QUAX Experiment

- The CSN2 has approved the QUAX experiment in 2020 for a 3 + 2 years to run an observatory for searching axion via the axion-photon coupling
- The R&D activity on the axion electron coupling will proceed with low priority
- Two haloscopes will be built: one in Legnaro and the other in Frascati

	LNF	LNL
Magnetic field	9 T	14 T
Magnet length	40 cm	$50~{ m cm}$
Magnet inner diameter	9 cm	$12 \mathrm{cm}$
Frequency range	8.5 - 10 GHz	9.5 - 11 GHz
Cavity type	Hybrid SC	Dielectric
Scanning type	Inserted rod	Mobile cylinder
Number of cavities	7	1
Cavity length	0.3 m	0.4 m
Cavity diameter	$25.5 \mathrm{~mm}$	58 mm
Cavity mode	TM010	pseudoTM030
Single volume	$1.5\cdot10^{-4}~\mathrm{m^3}$	$1.5 \cdot 10^{-4} \mathrm{m}^3$
Total volume	$7 \otimes 0.15$ liters	0.15 liters
Q_0	300 000	1000000
Single scan bandwidth	630 kHz	30 kHz
Axion power	$7\otimes 1.2\cdot 10^{-23}~{\rm W}$	$0.99 \cdot 10^{-22} \text{ W}$
Preamplifier	TWJPA/INRIM	DJJAA/Grenoble
Operating temperature	30 mK	30 mK

- The LNL haloscope will be based on hybrid copper-dielectric cavities, travelling wave parametric amplifiers and 14 T magnet
- The LNF haloscope will be based on multiple-copper cavities, JPA/TWPA amplifier and 9 T magnet

LNL Haloscope – RUN 2024

• Major renovations on dilution unit

- New connection for Cold Plate
- New input lines for Mixing Chamber
- New flexible line from cold plate to mixing chamber
- Gold coating of heat shield
- Installation of a large tuning range cavity
 - Tuning about 60 MHz
 - Large effective volume
 - Q factor up to 80 000
- TWPA in operation with partially automated control system

- **Dilution unit performed well**, mixing chamber @ 50 mK, cavity temperature at 100 mK
- Magnet working at 8 T as usual
- **TWPA amplifier working** fine in strong magnetic field ambient
- Installed automations working as expected
- **Performed scanning** of about 40 MHz with almost KSVZ sensitivity

Dilution unit control system

In order to allow long term operation of the dilution system a PLC-based control system of the dilution unit is currently being built

PLC CONTROL IN DILUTION REFRIGERATOR

MODULARITY & FLEXIBILITY

- Exchange signals through I/O modules that can be implemented even after the installation of the system
- Input/Output modules can read and write both digital and analog signals, which is useful for sensors, gauges, and pumps
- Communication modules can use different communication protocols to communicate with controllers and other Scientific Instruments

HIGH RELIABILITY, ALARM & LOGGING

- O Thanks to a CPU and its diagnostics, the PLC is highly reliable.
- O Through a Human Interface, alarms linked to process variables can be evaluated.
- O The same variables can be stored in logs and archived.
 O The system can notify the state of the process
- REMOTE CONTROL & USER MANAGEMENT
 - O Updating and programming, Admin user

0

NUMBER OF STREET, STRE

Controlling the state of the process and performing operations, Skilled persons
 Controlling the state of the process and performing controlled operations, Operators

SOFTWARE DESIGN

- Human-machine interface programming
- Graphic design of various screens and programming of automation and data archiving functions
- Programming the PLC with TIA Portal for the functions of
 - O MPS: Machine Protection System
 - O Automatic condensation process of helium-3 helium-4
- Management of Logs and Alarms
 - (future provision for Notifications)
 - Logs store all the interest variables in a .csv or .txt file
- Remote connection for process monitoring and control
 - O Through sm@rtServer is possible to connect to HMI and control its

HARDWARE DESIGN

- MPS control project specifications and process automation
 - Directory of all scientific instruments, which control process variables, and actuation systems such as valves or vacuum pump
 - Activation of Recovery valves in cas of Danger condition
- Definition of inputs and outputs in order to understand the required modules
 - List of I/O and naming of all software and hardware variables

