## **ESRF Status and Plans**

## S. White

Material from: N. Carmignani, L. Carver, S. Liuzzo, T. Perron, A. Sauret, P. Borowiec, M. Dubrulle, M. Morati, V. Serriere, A. D'Elia, L. Hardy, T. Brochard, D. Baboulin, G. Le Bec, C. Benabderrahmane



The European Synchrotron

**ESRF-EBS** accelerator complex

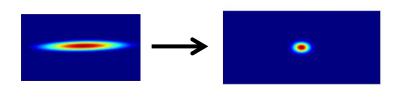
**ESRF-EBS** operation status

**Storage ring improvements** 

Injection and injectors upgrade

**New Linac project** 



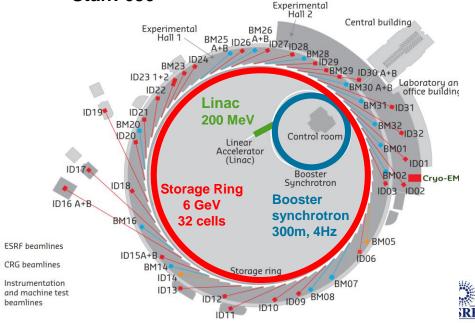

Page 2 INFN Frascati Collaboration - 19/02/25 - S. White

### ESRF ACCELERATOR COMPLEX

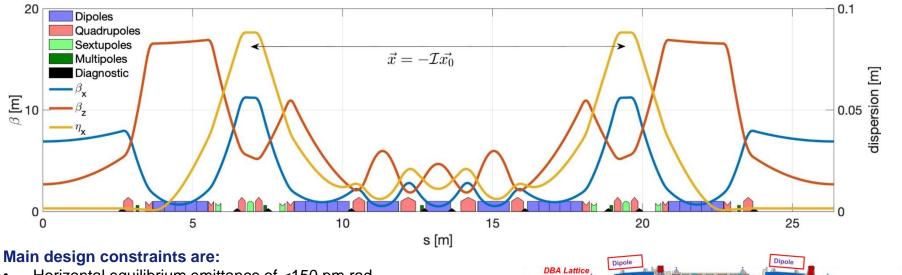


### The ESRF Extremely Brilliant Source upgrade:

- Decrease the horizontal emittance
- Increase the source brilliance
- Increase the source coherence




## Light source in operation since 1994 located in Grenoble, France:


- 33 Insertion Devices (ID) end stations
- 16 Bending Magnets (BM) end station
- 1 Cryo-Electron Microscope (Cryo-EM)

### 22 partner nations:

- Annual budget: 100 million euros
- Staff: 650



### **HMBA LATTICE**



- Horizontal equilibrium emittance of <150 pm.rad</li>
- Fit existing tunnel and infrastructure and maintain beamlines
- Use existing injectors chain
- Minimize energy loss and power consumption

#### HMBA technical solutions:

- Longer and weaker "Multi-Bends": combined function magnets with low
- dispersion + longitudinal gradient permanent dipoles
- Dispersion bump with -I transform: weaker, fewer sextupoles with partial compensation of aberrations for improved lifetime and acceptance

31 magnets per cell instead of 17

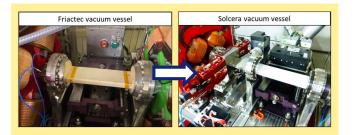
Dipole-quadrupole

Dipole

#### **ESRF-EBS design:**

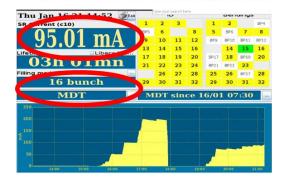
Dipole

Dipole


- Horizontal emittance ~135 pm.rad
- Touschek Lifetime ~20h
- Injection efficiency >90%

### **OPERATION MODES**

|                          | 7/8 + 1  | Uniform  | 28*12+1<br>(Hybrid) | 16 bunch | 4 bunch  |
|--------------------------|----------|----------|---------------------|----------|----------|
| I <sub>max</sub> (mA)    | 192+8    | 200      | 192 + 8             | 75       | 40       |
| Lifetime (h)             | > 20     | ~ 25     | > 16                | ~ 5.5    | ~ 5      |
| $arepsilon_v$ (pm)       | 10       | 10       | 20                  | 20       | 40       |
| Nominal<br>Reached<br>on | 13/09/22 | 21/11/20 | 14/11/22            | 23/08/22 | 05/12/22 |


\* Intensity limitation for timing modes due to mech. weakness of the kicker ceramic chambers \* Vertical emittance artificially increased from 1 pm rad for an operational lifetime

