Neutrino properties: experimental overview

Giuseppe Salamanna

Neutrino properties: my selection

- Masses
- Nature (Majorana question)
- E.m. properties (magnetic moment, milli-charge)

NOT:

- Oscillations (mass differences, sterile neutrinos, hierarchy) → Davide, Gioacchino
- ''Astro-physical'' neutrinos \rightarrow Rosa

One has to do two things:

- Conjecture and come up with a theory for such small masses (e.g. Majorana mass term opens option for See-Saw mechanism, etc)
- Measure masses and correlations with other neutrino observables, predicted by the theory, to verify or rule out (next slides)
- While the former has some good candidates, the latter is HARD!

Mechanisms for Majorana Neutrino Masses

 $\int J \frac{1}{2} V_L C M_M V_L$

- Type I Seesaw
- Type II Seesaw
- Type III Seesaw
- Zee's Model

. . .

- Colored Seesaw
- Witten's Model

Theoríes: B-L, Left-Ríght Symmetry, Patí-Salam, GUT's,

https://globalfit.astroparticles.es/2020/06/24/neutrino-masses/

Absolute Values of Neutrino Masses

Observables sensitive to m_v

The absolute mass scale can be measured through: (numbers on the right are current upper limits)

- tritium beta decay

 $m_{\beta} \equiv \left[\sum |U_{\rm ei}|^2 m_i^2\right]^{1/2}$

< 0.45 eV @ 90% CL (KATRIN, arXiv 2406.13516)

- neutrinoless double beta decay

$$m_{\beta\beta} \equiv \left| \sum U_{e_i}^2 m_i \right|$$

- < 0.028-0.122 eV @ 90% CL (KLDZ, arXiv 2406.11438)
- cosmological observations

$$\sum m_{\nu} \equiv \sum_{i} m_{i}$$

< 0.2 eV @ 90% CL (Lisi et al, arXiv 2503.07752)

Direct mass measurements from kinematics

+ :This method relies **purely** on 3-body kinematics, without any assumption on the nature of the v or on the cosmological "environment"

- : statistics, especially at the end point

massless. On the other hand, if the electron neutrino has a mass m_{ν_e} , the maximal kinetic energy of the electron is

$$\Gamma_{\max} = Q_\beta - m_{\nu_e} \tag{14.5}$$

Since the neutrino momentum is given by

$$p_{\nu} = \sqrt{E_{\nu}^2 - m_{\nu_e}^2} = \sqrt{(Q_{\beta} - T)^2 - m_{\nu_e}^2}, \qquad (14.6)$$

the differential decay rate in eqn (14.2) can be written, for $T \leq T_{\text{max}}$, as⁷⁵

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}T} = \frac{G_{\mathrm{F}}^2 \, m_e^5}{2 \, \pi^3} \, \cos^2 \theta_{\mathrm{C}} \, |\mathcal{M}|^2 \, F(Z, E_e) \, E_e \, p_e \, (Q_\beta - T) \, \sqrt{(Q_\beta - T)^2 - m_{\nu_e}^2} \,, \quad (14.8)$$

 \rightarrow What we measure:

$$\mathcal{K}(T) = \sqrt{\frac{\mathrm{d}\Gamma/\mathrm{d}T}{\frac{\left(\cos\vartheta_C G_{\mathsf{F}}\right)^2}{2\pi^3} \left|\mathcal{M}\right|^2 F(E) \, pE}} = \left[\left(Q - T\right)\sqrt{\left(Q - T\right)^2 - m_{\nu_e}^2}\right]^{1/2}$$

Beta decay of ³H

 $Q = M_{^{3}\text{H}} - M_{^{3}\text{He}} - m_e = 18.58 \,\text{keV}$

• $\tau_{1/2} \cong 12.3$ years (4*10⁸ atoms for 1 Bq)

reasonably short lifetime

³H: chosen because: \checkmark low Q \Rightarrow enhanced $\frac{n(\Delta T)}{n} \propto \left(\frac{\Delta T}{Q_{\beta}}\right)^{3}$ \checkmark simple atomic structure (small uncertainties on $|\mathcal{M}|^{2} F(Z, E_{c})$