Electrical and mechanical design of the system

- O Design of electrical diagrams for cabinet wiring
- O 3D modeling for understanding space requirements
 - and feasibility of the proposed solution

 Fig.1
 Fig.2
 Fig.3

Tunable cavity

Right cylindrical hybrid cavity

Copper shell Sapphire cylinder inside

Clamshell mechanism for tuning

Base frequency 10.2 GHz

Q factor at about 80 000 at cryogenic temp

LamedNew

Open cavity with sapphire cylinder

Antenna

Cavity in the dilution insert

(fenicio: Pungolo)

Lunghezza interna 413.4 mm Diametro 60.5 mm

- Rame OFHC
- Zaffiro armeno L = 420 mm
- Tuning con parete laterale
- Tappi singolo pezzo
- Tappi con scanalatura profondità
 5.3 mm per zaffiro
- Contatti tappi parete mobile in rame elastico
- Movimento con pantografo, motore lineare vs molle di richiamo
- Teflon in scanalatura d=1.6 mm

Q0 ~ 70.000 – 80.000 Accoppiamento variabile Tuning massimo ca 55 MHz

Devices for automation

Installed the new automatic system for Noise Temperature Measurement

Original idea published in A haloscope amplification chain based on a traveling wave parametric amplifier - RSI 2022 Long runs require automatization of all procedures: antenna coupling, cavity tuning, noise temperature measurement

Computer controlled motors for cavity tuning and antenna coupling optimization

Devices for automation

Python based programming for run control and data acquisition

New ADC board with up to 20 MS/s sampling rate – run rate 4.4 MS/s

Semi-automatic run control:

By Operator:

- Cavity tuning
- TWPA amplifier tuning

Computer controlled:

- Cavity mode characterization (Q₀, beta)
- RF characterization (gain, noise)
- Data acquisition and storage

Data are transferred to INFN Cloud for offline analysis

Run control

Run steps:

- Cavity tuning 1.
- 2. TWPA amplifier optimization (manual)
- 3. Measurement of Tsys and Gain (2m)
- Measurement of f_c , Q_L , Q_0 , gain profile (2 m) 4.
- Short data acquisition with thermal input (2 m) 5.
- 6. Repeat steps 3-4 (4 m)
- Long data acquisition with no input 7. (65 m)
- 8. Repeat steps 3-4
- Start over 9.

Time for a single point

80 - 100 minutes

(4 m)

SLOW CONTROL

All measured parameters, data and spectra saved to Logfiles

Data acquisition

- 2- channel acquisition (I, Q from Mixer)
- Sampling rate = 4.4 MS/s
- Single block length 2^23 = 8 388 608 samples
- Single block length = 1.908 s
- FFT of each block during acquisition
- $f_{LO} \sim f_c 1 \text{ MHz}$
- Spectral window $[f_{LO} 2.2 \text{ MHz}, f_{LO} + 2.2 \text{ MHz}]$
- 16384 bins of 268.6 Hz width

Raw data and FFTs stored locally during acquisition Data copied to cloud once per day

Data file size 33.6 MByte Typical run 65 GByte Daily request 600 GByte

Total memory storage up to about 20 TByte

ADC CONTROL

QUAX RUN 2024 - Parameters

```
Magnetic field ON
Cavity frequency f_c = 10.15 - 10.21 GHz
Noise temperature T_{sys} = 1.1 - 1.5 K
Quality factor Q_0 = 60000 - 80000
Antenna coupling \beta = 1.4 - 1.8
Cavity Volume V = 1.06 liters
Estimated efficiency C_{030} = 0.4
Effective field B^2 = 50.89 T^2
Axion mass m_a = 44.9 \mu eV
Typical Integration time t_m = 3800 s
```

Expected axion power in a 10 kHz window **Pa = 6.0e-24 W**

Expected sensitivity (Dicke) in a 10 kHz window $\sigma_P = 2.5e-23 W$

Improved RF set-up

Key changes for a lower noise temperature

- Reduced losses on the read-out line
- Better isolation of the auxiliary line
- Better thermalization of critical elements

