Sviluppi del calcolo degli elementi di matrice nucleare per il doppio decadimento beta senza emissione di neutrini

Luigi Coraggio

Istituto Nazionale di Fisica Nucleare - Sezione di Napoli Dipartimento di Matematica e Fisica - Università della Campania "Luigi Vanvitelli"

Meeting della Commissione Scientifica Nazionale II 7-9 Aprile 2025 - Palazzo Loredan, Venezia

The neutrinoless double β -decay

The detection of the $0\nu\beta\beta$ decay is nowadays one of the main targets in many laboratories all around the world, since its detection would correspond to a violation of the conservation of the leptonic number, and may provide more informations on the nature of the neutrinos and its effective mass

• The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element $M^{0\nu}$, which relates the parent and grand-daughter wave functions via the decay operator.

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left|g_A^2 \frac{\langle m_\nu \rangle}{m_e}\right|^2 \right|$$

• The calculation of $M^{0\nu}$ links $\left[T^{0\nu}_{1/2}\right]^{-1}$ to the neutrino effective mass $\langle m_{\nu} \rangle = |\sum_{k} m_{k} U_{ek}^{2}|$ (light-neutrino exchange)

The structure of $M^{0\nu}$

Within the light-neutrino exchange, the matrix elements $M_{\alpha}^{0\nu}$ are defined in terms of:

- the 1-body transition density matrix elements between the parent (i), daughter (k), grand-daughter (f) nuclei;
- the matrix elements of the Gamow-Teller (GT), Fermi (F), and tensor (T) decay-operators:

$$M_{\alpha}^{0\nu} = \sum_{k} \sum_{j_{p} j_{p'} j_{n} j_{n'}} \langle f | a_{p}^{\dagger} a_{n} | k \rangle \langle k | a_{p'}^{\dagger} a_{n'} | i \rangle \left\langle j_{p} j_{p'} \mid \tau_{1}^{-} \tau_{2}^{-} \Theta_{\alpha}^{k} \mid j_{n} j_{n'} \right\rangle$$

with $\alpha = (GT, F, T)$

 $\begin{aligned} \Theta_{12}^{GT} &= \vec{\sigma}_1 \cdot \vec{\sigma}_2 H_{GT}(r) \\ \Theta_{12}^F &= H_F(r) \\ \Theta_{12}^T &= [\mathbf{3} (\vec{\sigma}_1 \cdot \hat{r}) (\vec{\sigma}_1 \cdot \hat{r}) \\ &- \vec{\sigma}_1 \cdot \vec{\sigma}_2] H_T(r) \end{aligned}$

The neutrino potentials H_{α} depend on the energy of the initial, final, and intermediate states:

$$H_{\alpha}(r) = \frac{2R}{\pi} \int_0^{\infty} \frac{j_{\alpha}(qr)h_{\alpha}(q^2)qdq}{q+E_k-(E_i+E_f)/2}$$

The structure of $M^{0\nu}$: the closure approximation

- Only few nuclear models allow the inclusion of a number of intermediate k states, large enough to provide converging results.
- Then, for the most part, nuclear structure calculations resort to the closure approximation by replacing the intermediate-states energies with an average value.
- This approximation leads to shift from the product of 1-body transition-density to 2-body transition-density matrix elements, and simplifies the expression of the neutrino potentials $H_{\alpha}(r)$

 $E_k - (E_i + E_f)/2 \rightarrow \langle E \rangle$

$$\sum_{k} \langle f | a_{p}^{\dagger} a_{n} | k \rangle \langle k | a_{p'}^{\dagger} a_{n'} | i \rangle = \langle f | a_{p}^{\dagger} a_{n} a_{p'}^{\dagger} a_{n'} | i \rangle$$

$$H_{\alpha}(r) = \frac{2R}{\pi} \int_{0}^{\infty} \frac{j_{\alpha}(qr)h_{\alpha}(q^{2})qdq}{q+\langle F \rangle}$$

This approximation works since $q \approx 100-200 \text{ MeV}$ and model-space excitation energies $E_{exc} \approx 10 \text{ MeV}$ In Phys. Rev. C 88, 064312 (2013) the impact of the approximation has been evaluated as being within 10% of the exact value

The structure of $M^{0\nu}$: the closure approximation

Bottom line: the closure-approximation allows to write the $0\nu\beta\beta$ nuclear matrix element $M^{0\nu}$ in straightforward form:

$$M^{0\nu}_{\alpha} = \sum_{j_n j_{n'} j_p j_{p'}} \langle f | a^{\dagger}_{p} a_n a^{\dagger}_{p'} a_{n'} | i \rangle \left\langle j_p j_{p'} \mid \tau_1^- \tau_2^- \Theta_{\alpha} \mid j_n j_{n'} \right\rangle$$

The above expression underlines that to calculate $M^{0\nu}$ one needs to compute the matrix elements of the $0\nu\beta\beta$ decay operator, as well as the wave functions of the parent and grand-daughter nuclei.

