CP Violation in B and D Mesons

Luca Silvestrini INFN, Rome

- Introduction
- CP violation in $B_{\scriptscriptstyle ({\rm S})}$ and D decays
- Global fits and constraints on NP
 - Generalized UTA
 - The SMEFT
- Conclusions and outlook

Introduction

- The SM has a very important accidental symmetry: no tree-level FCNC ⇒ FCNC finite and calculable
- Flavour violation only in charged weak currents, governed by unitary CKM matrix
- Flavour violation only arises at loop level: unitarity of CKM implies GIM suppression

Introduction

- No CPV in weak interactions with two generations => CPV suppressed by hierarchical structure of CKM matrix, but CKM phase large
- CKM unitarity implies triangular relations among products of CKM elements: unitarity triangles
- CPV related to angles of unitarity triangles

The Unitarity Triangle

• From
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

 $-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} - \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} = R_b e^{i\gamma} + R_t e^{-i\beta} = 1 \simeq (\overline{\rho} + i\overline{\eta}) + (1 - \overline{\rho} - i\overline{\eta})$
 $R_b \equiv \left|\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right|, \quad R_t \equiv \left|\frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*}\right|, \quad \gamma \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right), \quad \beta \equiv \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right)$
 $\alpha \equiv \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$
 $\beta_s \equiv \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$
• The area of the UT is proportional to J

Jennifer2, Pisa, 3/4/25

b-d Transitions

- $V_{ub}V_{ud}^* \sim V_{cb}V_{cd}^* \sim V_{tb}V_{td}^* \sim \lambda^3$
 - All CKM factors comparable: rich structure in $\Delta F=1 b \rightarrow d$
 - dispersive $\Delta F=2 (M_{12}\sim\Delta m_{Bd})$ dominated by top exchange: SD, calculable w. LQCD
 - absorptive $\Delta F=2 (\Gamma_{12} \sim \Delta \Gamma_{Bd})$ calculable in HQET, dominant contribution has top CKM: $\arg(\Gamma_{12}/M_{12})$ tiny, negligible CPV in mixing

$b \rightarrow s$ Transitions

- $V_{ub}V_{us}^* \sim \lambda^4 \ll V_{cb}V_{cd}^* \sim V_{tb}V_{td}^* \sim \lambda^2$
 - suppression of up contribution: simple structure of $\Delta F=1 b \rightarrow s$, squashed UT, tiny β_s
 - dispersive $\Delta F=2$ ($M_{12}\sim\Delta m_{Bs}$) dominated by top exchange: SD, calculable w. LQCD
 - absorptive $\Delta F=2 (\Gamma_{12} \sim \Delta \Gamma_{Bs})$ calculable in HQET, dominant contribution has top CKM: $\arg(\Gamma_{12}/M_{12})$ tiny, negligible CPV in mixing

c→u Transitions

- $V_{ub}V_{cb}^* \sim \lambda^5 \ll V_{us}V_{cs}^* \sim V_{ud}V_{cd}^* \sim \lambda$
 - very strong suppression of bottom contribution: simple structure of $\Delta F=1 c \rightarrow u$, super-squashed UT, no penguin operators, CPV down by $r_{cKM} \sim 6.5 \ 10^{-4}$
 - GIM mechanism⇔U-spin (SU(3))
 - both dispersive $\Delta F=2$ ($M_{12}\sim\Delta m_D$) and absorptive $\Delta F=2$ ($\Gamma_{12}\sim\Delta\Gamma_D$) dominated by long distance: currently not calculable (see however ongoing progress in LQCD)

$\Delta C=2$ AMPLITUDES

• Since GIM \Leftrightarrow U-spin, classify $\Delta C=2$ amplitudes in terms of U-spin: $\lambda_{d_i} \equiv V_{ud_i} V_{cd_i}^*$

 $M_{12}, \ \Gamma_{12} \sim (\lambda_s - \lambda_d)^2 (f_{ss} + f_{dd} - 2f_{sd}) + 2(\lambda_s - \lambda_d)\lambda_b (f_{ss} - f_{dd}) + \mathcal{O}(\lambda_b^2)$

$$= (\lambda_s - \lambda_d)^2 (\Delta U = 2) + 2(\lambda_s - \lambda_d) \lambda_b (\Delta U = 1)$$