\* All timing modes delivered with a purity of 10<sup>-9</sup> with cleaning process in the booster



New ceramic chambers finally installed and validated

#### And ... on 16<sup>th</sup> January 2025 !



### Uniform (200 mA) 12% 16 bunch (75 mA) 23% 7/8 + 1 (200 mA) 54% 28\*12 + 1 (200 mA) 5% 4 bunch (40 mA) 6.1%



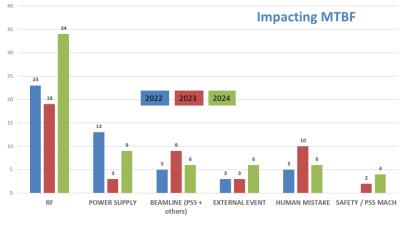


### ALL ESRF MODES IN ONE GRAPH

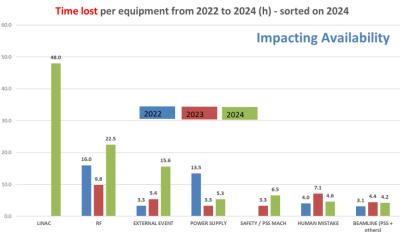


Injection efficiency in USM varies between 60% and 80% depending on the mode




| MACHINE – USM                       | 2020  | 2021  | 2022  | 2023               | 2024  |
|-------------------------------------|-------|-------|-------|--------------------|-------|
| Availability (%)                    | 96.08 | 96.35 | 99.06 | 99.28<br>* (97.85) | 97.92 |
| Mean Time Between<br>Failures (hrs) | 46.00 | 66.4  | 88.5  | 107.1<br>*(105.6)  | 76.2  |
| Mean duration of a<br>failure (hrs) | 1.80  | 2.42  | 0.83  | 0.77               | 1.59  |

\* Without compensation


Overall performance improving, main source of failures are RF sytems

Power supply hotswap system now fully deployed

## 2024: 48h downtime due to single linac failure



Number of failures per equipment from 2022 to 2024 - sorted on 2024



The European Synchrotron

LONL

### **STORAGE RING IMPROVEMENT – RF SYSTEMS**

## Replacement of 352 MHz 1.1 MW klystrons by SSA power sources:

- Major infrastructure work needed (pipe, holes, cables, cooling, ...)
- SAT performed either with EBS mono-cell cavity of on a load
- SSA0 delivered, tests and validation ongoing



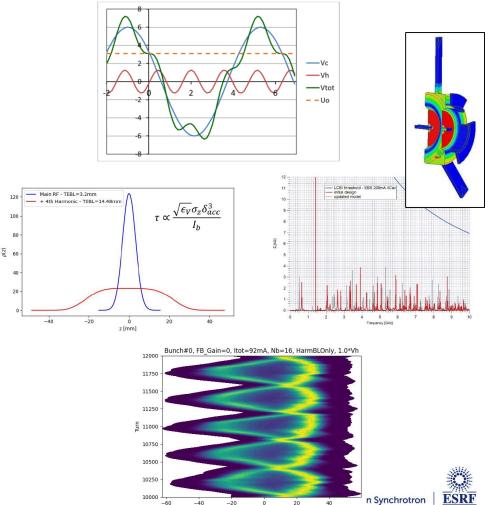








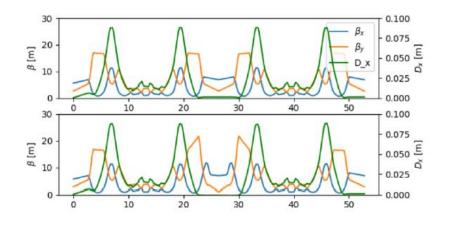
### 4<sup>TH</sup> HARMONIC CAVITY PROJECT


### Implementation of harmonic cavities to increase lifetime has several benefits:

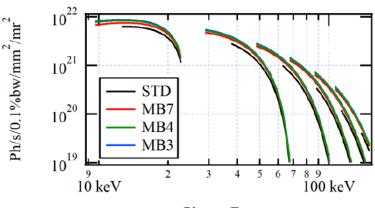
- Fewer shorter injections
- Reduced losses on ID gaps
- Reduced beam induced heating

Initially considered a 2-cell cavity design, now moved to 1-cell design to simplify cooling circuits

## Considered at ESRF-EBS for equidistant modes (timing + uniform);


- Collective effects and instabilities
- Transient beam loading for hybrid modes




ct [mm]

