

Gravitational waves physics status and prospects

Walter Del Pozzo University of Pisa

Walter Del Pozzo

CSN2, Venezia, 7th Apr 2025

Where are we now - ground-based

Jniversità di Pisa

Istituto Nazionale di Fisica Nucleare

Walter Del Pozzo

Separation Angle Between Pulsars, ξ_{ab} [degrees]

First Detection of a SGWB

EPTA+InPTA: 25 pulsars, 24 yrs of data

 $\sim 3\sigma$ significance

Where are we now - PTA

CSN2, Venezia, 7th Apr 2025

150

The GW Universe

Walter Del Pozzo

credit: LIGO-Virgo-KAGRA | A. Geller | Northwestern

Where do BHs come from?

- Isolated/Field
 - common envelope
 - stable mass transfer
- Dynamical/Cluster
 - globular cluster
 - young star clusters
 - AGN disk

- Primordial black holes
- Triples/quadruples
- Hierarchical

- LVK phenomenological modeling
- Primary mass modelled as a power-law plus peak (Fishbach & Holz 2017, Talbot & Thrane 2018)
- Preference for equal mass

• But
$$p(q) \sim q^{\alpha}$$

Mass distribution

- Substructure (Farah+ 2023, Edelman+ 2022, Tiwari & Fairhurst 2021)
 - Reversible Jump MCMC on piece-wise power law (Toubiana+2023)
- Hierarchy of Dirichlet Process Gaussian Mixture Models (Rinaldi & Del Pozzo 2022, Rinaldi + 2023)

Mass distribution

- Primary mass evolves with redshift (Rinaldi + 2023)
 - Low-z sources have $m_1 < 20 M_{\odot}$, in agreement with X-ray binaries (Özel+2010, Farr+2011)
 - For z > 0.4 most sources have $m_1 > 20 M_{\odot}$
 - Selection biases?

Mass tomography

CSN2, Venezia, 7th Apr 2025

• GW are self-calibrating sources

$$h \sim D_L^{-1}$$

- Direct measurement of luminosity distance
- Complemented with redshift information
 - EM counterpart
 - Host galaxy
- Determination of cosmological parameters

GW as standard sirens

- Optical/infrared/UV counterpart
 - kilonova (LVK, arXiv:1710.05833)
 - speed of GW (LVK, arXiv:1710.05834)

$$-3 \times 10^{-15} \leqslant \frac{\Delta v}{v_{\rm EM}} \leqslant +7 \times 10^{-16}$$
$$\Delta v = v_{\rm GW} - v_{\rm EM}$$

• EoS constraints, jet morphology, ...

EM counterpart identification

- Spectroscopic redshift from NGC 4993
- First "non-distance-scaleladder" H_0 measurement

$$H_0 = 70^{+12}_{-8} \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$$

LVK, arXiv:1710.05835

CSN2, Venezia, 7th Apr 2025

• H_0 not just from GW170817, BBH bring information too

 Statistical association method (e.g. DP, arXiv:1108.1317)

Walter Del Pozzo

Cosmology

- In GR, gravitational waves (GW) are wave solutions to Einstein's equations generated from accelerating masses, propagating at the speed of light
- Shape of GW signal carries information about
 - binary dynamics and component nature
 - non-linear dynamics of space-time
 - final object nature

Fundamental physics

Merger Ring-

down

LVC, arXiv:1602.03837

CSN2, Venezia, 7th Apr 2025

0.40

Time (s)

Gravitational strong-field

• Field strength

$$\epsilon = \frac{GM}{c^2 R}$$

• Curvature (Kretschmann scalar)

 $\xi = (R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta})^{1/2}$

 Gravitational waves from binary black holes are the optimal probes

14

GW in alternative gravity

- Alternative to GR can introduce extra-fields, curvature terms, challenge GR pillars, ...
- Almost no full solution in non-GR known (but see Okour al, arXiv:1705.07924)
- GW phase is modified:
 - non-GR action (extra fields, higher curvature, ...): no non-linear description, only post-Newtonian
 - Propagation (Lorentz violations, graviton mass, ...): 6 BBH dynamics, but modified GW propagation
 - non-GR BHs (extra-fields, exotic objects):
 - Anomalous quadrupole moments
 - ringdown spectrum
 - Echoes
 - Dark matter
 - . . .