 $\sim (\lambda_s - \lambda_d)^2 \mathcal{O}(\epsilon^2) + 2(\lambda_s - \lambda_d)\lambda_b \mathcal{O}(\epsilon)$

• CPV effects expected at $O(r_{cKM}/\epsilon)$ ~2 10⁻³ ~ 1/8° for nominal U-spin breaking ~ 30%

APPROXIMATE UNIVERSALITY

- CPV effects in $\Delta C=2$ amplitudes enhanced by $1/\epsilon$ (factor of ~3)
- No enhancement expected (confirmed by ΔA_{CP}) for CPV in $\Delta C=1$ amplitudes
- Work at leading order in r_{CKM}/ϵ : take all decay amplitudes real, but allow for CPV in ΔC =2, with SM~1/8° plus possible NP in M_{12}
- Corrections for DCS decays calculable and tiny
- Corrections for SCS decays not calculable but additional ε suppression from suitable U-spin combinations

APPROXIMATE UNIVERSALITY

- Working at linear order in r_{cKM}/ϵ , two different sources of CPV arise:
 - "dispersive CPV", measured by $\Phi_{\rm M}$ = arg (M₁₂), sensitive to NP in ΔC =2;
 - "absorptive CPV", measured by Φ_{Γ} = arg (Γ_{12}), sensitive to CPV in decay amplitudes thanks to the U-spin enhancement.

Global Fit of CPV in B and D decays

- Interference of b \rightarrow c and b \rightarrow u decay amplitudes measures $\gamma \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{ub}V_{ub}^*}\right)$
- Interference involves D-D mixing
- Perform a global analysis extracting γ and D mixing parameters simultaneously, combining D decays sensitive to D mixing with B_{(s)} decays sensitive to γ

see LHCb 2110.02530

D-Mixing Definitions

$$|D_{\rm L,S}\rangle = p|D^0\rangle \pm q|\overline{D^0}\rangle$$

$$\phi_{12} = \arg\left(\frac{M_{12}}{\Gamma_{12}}\right), \qquad x_{12} = 2\frac{|M_{12}|}{\Gamma} \quad \text{and} \quad y_{12} = \frac{|\Gamma_{12}|}{\Gamma}.$$
$$x| = x_{12}, \qquad \left|\frac{q}{p}\right| - 1 = \frac{x_{12}y_{12}}{x_{12}^2 + y_{12}^2} \sin\phi_{12}, \qquad |y| = y_{12},$$
$$r_D^f e^{-i\delta_D^f} = \frac{\mathcal{A}_D^{\overline{f}}}{\mathcal{A}_D^f} \qquad \lambda_D^f \equiv \frac{q}{p} \frac{\mathcal{A}_D^f}{\mathcal{A}_D^f},$$