 $^{3}\mathrm{H} = \mathrm{T}$

e 1e-4 1.5 -1e-11 $m_{\beta} = 0 eV$ ³He 1.5 $m_{\beta} = 2 eV$ $\overline{\nu}_{e}$ 1.0 $1/N dN/dE (eV^{-1})$ 1.0 0.5 -0.0 18572 18574 0.5 0.0 5000 10000 15000 0 20000 energy (eV)

Only a small fraction of events in the last eV below the endpoint: 2 *10⁻¹³

Triutium is present as bi-atomic molecules

KATRIN

(Promising) evolution(s)/I:TRISTAN

- precise spectral shape measurement (FWHM <300 eV) across entire energy range integral spectra
- Ability to handle high rates at the detector (~108 cps)

differential

Challenges:

- scaling to focal plane array (>1000 pixels)
- electron spectroscopy
- difficult environment: UHV, magnetic fields, high voltage etc.

(Promising) evolution(s)/I:TRISTAN

Under extensive characterization now for various response effects, including x'talk 2025:

9 modules in replica of KATRIN detector section

2026:

- installation in KATRIN beam line
- start of sterile neutrino physics program (~1 year)

KATRIN on way to achieve 1000 d measurement time (final sensitivity m_β < 0.3 eV). Next m_β result : ~ 0.5 eV sensitivity

- We will be ready for TRISTAN-Operation at the end of 2025 (Search for keV sterile neutrinos)
- Ultimate neutrino mass experiment (Normal Ordering; sensitivity on m_{β} < 40 meV) requires differential detector principle und an atomic tritium source → R&D Plan for PoF-V

Differential measurement (FWHM < 1 eV)

- Better use of statistics
- ✓ Lower background
- Atomic tritium
 - ✓ Avoid broadening (~ 1 eV)
 - ✓ Avoid limiting systematics of T₂

Current KATRIN : $\Delta E = 2.7 \text{ eV}$, bkg rate = 0.1 cps

Differential measurement

Energy resolution determined by

- A)detector or
- B) time of flight

Significant R&D effort based almost entirely at Karlsruhe and UNC:

- Metallic Magnetic Calorimeters (MMC) with Kr83m decay electrons currently reaches 25 eV FWHM for now, but should go down?
- TOF with single electron tagging is tough, but trying approach a la Project-8
- Towards a unified approach?

	Molecular tritium T ₂	Atomic tritium T	Quasi-atomic tritium (tritiated graphene)		
Type of source	Dynamic injection	Long-lifetime trap	Surface-bound		
Scalability to higher luminosity		Challenging	Promissing		
Effective limitation of resolution					
Final-state-distribution					
Baseline for	KARLSHITH INTIM NEUTRINO LAND	PROJECT B ATR ATR ATR ATR ATR ATR ATR ATR ATR ATR	tritiated?		
Quantum Technologies for Neutrino Nass					

.02.2024 Magnus Schlösser – KATRIN++: Prospect for the future

Institute

A lot of work on a T atom trap at KIT, but too long here to delve into it

⇒PTOLEMY: last CSN2@Bologna, Marcello (but no slides posted... :()

Meanwhile in Italy...

The HOLMES experiment

low temperature microcalorimeter arrays with ion-implanted ¹⁶³Ho scalable proof-of-principle for an experiment with $\leq 0.1 \text{ eV} m_{\nu}$ sensitivity

- 6.5×10^{13} atom/det $\rightarrow A_{_{\rm EC}}=300$ c/s/det
- $\Delta E \approx 1 \text{ eV}$ and $\tau_{R} \approx 1 \mu \text{s}$
- 1000 TES microcalorimeters
 - \rightarrow 16 × 64-pixel arrays with microwave multiplexed read-out
- $6.5 \times 10^{16 \ 163}$ Ho nuclei $\rightarrow \approx 18 \ \mu g$ $\rightarrow 3 \times 10^{13}$ events in 3 years
 - $\rightarrow m_{\nu}$ statistical sensitivity $\approx 1 \text{ eV}$

- $A_{_{\rm EC}} \approx 1$ c/s/det
- $\Delta E \approx 1 \text{ eV}$ and $\tau_{R} \approx 1 \mu \text{s}$
- 64-pixel array Of which 48 usable after successful implantation
 - \rightarrow 2×10⁹ events in 1 year
 - $\rightarrow m_{\nu}$ statistical sensitivity O(10 eV)