Walter Del Pozzo

	Theory	Field	Strong	Massless	Lorentz	Linear	Weak
nkova et		$\operatorname{content}$	EP	graviton	symmetry	$T_{\mu u}$	EP
	Extra scalar field						
	Scalar-tensor	\mathbf{S}	X	\checkmark	\checkmark	\checkmark	\checkmark
	Multiscalar	\mathbf{S}	X	\checkmark	\checkmark	\checkmark	\checkmark
	Metric $f(R)$	\mathbf{S}	X	\checkmark	\checkmark	\checkmark	\checkmark
	Quadratic gravity						
	Gauss-Bonnet	\mathbf{S}	X	\checkmark	\checkmark	\checkmark	\checkmark
full	Chern-Simons	Р	X	\checkmark	\checkmark	\checkmark	\checkmark
' TUII	Generic	$\mathrm{S/P}$	X	\checkmark	\checkmark	\checkmark	\checkmark
	Horndeski	\mathbf{S}	X	\checkmark	\checkmark	\checkmark	\checkmark
	Lorentz-violating		•				
	Æ-gravity	\mathbf{SV}	X	\checkmark	X	\checkmark	\checkmark
JR-like	Khronometric/						
	Hořava-Lifshitz	\mathbf{S}	X	\checkmark	X	\checkmark	\checkmark
	n-DBI	\mathbf{S}	X	\checkmark	X	\checkmark	\checkmark
	Massive gravity		•				
	m dRGT/Bimetric	SVT	X	×	\checkmark	\checkmark	\checkmark
	Galileon	\mathbf{S}	X	\checkmark	\checkmark	\checkmark	\checkmark
	Nondynamical fields		'				
	Palatini $f(R)$	—	\checkmark	\checkmark	\checkmark	×	\checkmark
	Eddington-Born-Infeld	—	\checkmark	\checkmark	\checkmark	×	\checkmark
	Others, not covered here						
	TeVeS	\mathbf{SVT}	X	\checkmark	\checkmark	\checkmark	\checkmark
	$f(R)\mathcal{L}_m$?	X	\checkmark	\checkmark	\checkmark	×
	f(T)	?	X	\checkmark	×	\checkmark	\checkmark

Berti+,1501.07274

- Multitude of potential extensions
 - Modelling limitations imply agnostic
- Assume we know GR
 - overall and self-consistency checks
 - perturb around the GR expectation the data speak
 - GW generation, propagation and polarizations, BH ringdown hypothe merger echoes

Self-consistency approach

	Errort	Tests performed							
sism	Event	RT	IMR	PAR	SIM	MDR	POL	RD	E
	GW191109_010717	1	_	_	_	_	1	1	
	GW191129_134029	1	_	1	1	1	_	_	
	GW191204_171526	1	_	1	1	1	1	_	
	GW191215_223052	1	_	_	_	1	1	_	
5	GW191216_213338	1	_	1	1	1	1	_	
	GW191222_033537	1	_	_	_	1	1	1	
	GW200115_042309	1	_	1	_	_	_	_	
and let	GW200129_065458	1	1	1	1	1	1	1	
	GW200202_154313	1	_	1	_	1	_	_	
	GW200208_130117	1	1	_	_	1	1	_	
	GW200219_094415	1	_	_	_	1	1	_	
	GW200224_222234	1	1	_	_	1	1	1	
noio noot	GW200225_060421	1	1	1	1	1	1	_	
esis, post-	GW200311_115853	1	1	1	_	1	1	1	
	GW200316 215756	1	_	1	1	_	_	_	