### **BRILLIANCE INCREASE**

# Request for beam lines to reduce ID gaps: criteria for ESRF, operate at constant losses on the gap



| Energy | STD                                                                   | MB7   | MB4   | MB3   |  |  |  |
|--------|-----------------------------------------------------------------------|-------|-------|-------|--|--|--|
| [keV]  | [10 <sup>21</sup> photons/s/0.1%/mm <sup>2</sup> /mrad <sup>2</sup> ] |       |       |       |  |  |  |
| 12.6   | 6.27                                                                  | 7.46  | 8.35  | 8.74  |  |  |  |
| 50     | 1.07                                                                  | 2.34  | 2.56  | 2.65  |  |  |  |
| 100    | 0.143                                                                 | 0.334 | 0.363 | 0.374 |  |  |  |

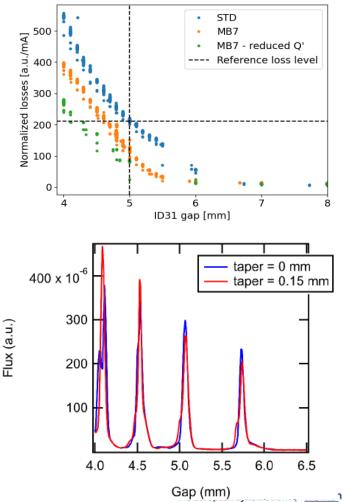




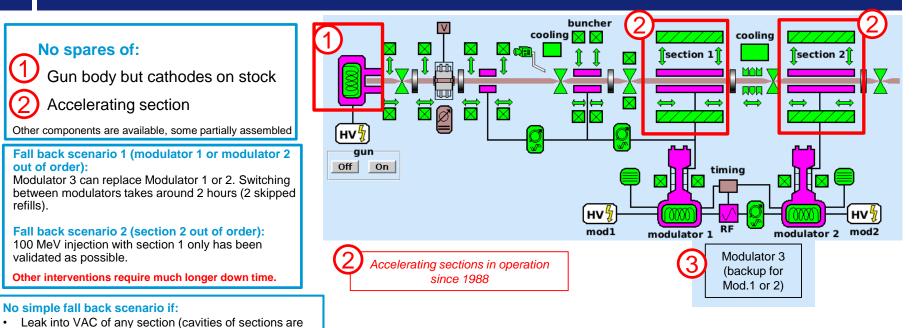
# Mini-beta optics designed for ESRF-EBS:

- Most of the gain from reduction of the ID gap
- Horizontal beta matching does not contribute significantly to the brilliance
  The European Synchrotron
  ESRF

### **BRILLIANCE INCREASE**


# Brilliance increases as expected but losses do not scale with beta function as expected

## Mini-beta optics do not seem to be the most promising option to close ID gaps:


- Touschek losses increased with gap reduced to 4mm
- Injection efficiency reduced by ~10% with gap closed at 4mm

# Operation with low ID gap is presently not possible:

- HALO reduction: low Q' optics + HC
- High brilliance uniform mode?
- Alternative injection scheme: shared oscillation using fast stripline kickers



### **INJECTORS - LINAC CONSOLIDATION**



#### Implemented actions:

.

- Purchase of new accelerating section -> CFT awarded by Research Instruments GmbH, delivery September 2025, kick-off meeting already held
- Purchase of RF Unit which consists: solid state modulator, HV transformer, focusing coils with PS, RF driver, control unit, Canon klystron. -> CFT awarded by Nodica Group (former Scandinova AB), delivery September 2025, kickoff meeting already held
- Purchase of vacuum chamber to replace any section -> delivered ٠
- Machining of the gun body -> to be launched ٠



SAT: autumn 2025

not brazed, they are just screwed together)

Section 1 failure (i.e. solenoid), (100 MeV injection with

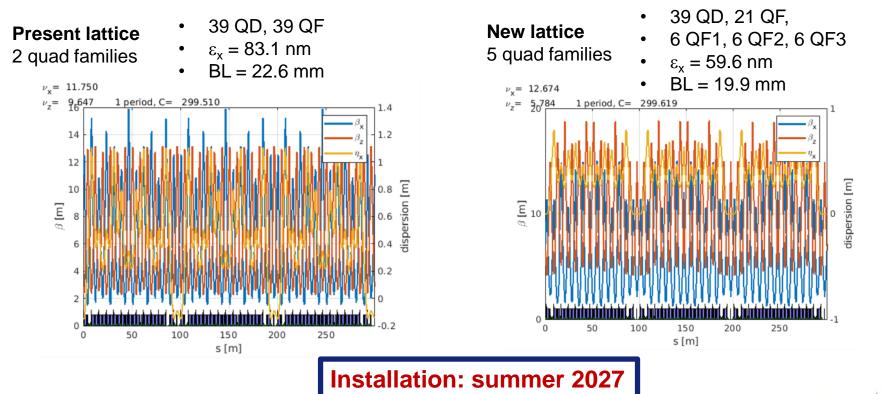
Working section needs to be installed on the first position

Strong motivation to increase the reliability level.

section 2 only is not possible)

out of order):

refills).