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112

7

PRL w/ 48 TES

 Ist neutrino mass measurement of HOLMES (submitted to PRL): <u>https://arxiv.org/pdf/</u> 2503.19920

Not competitive with KATRIN but

- validates the approach implemented in recent years by HOLMES and ECHo
- Can extract info on the neutrino mass using 163Ho even without knowing well the ¹⁶³Ho spectral shape

→ m(nu) < 27 eV at 90% C.L. with

- 48 detectors (microwave multiplexed readout)
- 2 months
- 15 Bq total activity = 10⁷ decadimenti

EChO

- At least to me their situation is not so clear
- They gave a proof of principle limit in 2019: *m<150 eV*
- They have some spectra away (E<2.5 keV for EC spectrum, E>3 keV for pileup) of the Q_{EC} analysed with a similar number of channels as HOLMES, but no update of mass result

ECHo-1k chip-Ag 34 pixel with implanted ¹⁶³Ho 6 background pixels average activity = 0.71 Bq total activity of 25.9 Bq

Towards ECHo-100K

ECHo-100k baseline: large arrays of MMCsNumber of detectors:12000Activity per pixel:10 Bq

Present status:

MMCs arrays:

High Purity ¹⁶³Ho source: Ion implantation system:

reliable fabrication of large MMC array succesfull characterization of arrays with ¹⁶³Ho available about 30 MBq demostrated co-deposition of Ag for larger activities

- They are working on improving to 'EChO-100k''
 - Latest news at Neutrino 2024
- But no plan to go beyond eV mass sensitivity

Next steps with Ho¹⁶³ (discarding EChO)

HOLMES_2: almost there (48/64 TES) HOLMES_PLUS: 64 \rightarrow 256 TES

- still a demonstrator, but with:
 - Better implantation technique to increase activity and uniformity across TES's (LNL expertise joining)
 - Decrease per channel cost of read out and DAQ
 - Request: until 2027.
 - Experiment with IM chns: 2035, m~100 meV (see back up)

Indirect mass measurements from "exotic" Maiorana mass term

+ : Several isotopes and techniques more or less at same (advanced) stage, ton-scale could bury IO.

a bet on neutrino being Maiorana-like and on m(light) <~
 I0 meV.Ton scale is costly and money is a problem more than technology

 $0v2\beta$ decays

- Could happens if neutrinos are Majorana fermions (Majorana mass term)
- Prosaically: $V = \overline{V}$
- It's not the only process available, but the one with the highest sensitivity
- Other BSM mechanisms could allow this, but some form of "suppressed Majoranism" should still be underlying

(Majorana!) Neutrino mass

Nuclear Matrix Element (significant theory uncertainty): EDF • • • ¹⁰⁰Mo ¹³⁶Xe IRM Т ⁷⁶Ge ORPA ΙIΙ NSM IMSRG IΙ • CC ¥I. \times ⊥ ∓ τ * T ě z ۲ Т ÷, T

¹⁰⁰Mo

¹¹⁶Cd

⁸²Se

⁷⁶Ge

¹³⁰Te

¹³⁶Xe

¹⁵⁰Nd

Ж

⁴⁸Ca

Effective Majorana Mass (assumes "standard" mechanism):

$$egin{aligned} m_{etaeta} &> \left| \sum |U_{ei}|^2 e^{i\phi_i} m_i
ight| \ &= \left| c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{i \widehat{lpha}} + s_{13}^2 m_3 e^{i \widehat{eta}} \end{aligned}$$

 α, β are unknown Majorana phases

> → Not measurable in oscillation experiments

This is only one model -- other LNV physics also possible!

$$\begin{aligned} &Mass \ ordering \ sensitivity \\ &\langle m_{\beta\beta} \rangle = \left| \sum_{i=1}^{3} U_{ei}^{2} m_{i} \right| \\ &= \left| m_{0}c_{12}^{2}c_{13}^{2} + \sqrt{m_{0}^{2} + \delta m_{\text{sol}}^{2}} s_{12}^{2}c_{13}^{2} e^{2i(\alpha_{2} - \alpha_{1})} + \sqrt{m_{0}^{2} + \delta m_{\text{sol}}^{2} + \delta m_{\text{atm}}^{2}} s_{13}^{2} e^{-2i(\delta_{\text{CP}} + \alpha_{1})} \right| \quad \text{NO} \\ &= \left| m_{0}s_{13}^{2} + \sqrt{m_{0}^{2} - \delta m_{\text{atm}}^{2}} s_{12}^{2}c_{13}^{2} e^{2i(\delta_{\text{CP}} + \alpha_{2})} + \sqrt{m_{0}^{2} - \delta m_{\text{sol}}^{2} - \delta m_{\text{atm}}^{2}} c_{12}^{2}c_{13}^{2} e^{2i(\delta_{\text{CP}} + \alpha_{2})} \right| \quad \text{IO}. \end{aligned}$$

