveguide as in the original design.

EM and mechanical design: *done* Manufacturing : *ongoing*

Mode Converter

- Modified version of the "wrap around" mode converter from TE₁₀[□] to TE₀₁° developed at SLAC and pumping port for circular waveguide
- EM and mechanical design: *done*
- Machining by a private company (TSC): *done*
- Brazing at INFN-LNF: *done*
- Low Power RF test: *done*
- High Power test: *done*

10 15

S. Tantawi, et all. (2000). Reviews of Modern Physics – doi: 10.1103/PhysRevSTAB.3.082001

Brazing free BOC Pulse Compressor

- We are developing a new design for X-band BOC that implements the INFN-LNF brazing-free technology
- » The brazing free or "clamping" technology is based on the use of special RF/vacuum gaskets [8,9]
- » The choice of the mode to increase the Q_0 keeping the size of the BOC reasonable.
- » To use the gaskets has been introduced a gap on the edge of the circular waveguide, with new input splitter design
- » EM design: *done*
- » The mechanical design and cooling system design: ongoing
- » The development of a high rep. rate brazing free BOC is part of PACRI Project

	Pulse Compressor	Parameter
	Frequency	11.994 GHz
	Resonant Mode	TM _{16,1,1}
	Diameter	171 mm
	Q ₀	130000
	Coupling factor β	6.5
	140 120 100 00 0 0 0 0 0 0	2 25 s
Q ₀ (x10 ⁵)	2.25 2 1.75 1.5 1.5 1.5 0.5 4 6 8 10 12 14 16 azimuthal num	18 20 22 24 26 nber

D. Alesini, et al., 13th Int. Particle Accelerator Conf. (IPAC22), Bangkok, Thailand, June 2022, paper MOPOMS019 D. Alesini, et al., 14th Int. Particle Accelerator Conf. (IPAC23), Venice, Italy, May 2023, paper TUPA009

X-Band RF Components

				Double Heigh
COMPONENT	DESIGN BY	STATUS	HIGH POWER TEST	Waveguide DHWR90
Pump unit (rect. wav.)	CERN	Fabricated and installed @ TEX	45 MW, 1 μs, 50 Hz, P _{avg} = 2.25 kW	Circular waveguide Pumping units
Directional coupler	CERN	Fabricated and installed @ TEX	45 MW, 1 μs, 50 Hz, P _{avg} = 2.25 kW	(INFN design)
Splitter	CERN	Fabricated and installed @ TEX	35 MW, 0.6 μs, 50 Hz, P _{avg} = 1 kW	(INFN-SLAC design) (CERN design) NEXTORR Pumps
RF load	CERN	Fabricated and installed @ TEX	17 MW, 0.6 μs, 50 Hz, P _{avg} = 0.5 kW	3dB Hybrid (CERN design)
Mode converter circular/rectangular	INFN/SL AC	Fabricated and Installed @ TEX	35 MW, 1 μs, 50 Hz, P _{avg} = 1.75 kW	Directional
Pump unit (circ. waveg.)	INFN/SL AC	Fabricated and Installed @ TEX	35 MW, 1 μs, 50 Hz, P _{avg} = 1.75 kW	couplers (CERN design)
3dB hybrid	CERN	Delivered	To be tested	
BOC pulse compressor	PSI	Delivered and installed @ TEX	To be tested	Splitter (CERN design) X band structures (INFN design)
Double height waveguide	INFN/CE RN	To be realized	To be tested	

TEX Facility

F. Cardelli et al., 13th Int. Particle Accelerator Conf. IPAC22, Bangkok, Thailand, Jun. 2022, paper TUPOPT061

L. Piersanti et al. "RF power station stabilization techniques and measurements at LNF" In Proc. IPAC24 - TUPR01.

L. Piersanti et al. "Design and test of a klystron intra-pulse phase feedback system for electron linear accelerators" Photonics 2024, 11(5), 413. F. Cardelli et al., in Proc. IPAC'24, Nashville, TN (2024) paper TUPR02

TEX facility (2)

TEX is located at the building 7 of INFN-LNF that has been completely refurbished to host this facility.