However, all candidates of experimental interest lie in a mass region where "exact" solutions of the nuclear eigenvalue problem cannot be obtained

The study of the many-body Schrödinger equation, for system with A > 4, needs the introduction of truncations and approximations, and follows two main approaches:

Mean-field and collective models

- Energy Density Functional (EDF)
- Quasiparticle Random-Phase Approximation (QRPA)
- Interacting Boson Model IBM

Microscopic approaches

ab initio methods

- No-Core Shell Model (NCSM)
- Coupled-Cluster Method (CCM)
- In-Medium Similarity Renormalization Group (IMSRG)
- Self-Consistent Green's Function approach (SCGF)
- Nuclear Shell Model

The many-body problem

- Mean-field and collective models operate a drastic cut of the nuclear degrees of freedom, the computational problem is alleviated
- Their effective Hamiltonian *H*_{eff} cannot be derived from realistic nuclear forces and depend from parameters fitted to reproduce a selection of observables
- This reduces the predictive power, that is crucial to search "new physics"

- The degrees of freedom of *ab initio* methods and SM Hamiltonians are the microscopic ones of the single nucleons (very demanding calculations)
- Consequently, they may operate starting from realistic nuclear forces
- These features enhance the predictiveness and the calculated wave functions are more reliable

versità Dipartimento di Matomat li Studi a Campania vi Fancitali

Collective models: the QRPA

The quasiparticle random-phase approximation is based on the concept of "pairing" among the nucleons.

Particles are substituted with "quasiparticles".

- Advantage → The dimension of the hamiltonian does not scale rapidly with the mass number A as with the shell model.
- Shortcoming → Results are strongly dependent on the choice of the free renormalization-parameter g_{pp} (g_{ph} is determined from experiment), that is fixed to reproduce both spectroscopy and GT transitions

In the interacting boson model identical nucleons are paired so to generate bosons:

- $L = 0 \rightarrow s$ -boson
- $L = 2 \rightarrow d$ -boson

- Advantage → The computational complexity is drastically simplified
- Shortcoming → The configuration space is strongly reduced

Microscopic models: Ab initio methods

Coupled-cluster method CCM and in-medium SRG (IMRSG) calculations have recently performed to calculate $M^{0\nu}$ for the $0\nu\beta\beta$ decay of ⁴⁸Ca, ⁷⁶Ge, and ⁸²Se

In-medium SRG

- Advantage → The degrees of freedom of *all* constituent nucleons are included, the number of correlations among nucleons is enormous
- Shortcoming → Highest-degree of computational complexity, the comparison with spectroscopic data is not yet satisfactory

Microscopic models: the realistic shell model

The nucleons are subject to the action of a mean field, that takes into account most of the interaction of the nuclear constituents. Only valence nucleons interact by way of a residual two-body potential, within a reduced model space.

- Advantage → It is a microscopic and flexible model, the degrees of freedom of the valence nucleons are explicitly taken into account.
- Shortcoming → High-degree computational complexity.

Microscopic models: the realistic shell-model

The nuclear shell model is a microscopic one, then it is possible to construct, within the many-body theory, effective Hamiltonians and decay operators starting from realistic nuclear potentials

Realistic shell model (RSM)

- Choose a realistic NN potential (NNN)
- Penormalize its short range correlations
- Identify the model space better tailored to study the physics problem
- Derive the effective shell-model Hamiltonian and consistently effective shell-model operators for decay amplitudes, by way of the many-body perturbation theory
- Calculate the observables (energies, e.m. transition probabilities, β-decay amplitudes...), using only theoretical SP energies, two-body matrix elements, and effective SM operators.