KamLAND-Zen Collaboration, 2024 https://arxiv.org/abs/2406.11438

Best limits $m_{\beta\beta} < 28-122 \text{ meV}$

Nicked from F. Bellini, NOW 2024

Discovery Sensitivity $\langle m_{\beta\beta}^2 \rangle$ $\propto (T_{1/2}^{0\nu})^{-1}$

• Bkgd free operation mode $\rightarrow T^{0v}$ $\propto \epsilon m_{iso}^{FV} t$ (isotope-weighted exposure)

Experiments taking data currently (both at LNGS)

- CUORE: Ton·yr scale sensitivity now, but background dominated
- LEGEND-200: background-free mode, Ton scale sensitivity expected in few yrs

Future generation experiments designed to cover I.O. region fully (10 Ton · yr)

Lively experimental programme!

FIG. 20. Fundamental parameters driving the sensitive background and exposure, and hence the sensitivity, of recent and future phases of existing experiments; see Eq. (38). Red bars are used for ⁷⁶Ge experiments, orange bars are used for ¹³⁶Xe, blue bars are used for ¹³⁰Te, green bars are used for ¹⁰⁰Mo, and sepia bars are used for ⁸²Se. Similar exposures are achieved with high mass but poorer energy resolution and efficiency using gas and liquid detectors, or with small mass but high resolution and efficiency by solid-state detectors. The sensitive exposure is computed for 1 yr of live time. Lighter shades indicate experiments that are either under construction or proposed.

Rev. Mod. Phys. 95, 025002

Lively experimental programme!

FIG. 20. Fundamental parameters driving the sensitive background and exposure, and hence the sensitivity, of recent and future phases of existing experiments; see Eq. (38). Red bars are used for ⁷⁶Ge experiments, orange bars are used for ¹³⁶Xe, blue bars are used for ¹³⁰Te, green bars are used for ¹⁰⁰Mo, and sepia bars are used for ⁸²Se. Similar exposures are achieved with high mass but poorer energy resolution and efficiency using gas and liquid detectors, or with small mass but high resolution and efficiency by solid-state detectors. The sensitive exposure is computed for 1 yr of live time. Lighter shades indicate experiments that are either under construction or proposed.

Rev. Mod. Phys. 95, 025002

LEGEND-200

Overall exposure so far ~ 80 kg×yr over about 0.7 years of live time (~130 kg active HPGe)
 Golden" exposure for 0v2β search = 48.3 kg×yr

- Plus another about 30 kg yr of ''silver'' data for bkg characterisation
- About I year of maintenance and material screening to reduce background further towards target (²²⁸Th contribution higher than expected, but effectively reduced)
- Almost ready to resume data taking
 - Additional about 35 kg of HPGe to be included

- Energy scale stable over data taking with 0.3 ± 0.2 keV bias at $Q_{\beta\beta}$
- ICPC show very good resolution even at higher masses → promising for LEGEND-1000

Paper in preparation

World best exclusion limit from Ge

(L200+Gerda+Majorana Demonstrator, L200 improves by 30%):

- Sensitivity $T_{1/2} = 2.8 \times 10^{26}$ yr (90% CL)
- Observed T1/2 > 1.9×10^{26} yr (90% CL)
- BI = $(5.3 \pm 2.2) \times 10^{-4} \text{ cts/(keV \cdot kg \cdot yr)}$
 - Very low thanks to PSD in HPGe and high efficiency of LAr vetoing

LEGEND-1000

- Projected background in the ROI around $Q_{\beta\beta}(^{76}Ge) = 10^{-5} \text{ counts/(keV \cdot kg \cdot yr)}$
- Expected sensitivity $T_{1/2} > 10^{28}$ yr (10 yrs data taking) \Rightarrow m_{BB}: [10-20] meV
- Brand new infrastructure at LNGS
- Expected start \sim 2030, but subject to HPGe procurement and international funding scenario

Lively experimental programme!