- Increase gain of TWPA amplifier

QUAX RUN 2024 – Spring and autumn sessions

Spring session

Total run time 3 weeks 2 separate weeks for data taking May 28th to May 30th - 48 h of field ON June 11th to June 14th - 90 h of field ON

Autumn session

Total run time 2 weeks Nov 7th to Nov 13th - 138 h of field ON Break due to power failure Nov 19th to Nov 21th - 42 h of field ON

Covered span: ~40 MHz with 225 h vacuum data taking Maximum tuning: 58.45 MHz Ratio: 65% of available scan Duty cycle 50%

> Effective scan rate about 100 kHz/hour 2.5 MHz/day

QUAX RUN 2024

Analysis in progress

Expected sensitivity with measured parameters in axion coupling normalized to KSVZ model

Formule scaling

This result shows that with the expected improvements on the cavity and field the QUAX design sensitivity is within reach

QUAX Data Analysis Checks

Remove freq-dependent

Parameter evaluation (β , f_c, Q₀, Q_L)

QUAX Data Analysis Checks

Spectra division based on behaviour over time @ cavity

Dicke check for every data run

QUAX RESULTS

QUAX comparison

LNL Haloscope – High Frequency Tunable Cavities

Objectives:

- Resonance frequency above 10 GHz
- Tunable with range 100 MHz •
- Large Volume •
- High Q over the entire tuning range •
- Limited spurious modes •
- **Operation in strong B field**
- Bead pulling measurements

Cavity tuning with beta = 0.1

QUAX publications on cavities

- A new class of axion haloscope resonators: the polygonal coaxial cavity 2nd turn on PRApplied •
- A tunable large volume dielectric cavity at 11 GHz in preparation 2024 •
- A tunable clamshell cavity for wavelike dark matter searches RSI 2023 •
- High- Q Microwave Dielectric Resonator for Axion Dark-Matter Haloscopes PRAppl 2022 ٠
- Realization of a high quality factor resonator with hollow dielectric cylinders for axion searches NIMA 2021 •
- High quality factor photonic cavity for dark matter axion searches RSI 2020 •

(fenicio: Pilastro)

Lunghezza interna 243.4 mm Diametro 60.5 mm

- Rame OFHC electropolishing
- Zaffiro lituano L = 250 mm
- No tuning yet
- Tappi doppio pezzo apribili
- Tappi con scanalatura profondità
 5.3 mm per zaffiro
- Tappi con scanalatura ove campo nullo per apertura
- No contatti elastici fra pezzi
 mobili
- Previsto movimento con vite su tappo superiore
- Teflon in scanalatura d=1.2 mm

Future steps @ LNL-PD

- Proceed with automation of data acquisition and control
- Proceed with installation of safety controls of dilution unit based on PLC
- Optimize dilution pumping system
- Improve mechanics of present cavity to allow tuning up to 90 MHz
- RUN with TWPA @ about 10.1 GHz, with T_n = 1.2 K and complete scanning of cavity Lamek (March April)
- Realization of improved cavity design based on experience with Samek

LNF Haloscope – RUN 2024

LNF 9 T SC Magnet

Anchored to 4 K stage

- Reached 9 T
- Took data at one freq with 9 T
- Quench
- Ramp to 8 T ok
- Took data with 8 T stably for 2 weeks

Microwave cavity + tuning

HFSS simulations by Simone Tocci

- OFHC Copper
- Radius = 13.5 mm, height = 246 mm
- TM010 mode

- Starting frequency ($lpha=0^\circ$): 8.83 GHz
- Tuning $\,{\sim}300$ MHz with $\Delta\alpha \sim 80^\circ$

Rod and Antenna Movements

- 1 linear motor for Antenna
- 1 rotative motor for Rod

 ${oldsymbol Q}_0$, ${oldsymbol eta}$ and ${oldsymbol Gain}$ remain stable

Amplification Chain

Calibration + spectrum

Fits by Gianluca Vidali (student)