Nuclear structure calculations

 The spread of nuclear structure calculations evidences inconsistencies among results obtained with different models

> M. Agostini, G. Benato, J. A. Detwiler, J. Menéndez, and F. Vissani, Rev. Mod. Phys. 95, 025002 (2023)

Shell-model calculations of $M^{0\nu}$

- 1 J. Menéndez, J. Phys. G 45, 014003 (2018).
- 2 A. Neacsu and M. Horoi, Phys. Rev. C 91, 024309 (2015), R. A. Sen'kov and M. Horoi, Phys. Rev. C 88, 064312 (2013), R. A. Sen'kov, M. Horoi, and B. A. Brown, Phys. Rev. C 89, 054304 (2014).
- 3 J. D. Holt and J. Engel, Phys. Rev. C 87, 064315 (2013), A. A. Kwiatowski et al., Phys. Rev C 89, 045502 (2014).
- 4 LC, A. Gargano, N. Itaco, R. Mancino, and F. Nowacki, Phys. Rev. C 101 044315 (2020).

Ab initio calculations of $M^{0\nu}$

- Ab initio methods that can be considered the most complex approach to the calculation of $M^{0\nu}$, in terms of the single-nucleons degrees of freedom of the single nucleons
- All those calculations start from a nuclear Hamiltonian that has been derived through chiral perturbative expansion of an EFT Lagrangian (ChEFT)
- This aspect, in conjuction with the property of *ab initio* methods of being "size extensive", allows, in principle, to estimate the theoretical error

Ab initio calculations of $M^{0\nu}$: results

- The computational complexity of *ab initio* methods makes the calculation of a large number of intermediate states very demanding and complicated, so the validation through the computing of $2\nu\beta\beta$ nuclear matrix elements
- The most important outcome of *ab initio* methods is that the calculated $M^{0\nu}s$ are sistematically much smaller than all other nuclear structure calculations

Decay	CCM $M^{0\nu}$	VS-IMSRG M ^{0v}	$T_{1/2}^{0\nu}$ (in yr)
$\begin{array}{c} {}^{48}\mathrm{Ca}_1 \rightarrow {}^{48}\mathrm{Ti}_1 \\ {}^{76}\mathrm{Ge}_1 \rightarrow {}^{76}\mathrm{Se}_1 \\ {}^{82}\mathrm{Se}_1 \rightarrow {}^{82}\mathrm{Kr}_1 \end{array}$	$0.25 \le M^{0 u} \le 0.75^1$	$\begin{array}{c} 0.58(1)^2\\ 2.60\pm1.4^3\\ 1.24(5)^2\end{array}$	$> 2 \times 10^{29} \\> 2 \times 10^{28} \\> 2 \times 10^{28}$

1 S. Novario et al., Phys. Rev. Lett. **121** 182502 (2021)

2 A. Belley et al., Phys. Rev. Lett. 126 042502 (2021)

A. Belley et al., Phys. Rev. Lett. 132 182502 (2024)

RSM calculations of $M^{0\nu}$: results

Decay	bare operator	$\Theta_{\rm eff}$	
⁴⁸ Ca → ⁴⁸ Ti	0.53	0.30	-40%
$^{76} ext{Ge} ightarrow ^{76} ext{Se}$	3.35	2.66	-20%
$^{82} ext{Se} ightarrow ^{82} ext{Kr}$	3.30	2.72	-20%
$^{100}\text{Mo} ightarrow ^{100}\text{Ru}$	3.96	2.24	-40%
$^{130} ext{Te} ightarrow ^{130} ext{Xe}$	3.27	3.16	-3%
136 Xe $ ightarrow$ 136 Ba	2.47	2.39	-3%

 Results obtained with the effective shell-model operator are relatively reduced with respect those with bare operator: quenching effect is much smaller than the two-neutrino double-β decay

Decay	q	bare operator	quenched operator	
⁴⁸ Ca → ⁴⁸ Ti	0.83	0.53	0.40	-20%
$^{76} ext{Ge} ightarrow ^{76} ext{Se}$	0.58	3.35	1.41	-60%
$^{82} ext{Se} ightarrow ^{82} ext{Kr}$	0.56	3.30	1.32	-60%
$^{100}\mathrm{Mo} ightarrow ^{100}\mathrm{Ru}$	0.48	3.96	1.33	-70%
$^{130} ext{Te} ightarrow ^{130} ext{Xe}$	0.68	3.27	1.78	-50%
$^{136} ext{Xe} ightarrow ^{136} ext{Ba}$	0.61	2.47	1.15	-50%

The calculation of $M^{0\nu}$: results

To rule out the Inverted Hierarchy of neutrino mass spectra, the upper bound of neutrino effective mass should be $\langle m_{\beta\beta} \rangle < 18.4 \pm 1.3 \text{ meV}$.