FIG. 20. Fundamental parameters driving the sensitive background and exposure, and hence the sensitivity, of recent and future phases of existing experiments; see Eq. (38). Red bars are used for ⁷⁶Ge experiments, orange bars are used for ¹³⁶Xe, blue bars are used for ¹³⁰Te, green bars are used for ¹⁰⁰Mo, and sepia bars are used for ⁸²Se. Similar exposures are achieved with high mass but poorer energy resolution and efficiency using gas and liquid detectors, or with small mass but high resolution and efficiency by solid-state detectors. The sensitive exposure is computed for 1 yr of live time. Lighter shades indicate experiments that are either under construction or proposed.

Rev. Mod. Phys. 95, 025002

 $\blacksquare \Delta E_{FVVHM} @ Q_{\beta\beta} = 2527 \text{ keV}: 7.3 \text{ keV}$

 Continuously monitoring detector stability (NTD resistance and Pulse Tubes)

Simone Copello — VCI 2025, Vienna

CUORE

- ☑ Largest and coldest bolometer ever built
- ✓ 19 towers of 52 independent TeO₂ crystals, T=10 mK
 - ☑ Overall 742 kg total mass 206 kg of ¹³⁰Te
- Steadily increasing data set since 2019 has lead to exposure for 0v2β search = 2039 kg×yr worth of TeO₂ (567 kg×yr of ¹³⁰Te)

➤ Light

Thermal

Batl

CUPID

- Identify and suppress α radiation by conjugating scintillation capabilities and bolometer energy resolution \rightarrow leverages on experience and achievements of CUORE and CUPID0/CUPID-Mo^{Sensor}
- Re-use CUORE infrastructure + 1600 Li₂¹⁰⁰MoO₄ (⇒240 kg ¹⁰⁰Mo)

- Projected background in the ROI around $Q_{\beta\beta}(100 \text{ Mo}) = 10^{-4} \text{ counts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$
- Expected sensitivity $T_{1/2} > 10^{27}$ yr (10 yrs data taking) $\Rightarrow m_{\beta\beta}$: [12-20] meV
- Re-use CUORE infrastructure at LNGS
- Expected start ~ 2030, but subject to crystal procurement and international funding scenario

Lively experimental programme!

(Noble) liquids

FIG. 20. Fundamental parameters driving the sensitive background and exposure, and hence the sensitivity, of recent and future phases of existing experiments; see Eq. (38). Red bars are used for ⁷⁶Ge experiments, orange bars are used for ¹³⁶Xe, blue bars are used for ¹³⁰Te, green bars are used for ¹⁰⁰Mo, and sepia bars are used for ⁸²Se. Similar exposures are achieved with high mass but poorer energy resolution and efficiency using gas and liquid detectors, or with small mass but high resolution and efficiency by solid-state detectors. The sensitive exposure is computed for 1 yr of live time. Lighter shades indicate experiments that are either under construction or proposed.

NEXT-100

- 100 kg 90% enr. ¹³⁶Xe High Pressure (15 bar) gas TPC with Electroluminescence amplification:
 - Primary scintillation z coordinate + EL for tracking (SiPM) and energy resolution (PMT) ⇒ topological information
- Started operations in 2024, with initial run at 5 bar due to PMT support Cu plate deformation
- Solution now found, high pressure run will start this performance. 2027: upgrade to Fiber barrel and novel ASIC SiPM read out ⇒ demonstrator for NEXT-HD

×10²⁵ yr, m_{$\beta\beta$}: [66-281] meV (3 effective yrs)

- **Ξ Expected ΔE**_{FWHM} **@**
 - Projected bkg: 4 × 10

FIG. 5. Summary of existing limits at 90% C.L. on the neutrino magnetic moment (a) and the neutrino millicharge (b) coming from a variety of experiments [6,8,15,24,48,56–63]. The limits are divided in flavor components μ_{ν_e} (q_{ν_e}) (dots), $\mu_{\nu_{\mu}}$ ($q_{\nu_{\mu}}$) (crosses), and $\mu_{\nu_{\tau}}$ ($q_{\nu_{\tau}}$) (diamonds) and also the ones on the effective magnetic moment μ_{ν}^{eff} (q_{ν}^{eff}) (squares) are shown. In orange, we highlighted the best limits before the LZ data release and in red the XENONnT limit on the MM [12]. The results derived in this work for the effective parameter as well as divided in flavors are shown by the blue stars.