LVK, arXiv:2112.06861 CSN2, Venezia, 7th Apr 2025

- consistency tests of predictions vs data
- consistency checks of GW emission model using different data portions (inspiral-merger-ringdown)
- tests of GW generation
- Remnant properties
- tests of GW propagation

GR tests

LVK, arXiv:2112.06861

- Gravitational waves in general relativity are transverse, tensorial waves
- Extensions to general relativity predict up to six polarisation states
 - Two transverse tensor states
 - Two longitudinal vector states
 - Two scalar states, one longitudinal and one "breathing"

Gravitational wave polarisation states

+ x x y

b

Theory

General Relativity

GR in noncompactified 4/6D Minkowski

Einstein-Æther

5D Kaluza-Klein

Randall-Sundrum braneworld

Dvali-Gabadadze-Porrati braneworld

Brans-Dicke

f(R) gravity

Bimetric theory

Four-Vector Gravity

Nishizawa et al., Phys. Rev. D 79, 082002 (2009) [except G4v & Einstein-Æther]

allowed / depends / forbidden

CSN2, Venezia, 7th Apr 2025

- BH responds to perturbations by "ringing" (Vishveshawara 70, Press 71, Ruffini et al, 72, Chandrasekhar 75)
- Quasi-normal modes excited by light-ring crossing (Goebel 72)

Ringdown

• Simple waveform:

 $h(t) = \sum A_{nlm} e^{-\frac{t-t_0}{\tau_{nlm}}} \cos(\omega_{nlm}(t-t_0) + \varphi_{nlm})$ nlm

- Central frequencies ω_{nlm} and decay times τ_{nlm} are functions of BH mass and spin only (manifestation of the BH uniqueness hypothesis, Berti et al, arXiv:0512160)
- First observation: GW150914

The nature of the final object

LVC,arXiv:1602.03841

CSN2, Venezia, 7th Apr 2025

- Ringdown observed in several BBH remnants
 - pyRing (Carullo et al, arXiv:1902.07527): ringdown only time domain analysis
 - pSEOBNR (Ghosh et al, arXiv:2104.01906): modified SEOBNR waveform
- Independent determination of final parameters
- Tests of BH uniqueness

$$\log B_{GR,nGR} \sim 1$$

GWTC-3 Ringdown

- As the number of detected events will increase, so will the possibility of detecting $l > 2, m \neq 2 \mod s$
- Multi-mode BH spectroscopy
 - Smoking gun for violations of BH uniqueness theorems

Higher angular modes

Einstein telescope

- EU proposal for 3rd generation detector
 - 10 km arm length, underground
 - Triangular configuration
 - Redundancy

CSN2, Venezia, 7th Apr 2025

Einstein telescope

- Different configurations being evaluated
 - Arm length
 - 1 triangle vs 2 L-shaped
- $O(10^5 10^6)$ compact binary coalescences per year

PAPER • OPEN ACCESS Science with the Einstein Telescope: a comparison of different designs

Marica Branchesi^{1,2}, Michele Maggiore^{3,4}, David Alonso⁵, Charles Badger⁶, Biswajit Banerjee^{1,2}, Freija Beirnaert⁷, Enis Belgacem^{3,4}, Swetha Bhagwat^{8,9}, Guillaume Boileau^{10,11}, Ssohrab Borhanian¹²

+ Show full author list

Published 28 July 2023 · © 2023 The Author(s) Journal of Cosmology and Astroparticle Physics, Volume 2023, July 2023

Citation Marica Branchesi et al JCAP07(2023)068

DOI 10.1088/1475-7516/2023/07/068

- Long baseline: 2.5 Mkm
- Sensitivity bucket ~ mHz
- Mission duration: 4 to 10 years
- Dominating laser phase noise: synthetic interferometry (TDI)
- LISA Red Book: arXiv:2402.07571