•

(3)

### **BOOSTER LIGHT UPGRADE**

In 2022, several options for a light upgrade of the booster have been studied and the options are presented in at IPAC22: Options for a Light Upgrade of the ESRF Booster Synchrotron Lattice (T. Perron)

The basic idea is to increase the number of quadrupole families from 2 to more (4, 5 or 6) to reduce horizontal emittance. This was initially proposed by P. Raimondi.



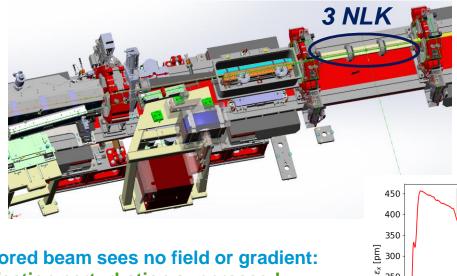
The European Synchrotron

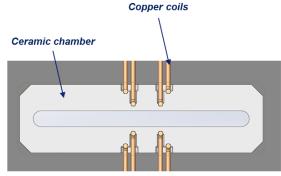
### NON LINEAR KICKER INJECTION

### **Provide transparent injection:**

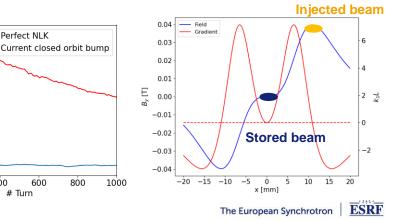
- Most beam lines cannot acquire data during injections
- NLK injection scheme found as the most promising option (can be combined with other methods) Copper coils

250


200


150

0


200

400

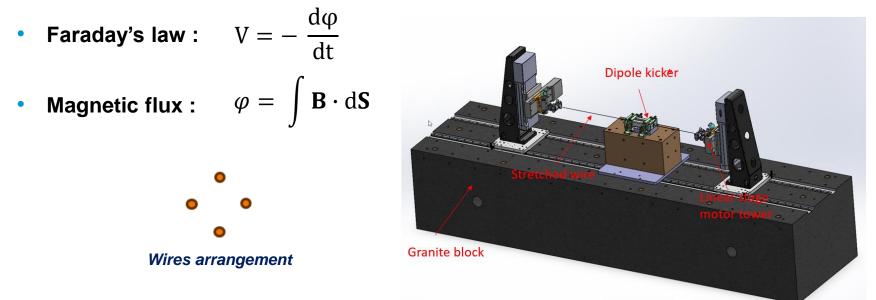




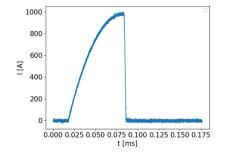
Cross-section of the proposed non-linear kicker.



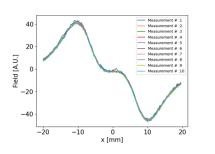
Stored beam sees no field or gradient: injection perturbation suppressed Field quality strongly depends on coils position: precise characterization required


### PULSED MAGNETS MEASUREMENT BENCH

### **Developed dedicated pulsed magnets measurement bench:**

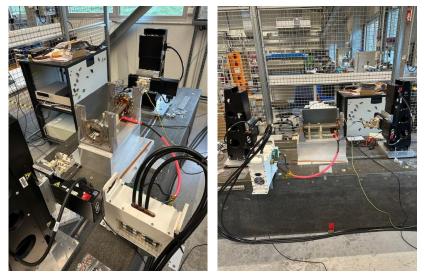

- Adaptation of stretched-wire measurement
- 2 loops for simultaneous measurement of horizontal and vertical planes
- Voltage (V) measured across loops and converted to magnetic flux value
- All multipoles reconstructed from 2D fit of measurement on a closed contour

### **Theoretically :**


#### 3D scheme of the magnetic test bench.



### **Existing SOLEIL NLK installed on the bench for validation** Use ESRF injection kickers power supplies (2kA)




Current profile delivered by the power supply.



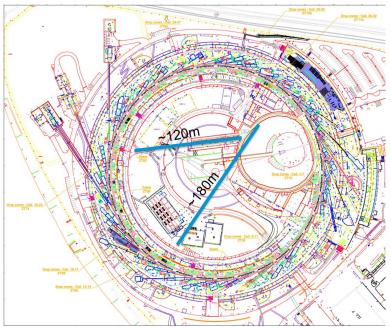
Step = 0.5mm 0.02 0.01 0.00 -0.01 -0.02 -20 -10 0 10 20x [mm]

> Agreement of experimental data with the simulated SOLEIL'NLK field.