Jennifer2, Pisa, 3/4/25

D-Mixing Data

Observables	D^0 decays	Ref.	Observables	D^0 decays	Ref.
$(x^2 + y^2)/2$	$D \to K l \overline{\nu}_l$	[24-28]	$x'^{\pm}_{K\pi\pi^0}, y'^{\pm}_{K\pi\pi^0}$	$D \to K \pi \pi^0$	[29]
x, y	$D \to K_S^0 X X$	[30]	x, y	$D \to K_S^0 \pi \pi$	[31]
x,y	$D \to \pi^+ \pi^- \pi^0$	[32]	$x, y, q/p , \phi_2$	$D \to K_S^0 \pi \pi$	[36]
$(r_D^{K\pi})^2, x^2, y,$ $\cos \delta_D^{K\pi},$ $\sin \delta_D^{K\pi}$	$D \to K \pi$	[33]	$ \begin{array}{c} \frac{\mathcal{B}(D^0 \to K^0_s K^+ \pi^-)}{\mathcal{B}(D^0 \to K^0_s K^- \pi^+)}, \\ \delta^{K^0_S K \pi}_D, \\ \kappa^{K^0_S K \pi}_D, \\ \kappa^{K^0_S K \pi}_D \end{array} $	$D \to K_S^0 K \pi$	[34]
$F_{+}^{4\pi}$	$D \to 4\pi$	[39, 41]	$F_{+}^{XX\pi^0}$	$D \to X X \pi^0$	[39, 40]
$\frac{\mathcal{B}(D \to K^0_s K^+ \pi^-)}{\mathcal{B}(D^0 \to K^0_s K^- \pi^+)}$	$D \to K^0_S K \pi$	[42]	$F_{+}^{KK\pi\pi}$	$D \to K^+ K^- \pi^+ \pi^-$	[43]
$x_{\rm CP}, y_{\rm CP}, \Delta x, \Delta y$	$D \to K_S^0 \pi \pi$	[37, 38]	$(x^2 + y^2)/4$	$D \to K3\pi$	[44]
$ r_D^{K3\pi}, \delta_D^{K3\pi}, \kappa_D^{K3\pi}, \\ r_D^{K\pi\pi^0}, \delta_D^{K\pi\pi^0}, \kappa_D^{K\pi\pi^0} $	$D \to K3\pi$ $D \to K\pi\pi^0$	[44, 46–48]	$A_D(f^+), A_D(\pi\pi\pi^0),$ $r_D^{K\pi} \cos \delta_D^{K\pi}, r_D^{K\pi} \sin \delta_D^{K\pi}$	$D \to f^+, D \to K\pi$ $D \to XX\pi^0$	[49]
$ ilde{y}_{ ext{CP}}$	$D \to XX$	[55-64]	$\Delta Y^{KK} - \Delta Y^{\pi\pi}, \Delta Y$	$D \to XX$	[66–69]
$(r_D^{K\pi})^2, c_{K\pi}^{(\prime)}, \Delta c_{K\pi}^{(\prime)}, \Delta \tilde{c}_{K\pi}^{(\prime)}$	$D \to K\pi$	[54]	$(r_D^{K\pi})^2, (x_{K\pi}'^{\pm})^2, y_{K\pi}'^{\pm}$	$D \to K\pi$	[51–53]
$A_D^{\rm CP}(KK), \langle \tau \rangle_E^{KK}$	$D \to K^+ K^-$	[70-72]	$\Delta A_D^{\rm CP}, \langle \tau \rangle_E^{KK}, \langle \tau \rangle_E^{\pi\pi}$	$D \to XX$	[72–74]
$\Delta Y^{KK}, \Delta Y^{\pi\pi}$	$D \to XX$	[65]	$A_D^{\rm CP}(\overline{XX}), \langle \tau \rangle_E^{KK}, \langle \tau \rangle_E^{\pi\pi}$	$D \to XX$	[75–78]

Jennifer2, Pisa, 3/4/25

Time-Integrated B Decays

 $\Gamma(\overline{B} \to [f]_D h) \propto 1 + (r_D^f r_B^{Dh})^2 + 2\kappa_D^f \kappa_B^{Dh} r_D^f r_B^{Dh} \cos\left(\delta_B^{Dh} - \delta_D^f - \gamma\right) + \Gamma_{\rm mix}(x, y, \gamma, f, h)$

 $x_{\pm}^{Dh} = r_B^{Dh} \cos\left(\delta_B^{Dh} \pm \gamma\right), \qquad \qquad y_{\pm}^{Dh} = r_B^{Dh} \sin\left(\delta_B^{Dh} \pm \gamma\right)$