LISA

- Towards Mission Adoption
 - Consortium reshaping Performance Experts, Data Analysis Experts Groups

Decision milestones	Science Program Infor Selected	Committee (SPC) med for study		
	Proposal Phase	Phase 0		Phase A
Mission phase		Concurent Design Facility (CDF)		
Main actors during this mission phase	Group of scientists proposes the idea to ESA	Assessment Phase Is this mission technically possible? What needs to be developed? What are the first requirements?	Feasibility Two compet Developing (Phase ing prime contractors first designs of the mission
Reviews	Prop Selec	osal Mission I ction Revieu	Definition (MDR)	Mission Consolidation Review (MCR)
Final Documents	Prop	osal CDF R	eport	Industrial & Inst Data Packs: (Technical & Programmatic)
LISA	JAN	2017 DEC	2017	DEC 2019

Walter Del Pozzo

LISA Mission Status

Redbook

• Launch expected in 2034

- Several classes of compact binaries expected
 - Supermassive black hole binaries (SMBH)
 - Stellar mass black hole binaries (sBH)
 - Double white dwarfs
 - Extreme mass ratio inspirals
- Stochastic signals
 - Astrophysical background
 - Cosmological background

LISA sources

1.0

0.5

0.0

-0.5

0.5

0.0

-0.5

H strain

L strain

- GW data analysis relies on Bayes Theorem
- Parameter estimation:

$$p(\theta | DHI) = p(\theta | HI) \frac{p(D | \theta HI)}{p(D | HI)}$$

• Model selection:

$$O_{12} = \frac{p(H_1|I)p(D|H_1I)}{p(H_2|I)p(D|H_2I)} = \frac{p(H_1|I)}{p(H_2|I)}B_{12}$$

GW data analysis

Noise-dominated detectors

- Gravitational wave events are rare
- Noise dominated detectors
 - We can search for events with matched filtering
 - Noise properties can be independently determined

Signal-dominated detectors

- Signal dominated detector
 - Unknown and unspecified sources are present at all times
- No clear access to noise properties

The data model

$$d(t) = n(t) + \sum_{c=1}^{K} \sum_{j=1}^{N_c} h_j^c(t; \theta_j^c)$$

- with K the (unknown) number of classes of signals (e.g. c = SMBH, sBH, EMRI, ...) and N_c is the unknown number of signals per class
- The challenge is to estimate the joint posterior for all sources, their numbers and their astrophysical distributions, jointly with the detector and noise models

The LISA data analysis problem

Università di Pisa

Noise-dominated

Walter Del Pozzo

The problem in a nutshell

Signal-dominated

Waveforms

- Monochromatic (DWDs) \checkmark
- Drifting sources (BBHs) \checkmark
- Chirping sources (SMBBHs) \checkmark
- Unresolvable (SGWBs) \checkmark
- Instrumental artifacts (Glitch) ☑
- Multiband sources \checkmark
- Polichromatic (EMRIs) ongoing

Challenges - Waveforms

Good enough for SNR $\simeq 10^3 - 10^4$?

Efficient enough?

Nagar et al, arXiv:1806.01772

- Noise modelling is difficult
 - No "off-source" estimation \bullet
- Marginalise over noise properties?
 - Simultaneously model signal(s) and noise
 - BayesLine (Littenberg & Cornish, arXiv:1410.3852)
 - MAXENT (Martini et al, arXiv:2106.09499)
- Computationally expensive

Challenges - Noise

- Data taking will not be continuous
 - Scheduled interruptions
 - Glitches
- Complicated windowing?
 - Large computation cost (e.g. Burke et al arXiv:2502.17426)
- Time domain analysis?