Rack Room

Control Room

Bunker

TEX Upgrade

- >> Thanks to PNRR Rome Technopole project, €3M have been allocated for the upgrade of the TEX facility and Latino project.
- » Procurement, installation and test of two new RF sources and waveguide system:
- 1. X-band (11994 MHz) 25MW, 400Hz Power Source
- 2. C-band (5712 MHz) 20MW, 400Hz Power Source
 - FAT of the klystron done @CANON on a PFN modulator 11/2023
 - FAT of the RF source @Scandinova 05/2024, full power in diode mode
 - Modulator and klystron positioned at TEX
 - SAT with Scandinova and Canon is **scheduled at the beginning of 2025** depending on the dry cooler commissioning

Parameter	Unit	Canon E37119	Canon E37217
Frequency	MHz	11994	5712
Vk beam voltage	kV	312	254
Ik cathode current	А	199	196
Peak RF output Power	MW	25	20
Average RF output power	kW	15	21
Modulator Average power	kW	80	80
RF pulse length	μs	1.5	2.5
Repetition Rate	Hz	400	400
Gain	dB	47	50
Efficiency	%	40	40

CANON E37119

FAT of the two Sources

Installation at TEX

TEX Upgrade (2)

High average power

Test bench 2

High peak power

Test bench 1

- » The 2nd **test bench will double the TEX X-band testing capabilities** and will allow for high average power test of X-band components.
- » The 1st test bench has been moved and the waveguide network modified.
- » All the waveguide system has been already designed and procured and his installation is ongoing:

C-band Gun and FRINGE photoinjector

- The C-band source will be used to power and test at high repetition rate a C-band RF photogun realized in the framework of the IFAST project.
- In a second phase it will be integrated with a traveling wave (TW) structure to form a compact photoinjector and will be used for the generation of high brightness beam and experimental studies.
- This will be a first test facility for a full C-band injector operating at 400Hz for the EuPRAXIA@SPARC_LAB project.

Courtesy of E. Di Pasquale, L. Faillace, S. Pioli, A. Giribono, G. Costa and L. Spallino.

Preliminary working ponts:

- Laser pulse length 100 fs
- Bunch charge 750/250/50 pC
- Bunch length 300 um rms
- Emittance 3.5/0.5/0.3 mm-mrad

IFAST high gradient C-band Gun

C-band (6 GHz) RF Gun enables **higher achievable cathode peak fields** (>120MV/m) and due to its **increased efficiency**, is also suitable for high repetition rates operation (1 KHz). This should lead to **better quality of the generated beam**.

C-Band RF gun design and realization has been funded by the European I.FAST project and INFN Commission V

	ρ
CSN5 Ricerca Fecnologica	

Parameter	Unit	Value
Frequency	MHz	5712
Peak input power	MW	23 (19)
Cathode peak field	MV/m	180 (160)
Rep. Rate	Hz	100 (400)
Quality factor		11900
Filling time	ns	166
Coupling coefficient		3
Rf pulse length	ns	300
E _{surf} /E _{cath}		0,96
Mod. Poy. vector	W/um²	3.2 (2.5)
Pulsed heating	°C	20 (16)
Average diss. Power	W	320 (1000)

D. Alesini et al., MOPOMS021, IPAC2022, Bangkok, Thailand, p. 679, 2022 D. Alesini et al., TUPA009, IPAC2023, Venezia, Italy, p. 1356, 2023 A. Giribono et al., PRAB 26, 083402, 2023 F. Cardelli, Nuovo Cimento issue 5 (2024)

- » The **electromagnetic design** has been guided to minimize surface peak fields, Modified Poynting vector and Pulsed heating
- » Mechanical realization with Hard copper and clamping technology: Reduced costs and risks of failure, Low BDR, Low conditioning time

C-band gun high Power test at PSI

The whole system has then been transported to **PSI and installed in the High Power Test Stand.** RF conditioning began in **February 2024**. The conditioning was done in a semi-automatic way at a repetition rate of **100 Hz**. Conditioning dominated by the vacuum activity in the **waveguide**. Final maximum input power limited by a vacuum **activity in the ceramic of the Klystron**. The cathode peak field reached is about **160 MV/m**.

In **January 2025** the Gun will be shipped back to LNF and installed in the TEX bunker. Once the Cband RF source will be commissioned the conditioning of the Gun will continue increasing the cathode peak field up to 180 MV/m.