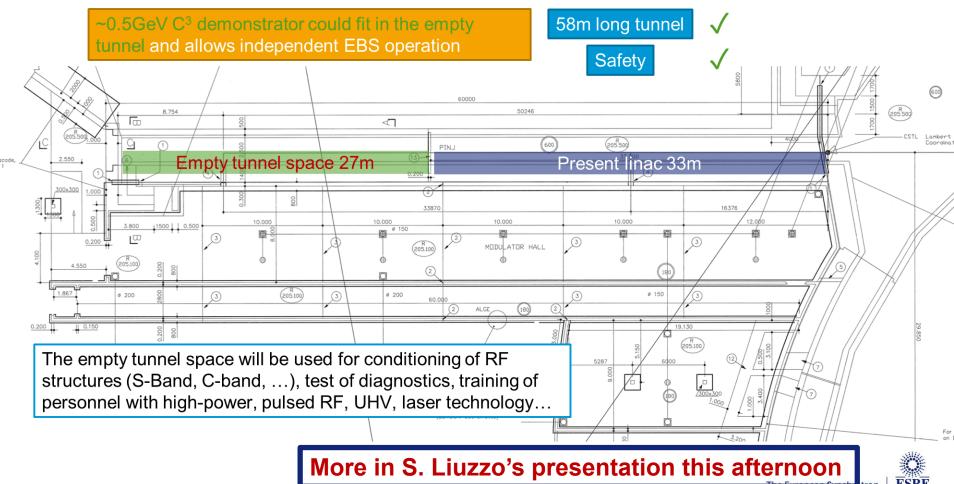
Test bench with SOLEIL NLK

### Beam tests: summer 2026 Installation: summer 2028 (earliest)

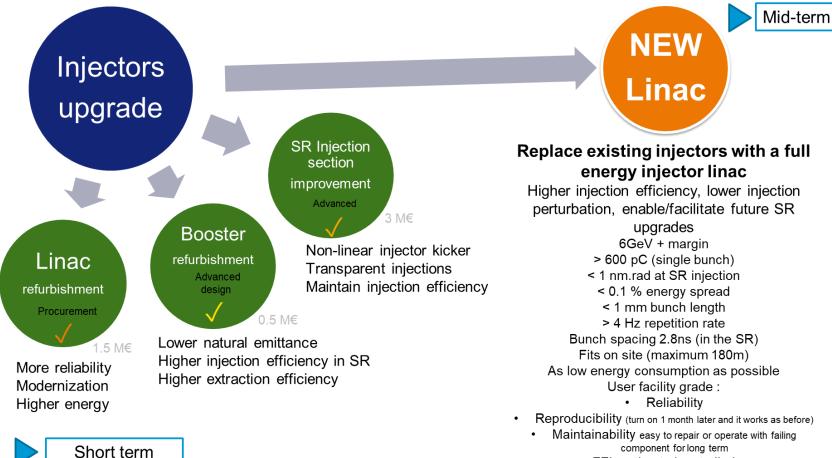

Reproducibility of the measurements.

The European Synchrotron | ESKR

### A NEW 6 GEV LINAC?


Presently considering a complete upgrade of our injectors with a full energy linac: limited space available, high gradient technologies could be a solution

- Complete renewal of obsolete injectors providing low emittance injected beams (<1nmrad, >40 times smaller than the present injectors, <1mm bunch length >10 times shorter bunch, 0.6mA/bunch)
- Enable ultra-low emittance / low aperture / low gaps SR lattice design by relaxing constraint on DA.
- Demonstrate state-of-the-art compact technology for users facilities injectors
- Enable transparent on-axis off-energy accumulation with ultra short injected beam (with ultra-fast kicker).
- Enable new science making use of the linac electron beam (short pulse e<sup>-</sup>, FEL)




Possible site integration using C3 technology





### **FULL PICTURE**



FEL option to be studied



### ESRF finally reached design parameters for all modes in 2024

### Availability and reliability slowly improving

### Short / mid-term improvement program:

- Linac refurbishment
- Replacement of klystrons by SSAs for SR main RF systems
- Implementation of 4<sup>th</sup> harmonic system for bunch lengthening
- Implementation of new booster lattice for emittance reduction
- Implementation of NLK injection for transparent top-up

Long term improvement: replacement of aging injectors, a new 6 GeV LINAC? Future facility upgrades?



### MANY THANKS FOR YOUR ATTENTION