Time-Integrated data ADS & GLW

GLW Observables	ADS Observables	$\mathbf{B} \to \mathbf{D^0} \ \mathbf{decays}$	D^0 decays	Ref.
$A_B^{\rm CP}(XX\pi^0,h),$	$A^{ m fav, sup}(K\pi\pi^0, h),$	$B^{\pm} \to Dh^{\pm}$	$D \to K \pi \pi^0,$	[90]
$R^{ ext{CP}}(XX\pi^0,K\pi\pi^0,K,\pi)$	$R_{\pm}(K\pi\pi^0,h)$		$D \to X X \pi^0$	
$A_B^{\rm CP}(XX, h\pi\pi),$	$A^{\mathrm{fav}}(K\pi,h\pi\pi),$	$B^{\pm} \rightarrow Dh^{\pm}\pi\pi$	$D \to K\pi,$	[85]
$R^{\mathrm{CP}}(XX,K\pi,K\pi\pi,\pi\pi\pi)$	$R_{\pm}(K\pi,h\pi\pi)$		$D \to XX$	
$A_B^{\rm CP}(XX, K^{*\pm}), R(XX, K\pi, K^{*\pm})$	$A^{\text{fav,sup}}(K\pi, K^{*\pm}), R^{\text{ADS}}(K\pi, K^{*\pm})$	$B^{\pm} \to DK^{*\pm}$	$D \to K\pi, \ D \to XX,$	[95]
$A_B^{\rm CP}(4\pi, K^{*\pm}), R(4\pi, K3\pi, K^{*\pm})$	$A^{\text{fav},\text{sup}}(K3\pi, K^{\star\pm}), R^{\text{ADS}}(K3\pi, K^{\star\pm})$		$D \to K3\pi, D \to 4\pi$	
$A_B^{\rm CP}(XX, K^{*0}), R(XX, K\pi, K^{*0})$	$A^{\text{fav}}(K\pi, K^{*0}), R_{\pm}(K\pi, K^{*0})$	$B^0 \to DK^{*0}$	$D \to K\pi, D \to XX,$	[93]
$A_B^{\rm CP}(4\pi, K^{*0}), R(4\pi, K3\pi, K^{*0})$	$A^{\text{fav}}(K3\pi, K^{*0}), R_{\pm}(K3\pi, K^{*0})$	$B^0_s \to D\overline{K^{*0}}$	$D \to K3\pi, D \to 4\pi$	
$A_B^{\rm CP}(XX,h), R^{\rm CP}(XX,K\pi,K,\pi)$	$A^{\text{fav}}(K\pi,K), R_{\pm}(K\pi,h)$	$B^{\pm} \to Dh^{\pm}$	$D \to K\pi, \ D \to XX$	[88]
$A_B^{\rm CP}(XX, h(\gamma, \pi^0)),$	$A^{ ext{fav}}(K\pi,K(\gamma,\pi^0)),$	$B^{\pm} \to [D\pi^0]_{D^*} h^{\pm}$	$D \to K\pi,$	[88]
$R^{\rm CP}(XX,K\pi,K(\gamma,\pi^0),\pi(\gamma,\pi^0))$	$R_{\pm}(K\pi,h(\gamma,\pi^0))$	$B^{\pm} \rightarrow [D\gamma]_{D^*} h^{\pm}$	$D \to XX$	
	$A^{ m fav, sup}(K^0_SK\pi, h),$			
	$R^{ ext{fav}, ext{sup}}(K^0_SK\pi,K,\pi),$	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_S K \pi$	[89],
	$R^{ m ADS}(K^0_SK\pi,\pi)$			[91]
$\overline{A_B^{\rm CP}(XX\pi\pi,h), R^{\rm CP}(XX\pi\pi,K3\pi,K,\pi)}$		$B^{\pm} \rightarrow Dh^{\pm}$	$D \to X X \pi \pi$	[100]
	$R^{ ext{ADS}}(K\pi,h), A^{ ext{sup}}(K\pi,h)$	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K \pi$	[83]
	$R^{ADS}(K\pi\pi^0,h), A^{sup}(K\pi\pi^0,h)$	$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K \pi \pi^0$	[84]
$A_B^{\rm CP}(K^+K^-, K), R^{\rm CP}(K^+K^-, K\pi, K, \pi)$		$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^+ K^-, \ D \to K \pi,$	[92]
$A^{\rm CP}_B(K^0_S\pi^0,K)$, $R^{\rm CP}(K^0_S\pi^0,K\pi,K,\pi)$			$D o K^0_S \pi^0$	
$A_B^{ ext{CP}}(f^{\pm}, K(\pi^0)),$		$B^{\pm} \rightarrow [D\pi^0]_{D^*} h^{\pm}$	$D \to f^{\pm},$	[82]
$R^{\rm CP}(f^{\pm},K\pi,K(\pi^0),\pi(\pi^0))$			$D \to K \pi$	