RF Gun Installed @PSI (Switzerland)

X-band Accelerating structures design

- The EM design of the structure is completed: 1.05 m long structures with 3.5 mm average iris radius design to work with an average acceleration gradient of 60 MV/m. The single cell and RF structure optimization has been completed developing a semi-analytical code to consider also the power gain from the BOC pulse compressor: *done*
- » Thermo-mechanical simulations to demonstrate the correct sizing of the cooling system (at 100 Hz and 400 Hz): *done*
- » Dark current simulations (CST Particle in cell) have been performed to evaluate the background radiation together with vacuum calculation to verify the pression distribution along the structure: *done*
- The final mechanical design of the final X-band structure has been under constant review, related to the result of the pre-prototyping activity: brazing test, cell to cell alignment, etc: done

	Value		
PARAMETER	Quasi-Constant	Constant	
	Gradient	Impedance	
Frequency [GHz]	11.994	42	
Average acc. gradient [MV/m]	60		
Structures per module	2		
Iris radius a [mm]	3.85 - 3.15	3.5	
Tapering angle [deg]	0.04	0	
Struct. length L _s act. Length [m]	1.05		
No. of cells	112		
Shunt impedance R [MΩ/m]	93-107	100	
Effective shunt Imp. R $_{\rm sh_eff}$ [M Ω/m]	350	347	
Peak input power per structure [MW]			
Input power aver. over the pulse [MW]	51		
Average dissipated power [kW]	1		
P _{out} /P _{in} [%]	25		
Filling time [ns]	130		
Peak Modified Poynting Vector [W/µm ²]	3.6	4.3	
Peak surface electric field [MV/m]	160	190	
Required Kly power per module [MW] 22.5			
Kly RF pulse length [µs]	1.5		
Repetition Rate [Hz]	100		

25

Structure Prototyping

Four main steps of prototyping:

- Pre-prototypes on 3-cells and simplified couplers to test and optimize the brazing procedure, cells assembly, alignment etc: done
- Full scale mechanical prototype: 1.05 m prototype to test the overall brazing process of the full structure and the cell-to-cell alignment before and after brazing: *done*
- 20 (+2) cells RF prototype for high power test w/o tuning, constant impedance: realized, high power test is ongoing
- Final full scale EuPRAXIA@SPARC_LAB structure prototype 1.05 m constant impedance: ongoing

Ø10

Mechanical Prototype brazing

2x Full scale mechanical prototype for brazing optimization and test

To maintain the alignment and cell to cell straightness during and after the brazing process, each cell is fixed to the next one by means of screws and mounted on a very precise granite support. This ease also the cells assembly

Results on the brazed structure

- Vacuum test OK (except one coupler for a miss-positioning of the brazing alloy)
- Straightness <±15 μm obtained after brazing on both the prototypes (±30 μm required by BD)

RF prototype

X-band, 20 (+2) cells, CI, travelling wave structure prototype

- » It has been realized without tuners on the cells, we just have a couple of tuners on the two couplers
- » We perform low power measurements before cells brazing (thank to the screws), after the brazing and then aftert the tuning of the couplers.
- » During the measurements and the tuning procedures the structure has been continuosly fluxed with nitrogen.
- » All the cells seems to be smaller (2-3 um on the diameter) to obtain the best response from the cells we will increase the working temperature → $T_{cav} = 30 35$ °C

RF prototype high power test

- » In March 2024 we perform the high-power test of the first EuPRAXIA@SPARC_LAB Xband structure prototype.
- » 20 cells, constant impedance, RF prototype (the real structure will be 1 m long).
- In 10 days we reach an input pulse of 35 MW, 100 ns length at 50 Hz repetition rate, that correspond to an average gradient along the structure equal to 74 MV/m and a peak gradient at the structure input of 80 MV/m with a BDR nearly 1e-5.
- » The test will continue, after the TEX upgrade, with the BOC pulse compressor installed on the line.
- » The realization of a full-scale RF prototype is ongoing.

THANK YOU FOR YOUR ATTENTION

Aknowledgements:

INFN: D. Alesini, M. Bellaveglia, S. Bini, B. Buonomo, S. Cantarella, G. Catuscelli, P. Chimenti, R. Clementi, G. Costa, A. Falone, L. Faillace, M. Ferrario, A. Gallo, A. Giribono, C. Di Giulio, E. Di Pasquale, G. Di Raddo, G. Latini, A. Liedl, V. Lollo, L. Piersanti, S. Pioli, L. Sabatini, B. Serenellini, L. Spallino, C. Vaccarezza, A. Vannozzi, on behalf of the INFN-LNF Accelerator Division and Technical Division

CERN: N. Catalan Lasheras, A. Grudiev, P. M. Sanchez, I. Syratchev.