Cadeddu et al PHYS. REV. D 107, 053001 (2023)

No conclusions.

Back up

Nuclear Matrix Element values from various nuclear models

• Various models predict quite different values, throughout the isotope A range

 \bullet Affects the conversion from $T_{1/2}$ to m_{ee}

• 745 kg 90% enr. ¹³⁶Xe diluted in liquid scintillator in acrylic inner balloon inside KamLAND

- Very easily scalable and very good radio purity
- $\Delta E_{FVVHM} @ Q_{\beta\beta} (^{136}Xe) : 250 \text{ keV}$

Combined with KLZ-400, total exposure ~ 2500 kg yr

- Observed T1/2 > 3.8 × 10²⁶ yr (90% CL)
- 59 events in the energy region 2.35 < E < 2.70 MeV within the 1.57-m-radius spherical volume were observed … ~4 10⁻² cts/(FWHM*kg*yr)

✓ Upgrade **KL2-Zen** will improve x2 energy resolution with increased isotope mass

• Projected sensitivity $T_{1/2} > 10^{27}$ yr in 10 years

EXO-200/NEXO

- EXO200: 200 kg LXe TPC(80% ¹³⁶Xe)
- Reading and correlating ionisation and scintillation signals
- $\Delta E_{FVVHM} @ Q_{BB}: 66 \text{ keV}$

✓Total exposure ~ 234.1 kg yr (completed)

- Observed T1/2 > 3.5×10^{25} yr (90% CL)
- BI = 1.7×10^{-3} cts/(keV·kg·yr)

¹³⁶Xe $2\nu\beta\beta$ ²³²Th TPC Vessel ¹³⁶Xe $0\nu\beta\beta$ ²³⁸U Internals 10^{6} Far components · · · ²³²Th Internals Solar ν 10⁵ Internal ²²²Rn ¹³⁷Xe and ⁴²Ar — Total Sum ⁴⁰K (all) 10^{4} Counts / keV 10^{3} arXiv:2106.16243 10^{2} 101 10^{0} 10^{-1} 10^{-2} 2000 1000 1500 2500 3000 3500 Energy (keV)

²³⁸U TPC Vessel

Projected bkg: 5 10⁻⁶ cts/(keV · kg · yr) + $\sigma_E/E < 1\%$ T_{1/2} ~7 10²⁷ yr, m_{ββ}: [6-27] meV

- nEXO: 5 Ton
- Self shielding but no staged (FV 80%)
- APD \rightarrow SiPM. Electro-formed Cu

The Baseline Design: Underground Liquid Argon

- L1000 needs 20-25 t of UGLAr
- Builds on pioneering work of DarkSide collaboration
- UGAr will be mined at Urania facility (U.S.) 95 t/y
- Logistics and storage technology under development by DarkSide/ARGO collaboration for LNGS and SNOLAB
- Expression of interest from INFN president¹ and DarkSide leadership
- UGAr production for LEGEND-1000 in 2023 (after DS-20k)

UGAr is depleted in ⁴²Ar (³⁹Ar)

lso- tope	Abun- dance	Half-life (t _{1/2})	Decay mode	Pro- duct
³⁶ Ar	0.334%	stable		
³⁷ Ar	syn	35 d	8	³⁷ Cl
³⁸ Ar	0.063%		stable	
³⁹ Ar	trace	=== = 269 y=	₽≡===	³⁹ K
⁴⁰ Ar	99.604%	stable		
⁴¹ Ar	syn	109.34 min	β-	⁴¹ K
⁴² Ar	syn	=== 32.9 y	= β =====	⁴² K

¹ " ...we are confident that the production of the required UAr can be completed in a time scale useful for the accomplishment of the LEGEND-1000 experiment.. The present statement is an expression of interest and availability from INFN..."

LEGEND

Bolotnikov, Ramsey Ionization only, no EL!

Fig. 5. Density dependencies of the intrinsic energy resolution (%FWHM) measured for 662 keV gamma-rays.

Nicked from JJ's 2024 school lecture at INFN GGI

A possible roadmap towards 0.1 eV sensitivity

28