Jennifer2, Pisa, 3/4/25

Time-Integrated Data GGSZ

GGSZ Observables	$B \to D^0 \ decays$	D^0 decays	Ref.
$x_{\pm}^{DK^{*0}},y_{\pm}^{DK^{*0}}$	$B^0 \to DK^{*0}$	$D \to K^0_S X X$	[103]
$x_{\pm}^{DK},x_{\xi}^{D\pi}$	$B^{\pm} \to DK^{\pm}$	$D \to K^0_S \pi^+ \pi^- \pi^0$	[97]
$y^{DK}_{\pm},y^{D\pi}_{\xi}$	$B^{\pm} \to D\pi^{\pm}$		
$x_{\pm}^{DK},x_{\xi}^{D\pi}$	$B^{\pm} \to DK^{\pm}$	$D \to K^0_S X X$	[98, 99]
$y^{DK}_{\pm},y^{D\pi}_{\xi}$	$B^{\pm} \to D\pi^{\pm}$		
$x_{\pm}^{DK},x_{\xi}^{D\pi}$	$B^{\pm} \to DK^{\pm}$	$D \to X X \pi^+ \pi^-$	[100]
$y^{DK}_{\pm},y^{D\pi}_{\xi}$	$B^{\pm} \to D\pi^{\pm}$		
$x_{\pm}^{[D\pi^0]_{D^*}K}, x_{\pm}^{[D\gamma]_{D^*}K}$	$B^{\pm} \to [D\pi^0]_{D^*} K^{\pm}$	$D \to K^0_S \pi^+ \pi^-$	[96]
$y_{\pm}^{[D\pi^0]_{D^*}K}, y_{\pm}^{[D\gamma]_{D^*}K}$	$B^{\pm} \to [D\gamma]_{D^*} K^{\pm}$		
$x_{\pm}^{D^*K}, x_{\xi}^{D^*\pi}$	$B^{\pm} \to D^* K^{\pm}$	$D \to K_S^0 X X$	[101, 102]
$y^{D^*K}_\pm,y^{D^*\pi}_\xi$	$B^{\pm} \to D^* \pi^{\pm}$		
$x_{\pm}^{DK^{*\pm}}, y_{\pm}^{DK^{*\pm}}$	$B^{\pm} \to DK^{*\pm}$	$D \to K^0_S X X$	[95]
$x_{\pm}^{DK},x_{\xi}^{D\pi}$	$B^{\pm} \to DK^{\pm}$	$D \to K^{\mp} \pi^{\pm} \pi^{+} \pi^{-}$	[94] ^a
$y^{DK}_{\pm},y^{D\pi}_{\xi}$	$B^{\pm} \to D\pi^{\pm}$		

Time-Dependent B Decays

$$B_{(s)}^{0} \qquad b \rightarrow c$$

$$B_{(s)}^{0} \qquad h^{+}$$

 $\Gamma(B^0_{(s)} \to f, t) \propto \cosh(t\Delta\Gamma_{(s)}/2) - G_f \sinh(t\Delta\Gamma_{(s)}/2) + C_f \cos(t\Delta m_{(s)}) - S_f \sin(t\Delta m_{(s)})$

$$C_{f} = \frac{1 - (r_{B_{(s)}^{0}}^{f})^{2}}{1 + (r_{B_{(s)}^{0}}^{f})^{2}}, \quad G_{f} = \frac{-2\eta_{(s)}\kappa_{B_{(s)}^{0}}^{f}r_{B_{(s)}^{0}}^{f}}{1 + (r_{B_{(s)}^{0}}^{f})^{2}}\cos\left(\delta_{B_{(s)}^{0}}^{f} - (\phi_{d(s)} + \gamma)\right), \quad S_{f} = \frac{2\eta_{(s)}\kappa_{B_{(s)}^{0}}^{f}r_{B_{(s)}^{0}}^{f}}{1 + (r_{B_{(s)}^{0}}^{f})^{2}}\sin\left(\delta_{B_{(s)}^{0}}^{f} - (\phi_{d(s)} + \gamma)\right),$$

Jennifer2, Pisa, 3/4/25

Time-Dependent Data

	Observables		$\mathbf{B}^0_{(s)} \to \mathbf{D}^{\mp}_{(s)} \mathbf{h}^{\pm} \ decays$	Ref.
$C_{D_s^{\mp}K^{\pm}},$	$G_{D_s^{\mp}K^{\pm}},$	$S_{D_s^{\mp}K^{\pm}}$	$B_s^0 \to D_s K$	[106]
	$S_{D\mp\pi\pm}$		$B^0 \to D\pi$	[104]
$C_{D_s^{\mp}K^{\pm}\pi\pi},$	$G_{D_s^{\mp}K^{\pm}\pi\pi},$	$S_{D_s^{\mp}K^{\pm}\pi\pi}$	$B_s^0 \to D_s K \pi \pi$	[105]