From fit we extract v_c , Q_0 , β , *Gain*

for each frequency step

• V = 0.141 l

•
$$f_{start} = 8.83 \text{ GHz}$$

- $m_a = 36.5 \, \mu eV$
- $Q_0 = 50000$
- β = 0.5
- C₀₁₀ = 0.667
- $B_0 = 8 \text{ T}_{(B_{av}=6.5 \text{ B}_0)}$
- $\Delta t = 3760 \, s$

•
$$T_{cav} = 40 \text{ mK}$$

From calibrated power spectrum we extract the noise temp $T_n \simeq 4.5 K$

Analysis

- Fit to power spectra with Savitzky-Golay filter to calculate residuals
- Maximum likelihood over all scans to estimate the best value $\hat{g}_{a\gamma\gamma}$

$$\chi^2 = \sum_{\alpha=1}^{N_{\text{scan}}} \sum_{i=1}^{N_{\text{bin}}} \left[\frac{R_i^{(\alpha)} - S_i^{(\alpha)}(m_a, g_{a\gamma\gamma}^2)}{\sigma_{\text{Dicke}}^{(\alpha)}} \right]^2$$

• Calculate the **efficiency** of the SG filter by Monte Carlo simulations with fake axion signal $(\varepsilon = 0.84)$

Final plot - $g_{a\gamma\gamma}$

LNF Next Steps

- Finish the optimization of the tuning rod mechanics and complete the relevant tests for Cavity control
- Assembly of the haloscope and configuration/calibrations of the DRY-DU for the acquisition with TWPA improvements
- New Run planned for September with scanning larger then 50 MHz

Mechanical Improvements to Cavity Tuning System

- Optimise the positioning of the rod inside the cavity
 - Reduce the space between the rod and the cavity end caps
 - Reduce the space between the rod and the cavity sidewall
- Improve the thermal coupling of the rod
- General improvements to the manufacturing process of the rod and its supports

Mechanical improvements have been made in the LNF workshop.

To date, everything has been assembled. The first tests have been carried out at room temperature.

EM Simulations and First Tests Results

LNL Haloscope – RUN 2025 A

Objectives:

- New mechanics for tuning
- Extend search window
- Improvements on dilution unit