We could then evaluate the lower bound of the half lives of the decay processes, accordingly to our calculated $M^{0\nu}$

The quenching of g_A

A major issue in the calculation of quantities related to spin-isospindependent transitions is the need to quench the axial coupling constant g_A by a factor q in order to reproduce the data.

มมาม

The quenching of g_A

This is an important question when studying $0\nu\beta\beta$ decay, in fact the need of a quenching factor largely affects the value of the half-life $T_{1/2}^{0\nu}$, since the latter would be enlarged by a factor q^{-4}

• The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element $M^{0\nu}$

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left|g_A^2 \frac{\langle m_\nu \rangle}{m_\theta}\right|^2$$

• $M^{0\nu}$ links $\left[T^{0\nu}_{1/2}\right]^{-1}$ to the neutrino effective mass $\langle m_{\nu} \rangle = |\sum_{k} m_{k} U^{2}_{ek}|$ (light-neutrino exchange)

That is why experimentalists are deeply concerned about q, its value has a strong impact on the sensitivity of the experimental apparatus.

The quenching of g_A

The two main sources of the need of a quenching factor *q* may be identified as:

Truncation of the nuclear configurations

Nuclear models operate a cut of the nuclear degrees of freedom in order to diagonalize the nuclear Hamiltonian ⇒ effective Hamiltonians and decay operators must be considered to account for the neglected configurations in the nuclear wave function

Nucleon internal degrees of freedom

Nucleons are not point-like particles \Rightarrow contributions to the free value of g_A come from two-body meson exchange currents:

• K. Shimizu, M. Ichimura, and A. Arima, Nucl. Phys. A 226, 282 (1974)

I. S. Towner, Phys. Rep. 155, 263 (1987)

The effective operators for decay amplitudes

- Ψ_{α} eigenstates of the full Hamiltonian *H* with eigenvalues E_{α}
- Φ_{α} eigenvectors obtained diagonalizing H_{eff} in the model space P and corresponding to the same eigenvalues E_{α}

 $\Rightarrow |\Phi_{lpha}
angle = P |\Psi_{lpha}
angle$

Obviously, for any decay-operator Θ :

 $\left< \Phi_{\alpha} | \Theta | \Phi_{\beta} \right> \neq \left< \Psi_{\alpha} | \Theta | \Psi_{\beta} \right>$

We then require an effective operator Θ_{eff} defined as follows

$$\Theta_{\mathrm{eff}} = \sum_{lphaeta} \ket{\Phi_lpha}ig\langle \Psi_lpha | \Theta | \Psi_etaig
angle ig\langle \Phi_eta |$$

Consequently, the matrix elements of Θ_{eff} are

$$\langle \Phi_{\alpha} | \Theta_{\text{eff}} | \Phi_{\beta} \rangle = \langle \Psi_{\alpha} | \Theta | \Psi_{\beta} \rangle$$

This means that the parameters characterizing Θ_{eff} are renormalized **V**: with respect to $\Theta \Rightarrow g_A^{\text{eff}} = q \cdot g_A \neq g_A$

IFŇ

Roka Nacinar

Two-body meson exchange currents

A powerful approach to the derivation of two-body currents (2BC) is to resort to effective field theories (EFT) of quantum chromodynamics.

In such a way, both nuclear potentials and 2BC may be consistently constructed, since in the EFT approach they appear as subleading corrections to the one-body Gamow-Teller (GT) operator $\sigma \tau^{\pm}$.

clear H	lamiltonian			Two-body currents
	2N Force	3N Force	4N Force	
${f LO}\ (Q/\Lambda_\chi)^0$	XH			a) ************************************
NLO $(Q/\Lambda_{\chi})^2$	X ppd D d d d			<i>b)</i>
NNLO $(Q/\Lambda_{\chi})^3$		+ -X		c) + + + + + + + + + + + + + + + + +
$\mathbf{N}^{3}\mathbf{LO}$ $(Q/\Lambda_{\chi})^{4}$	Xapi Mata	K	₩1 •	The impact of 2BC on the calc β -decay properties has been investigated in terms of <i>ab init</i> methods

Luigi Coraggio

Nuclear models and predictive power

- The predictivity of the calculated $M^{0\nu}s$ should be validated through the comparison of experimental β -decay observables and theory
- This validation should also evidence the ability to solve the "quenching puzzle"
- There is a large variety of observables that nuclear models should be able to reproduce, such as GT matrix elements of single- and double-β decay, GT running sums of GT strengths, forbidden β-decay energy spectra, etc.