Results: D mixing parameters

Jennifer2, Pisa, 3/4/25

Luca Silvestrini

Results: D mixing parameters

Jennifer2, Pisa, 3/4/25

Luca Silvestrini

20

Results: D mixing parameters

		All m	odes	Charm only			
Par.	Value	Unc.	95% Prob.	Value	Unc.	95% Prob.	
$\phi^M_2[^\circ]$	1.9	± 1.6	[-1.3, 5.4]	2.0	± 1.7	[-1.3, 5.4]	
$\phi_2^{\Gamma}[^{\circ}]$	2.7	± 1.6	[-0.5, 5.8]	2.6	± 1.6	[-0.5, 5.7]	
$\phi_2[^\circ]$	-2.5	± 1.2	[-4.9, -0.1]	-2.4	± 1.2	[-4.8, 0.0]	
q/p - 1[%]	-0.6	± 1.8	[-4.2, 3.1]	-0.5	± 1.8	[-4.1, 3.2]	
$x_{12} \simeq x[\%]$	4.02	± 0.44	[3.15, 4.89]	4.00	± 0.44	[3.12, 4.87]	
$y_{12} \simeq y[\%]$	6.27	± 0.21	[5.85, 6.69]	6.35	± 0.23	[5.88, 6.82]	
$a_D^{KK}[\%]$	0.39	± 0.57	$\left[-0.76, 1.52\right]$	0.38	± 0.57	[-0.76, 1.51]	
$a_D^{\pi\pi}$ [‰]	2.40	± 0.63	[1.14, 3.66]	2.39	± 0.63	[1.14, 3.66]	
$\phi_{12}[^\circ]$	-0.7	± 2.3	[-5.3, 4.0]	-0.7	± 2.3	[-5.2, 4.1]	
$r_D^{K\pi}[\%]$	5.848	± 0.016	[5.815, 5.880]	5.848	± 0.017	[5.813, 5.881]	
$\delta_D^{K\pi}[^\circ]$	190.5	± 2.8	[184.9, 196.0]	193.7	± 4.2	[184.9, 201.7]	

Betti et al. 2409.06449

Results: y

Luca Silvestrini

Results: y

Results: y

B meson types	Value	Unc.	95% Prob.
All modes : $\gamma[^{\circ}]$	66.0	± 2.5	[60.8, 70.9]
$\mathbf{B}^{\pm}:\gamma_{B^{\pm}}[^{\circ}]$	65.5	± 2.8	[59.7, 71.0]
$\mathbf{B^{0}}:\gamma_{B^{0}}[^{\circ}]$	[12.8, 1]	$4.6] \cup$	$[47, 74] @ 68.7\% m \ probability$
$\mathbf{B^0_s}:\gamma_{B^0_s}[^\circ]$	77.3	± 9.6	[58.3, 96.3]

The UTA

- Recent improvements/extensions in UTfit:
 - skeptic combination of V_{ud} and V_{us} given the tension with unitarity - otherwise get artificially small uncertainty as in CKMfitter talk yesterday
 - revised exclusive $V_{\mbox{\tiny cb}}$ and $V_{\mbox{\tiny ub}}$ with new FFs
 - skeptic 2D combination of V_{ub} and V_{cb} given the tension among inclusive and exclusive
 - inclusion of ε'/ε with lattice matrix elements

$|V_{ub}|$ AND $|V_{cb}|$ INCL. & EXCL.

Full UTA

$$\begin{split} \overline{\rho} &= 0.158 \pm 0.009 \\ \overline{\eta} &= 0.352 \pm 0.010 \\ \lambda &= 0.2250 \pm 0.0007 \\ A &= 0.826 \pm 0.009 \\ \text{Re}(\epsilon'/\epsilon) &= (1.60 \pm 0.28) \ 10^{-3} \\ \overline{\text{BR}}(B_s \rightarrow \mu^+ \mu^-) &= (3.44 \pm 0.12) \ 10^{-9} \\ \text{BR}(B \rightarrow \tau \nu) &= (8.72 \pm 0.41) \ 10^{-5} \end{split}$$