INFN Challenges - Data gaps and glitches

Dey et al, arXiv:2104.12646

 Unknown number of sources but one recovered source

 $\log \mathscr{L}(\mathbf{d} \equiv \mathbf{h}_0 + \mathbf{h}_1 | \boldsymbol{\theta}_0) \approx -\frac{1}{2} (\mathbf{d} - \mathbf{h}(\boldsymbol{\theta}_0) | \mathbf{d} - \mathbf{h}(\boldsymbol{\theta}_0)) =$ $\approx -\frac{1}{2} \underbrace{(\mathbf{h}_1 | \mathbf{h}_1)}_{\text{SNR}_1^2} + \underbrace{(\mathbf{h}_0 | \mathbf{h}_1)}_{O_{01} \text{SNR}_0 \text{SNR}_1}$

- Non-negligible bias in recovered parameters
 - Consequences for astrophysics, cosmology and fundamental physics

Challenges - overlapping signals

Rosso, Buscicchio, DP in preparation

Challenges - Algorithms

- Block Gibbs sampling
 - Sample each "block" independently, conditioned on everything else
 - Reversible-Jump MCMC
 - Iterate and hope it converges

Littenberg et al, arXiv:2004.08464

• A few prototype analyses focusing on DWD+SMBH

- Encouraging results
- VERY expensive
- Still many simplifying assumptions

 10^{-40} $|\mathbf{A}|^2$ 10^{-42} 10^{-1} 10^{-3}

 10^{-40} $|\mathbf{A}|^2$

2 TDI X -1

> -2-3

Walter Del Pozzo

Where do we stand?

Littenberg et al, arXiv:2004.08464 Littenberg & Cornish, arXiv:2301.03673

Strub et al, arXiv:2403.15318

- Distributed Data Processing Centre
- Responsible for the preparation, and analysis of LISA data at (almost) all levels
 - from the TDI combinations to the generation of the final catalogue
- Funded by the National Agencies (ASI for Italy)

LISA DDPC

Source type	CPU-hours	Scratch volume	Informative volur
Galaxy	(180-250)K	(260-2000)GB	120GB
MBHBs	(1.2-300)K	(5-50)TB	(0.6-6)GB
EMRIs	(4-6)M	(16-24)TB	(12-20)GB
SBBHs	14M	100TB	200MB
Noise	(0.5-3)K	(50-260)GB	(1-5)GB

Per year of data	CPU-hours	Scratch volume	Informative volume
#1 With SBBH	30M	500TB	160GB
#1 without SBBH	17M	225TB	160GB
#2 with SBBH	(14.5-52.5)M	500TB	160GB
#2 without	(7.5-15)M	225TB	160GB
Low-latency	550K	52TB	6GB

• ASI:

- Responsible for the Italian DCC
- DA-dedicated postdocs: 1 UNIMIB, 1 SISSA, 1 UniPi)
- Universities: lacksquare
- INAF:
 - Interested in joining the DDPC

Supporting DDPC activities through a contract with University of Trento (3 LISA)

Main actors so far: UNIMIB, SISSA, Pisa (DA), Trento (HW), Roma 2 (starting)

Continuous time MCMC algorithms are Markov processes where • the transitions are governed by Poisson distribution

 $p(\Omega_i) \sim e^{-\lambda_i}$

• Hence, for a given (arbitrary) number of states

$$p(\prod_i \Omega_i) \sim e^{-\sum_i \lambda_i}$$

- At any given fixed time, the chain is in state Ω_i with probability p_j
- If we define the states Ω_j as "there are j signals with parameters" $\{\theta\}_{i}$ ", all we need to do is to estimate the associated rate parameters

CTMCMC

Idea is to associate the probability of a state* to the time the chain spent in that state $p(|\Omega_j|D) \propto \{\tau\}_j$

*: a state is a given number of sources per class with a given set of parameters

Walter Del Pozzo

CTMCMC

- Virgo and LIGO are paving the way for GW astrophysics
 - Several novel results in many different sub-fields
- Next generation detectors present several challenges that need to be overcome
 - Modelling
 - Computational
- A conversation between the LISA and INFN communities has started Joint informal workshop held on 27th Feb 2025

Conclusions