Ab initio methods: β-decay in light nuclei

GT nuclear matrix elements of the β -decay of *p*-shell nuclei have been calculated with Green's function Monte Carlo (GFMC) and no-core shell model (NCSM) methods, including contributions from 2BC

S. Pastore et al., Phys. Rev. C 97 022501(R) (2018)

The contribution of 2BC improves systematically the agreement between theory and experiment

Iniversità Dipartinento di Matematic regli Studi ella Campania ari Fanziluli

G. B. King et al., Phys. Rev. C 102 025501 (2020)

Ab initio methods: β-decay in medium-mass nuclei

Coupled-cluster method CCM and in-medium SRG (IMRSG) calculations have recently performed to overcome the quenching problem g_A to reproduce β -decay observables in heavier systems *P. Gysbers et al., Nat. Phys.* **15** 428 (2019)

In-Medium SRG

Coupled-Cluster Method

A proper treatment of nuclear correlations and consistency between GT two-body currents and 3N forces, derived in terms of ChPT, explains the "quenching puzzle"

Università Diportimento di Materi degli Studi della Campania Lucio Reservato

RSM: GT⁻ running sums

Luigi Coraggio

CSN II, 7 aprile 2025

INFŃ

Scriesple di Fisica Naciesre

RSM: $2\nu\beta\beta$ nuclear matrix elements

Blue symbols: bare GT operator

Decay	Expt.	Bare	
$ \begin{array}{c} {}^{48}{\rm Ca}_1 \rightarrow {}^{48}{\rm Ti}_1 \\ {}^{76}{\rm Ge}_1 \rightarrow {}^{76}{\rm Se}_1 \\ {}^{82}{\rm Se}_1 \rightarrow {}^{82}{\rm Kr}_1 \\ {}^{130}{\rm Te}_1 \rightarrow {}^{130}{\rm Xe}_1 \\ {}^{136}{\rm Xe}_1 \rightarrow {}^{136}{\rm Ba}_1 \\ {}^{100}{\rm Mo}_1 \rightarrow {}^{100}{\rm Ru}_1 \\ {}^{100}{\rm Ru}_1 \rightarrow {}^{100}{\rm Ru}_1 \end{array} $	$\begin{array}{c} 0.042 \pm 0.004 \\ 0.129 \pm 0.005 \\ 0.103 \pm 0.001 \\ 0.036 \pm 0.001 \\ 0.0219 \pm 0.0007 \\ 0.224 \pm 0.002 \end{array}$	0.030 0.304 0.347 0.131 0.0910 0.896	
$^{100}Mo_1 \rightarrow ^{100}Ru_2$	0.183 ± 0.006	0.479	
Experimental data from Thies et al, Phys. Rev. C 86, 044309 (2012); A. S. Barabash, Universe 6, (2020)			

Iniversità Dipartimento di Matomatica e Fuico egli Studi ella Campania aigi Fanchelli

RSM: $2\nu\beta\beta$ nuclear matrix elements

 LC, L. De Angelis, T. Fukui, A. Gargano, N. Itaco, and F. Nowacki, Phys. Rev. C 100, 014316 (2019).

Blue symbols: bare GT operator Black symbols: effective GT operator

Decay	Expt.	Eff.
⁴⁸ Ca, → ⁴⁸ Ti,	0.042 + 0.004	0.026
$^{76}\text{Ge}_1 \rightarrow ^{76}\text{Se}_1$	0.129 ± 0.004	0.104
$^{82}\text{Se}_1 \rightarrow ^{82}\text{Kr}_1$	0.103 ± 0.001	0.109
$^{130}\text{Te}_1 \rightarrow ^{130}\text{Xe}_1$	0.036 ± 0.001	0.061
136 Xe ₁ \rightarrow 136 Ba ₁	0.0219 ± 0.0007	0.0341
$^{100}Mo_1 \rightarrow ^{100}Ru_1$	0.224 ± 0.002	0.205
$^{100}\mathrm{Mo}_1 \rightarrow ^{100}\mathrm{Ru}_2$	0.183 ± 0.006	0.109
Experimental data from	Thies et al. Phys. Rev.	C 86.