UTfit Over the Years

UTfit & Exp Over the Years

NEW PHYSICS IN $\Delta F=2$

- Generalize the UTA allowing for NP in loopmediated processes:
 - V_{ud} , V_{cb} , V_{ub} , γ from trees and α unaffected (provided no huge NP effect in EWP)
 - NP allowed in $\Delta F=2$ processes
- Extract both CKM parameters and NP contributions

NP ANALYSIS: RESULTS

 $\overline{\rho}$ = 0.167 ± 0.025 $\overline{\eta}$ = 0.361 ± 0.027 to be compared w. $\overline{\rho} = 0.158 \pm 0.009$ $\overline{\eta}$ = 0.352 ± 0.010 in the SM. Improvements in $|V_{ub}|$, $|V_{cb}|$, γ and α crucial to increase the sensitivity to NP!

NP Contributions

Jennifer2, Pisa, 3/4/25

FROM $\Delta F=2$ to the NP scale

- $H_{eff\Delta}^{F=2} = \sum_{i=1}^{5} C_i O_i + \sum_{i=1}^{3} C_i O_i'$
- In the SM only O_1 (V-A)
- Operators with i>1 are RG- and chirallyenhanced
- In general, $C_i \sim F_i L_i / \pi^2$
- Take $L_i=1$ and $F_i = 1$ (generic) or $F_i \sim F_1^{SM}$ (next-to-minimal flavour violation)

FROM $\Delta F=2$ to the NP scale

The Next Frontier: Global Fits in the SMEFT

- Assuming no sizable NP effect in tree-level processes is reasonable, but can we be more general?
- Most general gauge-invariant effective theory built with SM fields: the SMEFT
- 2499 B- and L-conserving operators at D=6
- Goal for the next decades: explore the full landscape of the SMEFT

First steps in the SMEFT

- Flavour assumptions: U(3)⁵ (59 ops), U(2)⁵ (124 ops), MFV, ...
- Work at linear order in the SMEFT
- Determine simultaneously SM parameters + SMEFT coefficients
- Need to generalize expressions for all observables
- Combine with EW, Higgs, top & DY
- Everything implemented from scratch in HEPfit