Run started on April 3rd

Cavità QUAX

	Samek2G	SamekF2	SamekFG	Samek	Samek	LamedTC	LamedT A	LamedT E	LamedShort2 E	LamedShort2 A	LamedShort A	LamedShort E	LamedNew E	LamedNew E	LamedNew A	Lamed A	Lamed E	Gimel R	Gimel A	Gimel E	Aleph E	Aleph A	Aleph R
Copper tube diameter (mm)	60.5			60.5?		60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	57.2	57.2	57.2
Length from endcaps (mm)	238			238??		413.4	413.4	413.4	413.4	413.4	413.4	413.4	449	413.4	413.4	412.4	412.4	411.6	411.6	411.6	423	423	423
	Groove+groove,						Flat w/	Flat w/															
	1.2 mm teflon	Flat+Groove		Groove+groo	Groove+groo	Flat w/groove	groove	groove	Flat w/ groove	Flat w/ groove	Flat w/ groove			reentrant w/	reentrant w/							()	
End caps type	spacer	No Teflon Top	Flat+Groove	ve	ve	5.3 mm	5.3mm	5.3mm	5.3mm	5.3mm	4.8mm	Flat w/groove	FLAT	groove	groove	w/ groove	w/ groove	w/ groove	w/ groove	w/ groove	Flat	Flat	Flat
End caps gap	no gap	No gap	no gap	no gap	no gap	no gap	no gap	no gap	no gap	no gap	no gap	no gap	no gap	no gap	no gap	no gap	no gap	no gap	no gap	no gap	gap	gap	gap
Tuning		No	no	no	no	Yes	Yes	Yes	no	no	no	no	NO	NO	NO	NO	NO	NO	NO	NO	YES	YES	YES
Tuning type	No tuning, electropolished copper, endcaps for upper tuning					Movable side,w/sphere s,inverted V, Copper RF	Movable side,	Movable side, w/spheres													Side wall	Side wall	Side wall
Main antenna	Eived	Fixed	Fixed	Fixed	Eixed	Movable	Movable	Movable	Movable	Movable	Moyable	Movable	Movable	Movable	Movable	Fixed	Fixed	Movable	Movable	Movable	Movable	Movable	Movable
	Lituanian	Lituanian	Lituanian	Lituanian	NO	Armonian	Armonian	NO	NO	Armonian	Armonian	NO	NO	NO	Armonian	Armonian	NO	Russian	Armonian	NO	NO	Armonian	Russian
Sapprine type	Litualiidii	Lituanian	Lituanian	Lituanian	NO	Armenian	Armenian	NO	NO	Armenian	Armenian	NO	NO	NO	Armenian	Armenian	NO	Russidii	Armenian	NO	NU	Armenian	Russian
Massuraments at 200 K	Single cylinder	Single cylinder	Single cylinde			E mm onon	1 mm onon	at no tuno								Spurio							
TM030 frequency (GHz)	10 1505	10 1618	10 161	10 162	22	10 1/9	10 1247	13 621	13 6756/spur?	10.162/Spur2	10.164/spur?	13 635	13.646	13 632	10 164	10 169/10 174	13 633	10 692	10 167	13 626	2	10.75	10.96
TM030 00	34000	31500	22000	35000		42600	37000	32700	39000	98500	71000	35000	42300	36000	54000	26500/40000	25000	85000	40000	42000		35000	50000
Maximum beta top	fixed 0 1	low beta	22000	33000		42000	>1	32700	35000	58500	71000	33000	>1	0.2	0.6	fixed	fixed	>1	1 2	42000		<1	1 (low 00)
Maximum beta bottom	fixed 0.05	negligible					fixed low		fixed low		fixed 0 0017			fixed low	fixed low	lixed	lixed		>1				>1 (High OO)
Tuning range (MHz)	11/20 0.05	перирос				60 MHz	>85 MHz		Inculow		11/20 0.0017			Inconor	lixed low								55
annig range (innig)						0011112																	
TM020 frequency (GHz)	7,7709	7,779	7,778	7,779			7.8191			7.8485	7.846	8708	8.693		7.847	7.847			7.8406				9.032
TM020 Q0	33000	44000	41200	31700			45000			48500	46000	37000	32200		44000	45000			46000				16000
TM010 frequency (GHz)		1.9296	1.929	1.917	3.778	1.939	1.93868	3.7818	3.7859	1.94598	1.9457	3.786	3.789	3.784	1.945	1.945	3.785		1.944		3.997		
TM010 Q0		18700	18000	4100	7500	21300	21000	18500	22300	22200	22400	22200	22800	8000	18500	18500	10500		19500		3700		
Measurements at 4 K	Chiusa	Chiusa	Chiusa			chiusa																	
TM030 frequency (GHz)	10.202429	10.2116/10.2172	10.216	10.2153		10.2145			13.704 (?)	10.22374	10.2233				10.2213			10.732	10.215			10.8	11.028
TM030 Q0	106500	72000/230000	31000 (??)	67500		81000			86000	100000	51000				74000			170000	90000			100000	200000
Maximum beta top	fixed 0.33	.069/.265		0.037						1.4	stuck				.2 (stuck)			>1	?			0.7	1 (Low Q0)
Tuning range (MHz)																							60
TM020 frequency (GHz)	7.8191	7.8251	7.825	7.858		7.8851			8.7664 (?)	7.8922	7.89196				7.892			?	7.898			8.11	
TM020 Q0	76000	131300	72000	50000		175000			97000	140000	136000				145000			?	110000			58000	
TM010 frequency (GHz)	1.9345	1.9513	1.951	1.933		1.966			3.7994	1.9679	1.9678				1.9675			1.938	1.965				
TM010 Q0	6500	60900	42700	8700		12300			61000	72000	63000				56000			1200	10700				

LNL Haloscope – High Frequency Tunable Cavities

Single crystal dielectric - copper cavity Gap on top plate for safety

Simulated Map of E field TM030 mode

Upper end cap details

Rf sliding contact

QUAX data analysis (preliminary Monte Carlo)

Overlapping spectra w. different axion sensitivity

Creation of Confidence Belt and ROC for every detector