044309 (2012); A. S. Barabash, Universe 6, (2020)

RSM: forbidden β -decay energy spectra

Forbidden β -decay log ft s				
Nucleus	Bare	Effective	Exp.	
⁹⁴ Nb ⁹⁹ Tc ¹¹³ Cd ¹¹⁵ In	11.30 11.580 21.902 21.22	11.58 11.876 22.493 21.64	11.95 (7) 12.325 (12) 23.127 (14) 22.53 (3)	

Università Dipatimento di Matematica e F degli Studi della Campania

G. De Gregorio, R. Mancino, LC, N. Itaco, Phys. Rev. C 110, 014324 (2024)

Luigi Coraggio

CSN II, 7 aprile 2025

$$B(p,n) = \frac{|\langle \Phi_f || \sum \mathbf{J}_A || \Phi_i \rangle|^2}{2J_i + 1}$$

- (a) bare J_A at LO in ChPT (namely the GT operator $g_A \sigma \cdot \tau$);
- (b) effective J_A at LO in ChPT;
- (c) bare J_A at N³LO in ChPT (namely includy 2BC contributions too);
- (d) effective J_A at N³LO in ChPT.

 Total GT⁻ strength

 (a)
 (b)
 (c)
 (d)
 Expt

 $\sum B(GT^-)$ 24.0
 17.5
 20.9
 11.2
 15.3 ± 2.2

The impact of meson-exchange currents on the GT^ matrix elements is $\approx 20\%$

GT matrix elements of 60 experimental decays of 43 0f1p-shell nuclei, only yrast states involved

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \hat{x}_i)^2}{n}}$$

- (a) bare J_A at LO in ChPT (namely the GT operator $g_A \sigma \cdot \tau$);
- (b) effective J_A at LO in ChPT;
- (c) bare J_A at N³LO in ChPT (namely includy 2BC contributions too);

INFN

(d) effective J_A at N³LO in ChPT.

 $2\nu\beta\beta$ nuclear matrix element $M^{2\nu}$ ⁴⁸Ca \rightarrow ⁴⁸Ti

$$B(p,n) = \frac{|\langle \Phi_f || \sum \mathbf{J}_A || \Phi_i \rangle|^2}{2J_i + 1}$$

- (a) bare J_A at LO in ChPT (namely the GT operator $g_A \sigma \cdot \tau$);
- (b) effective J_A at LO in ChPT;
- (c) bare J_A at N³LO in ChPT (namely includy 2BC contributions too);
- (d) effective J_A at N³LO in ChPT.

Total GT⁻ strength (a) (b) (c) (d) Expt $\sum B(GT^-)$ 15.8 10.8 12.8 7.4 \sim

The impact of meson-exchange currents on the GT^- matrix elements is $\approx 18\%$

$$B(p,n) = \frac{|\langle \Phi_f || \sum \mathbf{J}_A || \Phi_i \rangle|^2}{2J_i + 1}$$

- (a) bare J_A at LO in ChPT (namely the GT operator $g_A \sigma \cdot \tau$);
- (b) effective J_A at LO in ChPT;
- (c) bare J_A at N³LO in ChPT (namely includy 2BC contributions too);
- (d) effective J_A at N³LO in ChPT.

Total GT⁻ strength (a) (b) (c) (d) Expt $\sum B(GT^{-})$ 19.0 11.4 14.9 7.5 ~

The impact of meson-exchange currents on the GT^ matrix elements is $\approx 20\%$

 $2\nu\beta\beta$ nuclear matrix element $M^{2\nu}$ ⁷⁶Ge \rightarrow ⁷⁶Se $\begin{array}{ccc} J^{\pi}_{f} \rightarrow J^{\pi}_{f} & (a) & (b) \\ 0^{+}_{1} \rightarrow 0^{+}_{1} & 0.211 & 0.153 \\ 0^{+}_{1} \rightarrow 2^{+}_{1} & 0.023 & 0.042 \\ 0^{+}_{1} \rightarrow 0^{+}_{2} & 0.009 & 0.086 \end{array}$ (b) (C) (d) Expt 0.160 0.118 0.129 ± 0.004 0.025 0.048 < 0.035 0.016 0.063 < 0.089 $2\nu\beta\beta$ nuclear matrix element $M^{2\nu} {}^{82}\text{Se} \rightarrow {}^{82}\text{Kr}$ $\begin{array}{c|c} J_i^{\pi} \to J_f^{\pi} & (a) & (b) \\ \hline 0_1^+ \to 0_1^+ & 0.173 & 0.123 \\ 0_1^+ \to 2_1^+ & 0.003 & 0.006 \\ 0_1^+ \to 0_2^+ & 0.018 & 0.007 \end{array}$ (C) (d) Expt 0.136 0.095 0.103 ± 0.001 0.008 0.033 < 0.020 0.013 0.007 < 0.052

L. C., N. Itaco, G. De Gregorio, A. Gargano, Z. H. Cheng, Y. Z. Ma, F. R. Xu, and M. Viviani, Phys. Rev. C **109**, 014301 (2024)

Conclusions and Outlook

- The new developments of microscopic approaches to the nuclear many-body problem are leading towards reliable calculations of the 0νββ nuclear matrix elements. This goal may be achieved by focusing theoretical efforts on two main tasks:
 - a) improving our knowledge of nuclear forces;
 - b) estimation of the theoretical error from the application of many-body methods.
- The efforts of the EFT community are also providing new aspects of our knowledge of the $0\nu\beta\beta$ decay operator
- Nuclear-structure microscopic calculations, when carried out in a fully consistent framework, have proved that the so-called "quenching puzzle" in the study of β decay processes is no longer an issue.
- More benchmark calculations with different theoretical approaches need to to be performed, in order to narrow the spread among different theoretical results

The calculation of $M^{0\nu}$: LO contact transition operator

Within the framework of ChEFT, there is the need to introduce a LO short-range operator, which is missing in standard calculations of $M^{0\nu}s$, to renormalize the operator and make it independent of the ultraviolet regulator

V. Cirigliano et al., Phys. Rev. Lett. 120 202001 (2020)

$$M_{sr}^{0\nu} = \frac{1.2A^{1/3}\,\text{fm}}{g_A^2} \langle 0_f^+ | \sum_{n,m} \tau_m^- \tau_n^- \mathbf{1} \left[\frac{4g_\nu^{NN}}{\pi} \int j_0(qr) \, f_S(p/\Lambda_S) \, q^2 \, dq \right] |0_i^+ \rangle$$

The open question is the determination of the low-energy constant $g_
u^{
m NN}$

A recent attempt to fit g_{ν}^{NN} by computing the transition amplitude of the $nn \rightarrow ppe^-e^-$ process using nuclear *NN* and *NNN* interactions has shown that $M_{sr}^{0\nu}$ enlarges the $M^{0\nu}$ for ⁴⁸Ca $0\nu\beta\beta$ decay

R. Wirth et al., Phys. Rev. Lett. 127 242502 (2021)

Conclusions and Outlook

- The new developments of microscopic approaches to the nuclear many-body problem are leading towards reliable calculations of the 0νββ nuclear matrix elements. This goal may be achieved by focusing theoretical efforts on two main tasks:
 - a) improving our knowledge of nuclear forces;
 - b) estimation of the theoretical error from the application of many-body methods.
- The efforts of the EFT community are also providing new aspects of our knowledge of the $0\nu\beta\beta$ decay operator
- Nuclear-structure microscopic calculations, when carried out in a fully consistent framework, have proved that the so-called "quenching puzzle" in the study of β decay processes is no longer an issue.
- More benchmark calculations with different theoretical approaches need to to be performed, in order to narrow the spread among different theoretical results

Backup slides

Luigi Coraggio CSN II, 7 aprile 2025

RSM: spectroscopic properties

 LC, L. De Angelis, T. Fukui, A. Gargano, N. Itaco, and F. Nowacki, Phys. Rev. C 100, 014316 (2019).

Università Dipartimento di Matematica e Fui degli Studi della Campanita Lucio Manutoli

RSM: spectroscopic properties

degli Studi della Campania

 LC, L. De Angelis, T. Fukui, A. Gargano, and N. Itaco, Phys. Rev. C 95, 064324 (2017)

LC, N. Itaco, G. De Gregorio, A. Gargano, R. Mancino, and F. Nowacki, Phys.
 ""Rev: "C 105 034312 (2022)

Luigi Coraggio CSN II, 7 aprile 2025

Ab initio vs NSM calculations

 Università Dipatiensto di Matematica e Fisi degli Studi della Campania Lagi Fansibili