U(2)⁵ Results - PRELIMINARY

	С	Λ/\sqrt{C}		С	Λ/\sqrt{C}		С	Λ/\sqrt{C}
C_G	1.26 ± 0.77	1.8	C_W	-0.70 ± 0.46	2.4	$C_{\phi G}$	-0.014 ± 0.010	16.3
$C_{\phi W}$	-0.071 ± 0.046	7.5	$C_{\phi B}$	-0.020 ± 0.015	13.5	$C_{\phi WB}$	0.040 ± 0.027	9.9
$C_{\phi D}$	0.032 ± 0.084	6.6	$C_{\phi box}$	-3.2 ± 2.1	1.1	C_{ϕ}		
$C^{(1)a}_{\phi l}$	-0.031 ± 0.040	9.0	$C_{\phi l}^{(1)3}$	0.04 ± 0.16	5.1	$C^{(3)a}_{\phi l}$	-0.067 ± 0.054	7.2
$C_{\phi l}^{(3)3}$	0.10 ± 0.14	4.9	$C^a_{\phi e}$	0.068 ± 0.053	7.2	$C^3_{\phi e}$	-0.16 ± 0.17	4.3
$C_{\phi q}^{(1)a}$	0.0016 ± 0.0033	34.4	$C_{\phi q}^{(1)3}$	-0.0019 ± 0.0033	33.9	$C_{\phi q}^{(3)a}$	0.0018 ± 0.0031	34.9
$C_{\phi a}^{(3)3}$	-0.0016 ± 0.0028	37.1	$C^a_{\phi u}$	0.34 ± 0.37	2.9	$C_{\phi u}^3$	-0.01 ± 0.15	5.4
$C^a_{\phi d}$	-0.76 ± 0.76	2.0	C_{dd}^3	-2.0 ± 1.0	1.5	C_{dud}^3	-3.9 ± 6.0	0.8
$C^{3}_{\phi a H}$	0.131 ± 0.070	5.8	$C^{3}_{\phi u H}$	8.1 ± 4.6	0.8	$C_{\phi d\mu}^{3}$	-0.037 ± 0.074	7.0
$C_{u_2G}^{\varphi e \Pi}$	-0.151 ± 0.096	5.2	C_{u_2W}	-0.35 ± 0.28	3.2	$C_{u_2B}^{\psi a H}$	-0.24 ± 0.17	3.9
C_{d_3G}	-4.6 ± 3.8	0.9	C_{d_3W}	-0.29 ± 0.43	3.0	C_{d_3B}	3.2 ± 5.3	0.8
C_{e_3W}	3.1 ± 1.8	1.2	C_{e_3B}	10.0 ± 5.1	0.8	C_{ll}^{aabb}	-0.20 ± 0.23	3.7
C_{II}^{abba}	-0.016 ± 0.099	6.6	C_{II}^{aa33}	-0.02 ± 0.32	3.8	C_{II}^{a33a}	0.06 ± 0.29	3.8
C_{ll}^{3333}	2.8 ± 4.6	0.9	$C_{la}^{(1)aabb}$	0.0044 ± 0.0046	27.8	$C_{la}^{(1)aa33}$	-0.0043 ± 0.0047	27.4
$C_{lq}^{(1)33aa}$	0.31 ± 0.23	3.4	$C_{lq}^{(1)3333}$	-0.47 ± 0.81	2.2	$C_{lq}^{(3)aabb}$	0.0006 ± 0.0037	33.7
$C_{lg}^{(3)aa33}$	-0.0042 ± 0.0048	27.8	$C_{lg}^{(3)33aa}$	-0.020 ± 0.031	10.7	$C_{lq}^{(3)3333}$	0.42 ± 0.39	2.7
\hat{C}_{ee}^{aabb}	-0.12 ± 0.14	4.8	C_{ee}^{aa33}	-0.01 ± 0.18	4.9	C_{ee}^{3333}	6.8 ± 7.2	0.8
C_{eu}^{aabb}	0.020 ± 0.040	9.5	C_{eu}^{aa33}	0.56 ± 0.46	2.5	C_{eu}^{33aa}	0.23 ± 0.17	4.0
C_{eu}^{3333}	-1.4 ± 1.5	1.4	C_{ed}^{aabb}	-0.06 ± 0.12	5.5	C_{ed}^{aa33}	1.1 ± 2.0	1.3
C_{ed}^{33aa}	-0.68 ± 0.51	2.3	$C_{ed}^{\bar{3}\bar{3}\bar{3}\bar{3}}$	-7.9 ± 7.2	0.8	C_{le}^{aabb}	0.05 ± 0.38	3.4
C_{le}^{aa33}	-0.74 ± 0.96	1.8	$C_{le}^{\overline{33}aa}$	-0.55 ± 0.95	1.9	C_{le}^{3333}	-0.53 ± 0.18	0.9
C_{lu}^{aabb}	0.049 ± 0.084	6.6	C_{lu}^{aa33}	-0.29 ± 0.22	3.7	C_{lu}^{33aa}	0.48 ± 0.35	2.8
C_{lu}^{3333}	0.2 ± 1.4	1.7	C_{ld}^{aabb}	-0.13 ± 0.25	3.8	C_{ld}^{aa33}	0.5 ± 4.7	1.0
C_{ld}^{33aa}	-1.4 ± 1.0	1.6	C_{ld}^{3333}	-5.6 ± 9.2	0.8	C_{ae}^{aabb}	0.051 ± 0.098	6.0
C_{ae}^{aa33}	0.57 ± 0.39	2.6	C_{ae}^{33aa}	-0.45 ± 0.32	3.0	C_{qe}^{3333}	0.8 ± 1.1	1.8
C_{ledg}^{3333}	-6.1 ± 8.9	0.8	$C_{qq}^{(1)aabb}$	-0.023 ± 0.017	13.5	$C_{qq}^{(1)abba}$	-0.024 ± 0.015	13.5
$C_{qq}^{(1)a\dot{a}33}$	0.0102 ± 0.0090	19.1	$C_{qq}^{(1)a33a}$	0.0119 ± 0.0079	18.8	$C_{qq}^{(1)3333}$	-0.010 ± 0.016	15.7
$C_{qq}^{(3)aabb}$	-0.017 ± 0.014	14.4	$C_{qq}^{(3)abba}$	-0.022 ± 0.016	13.6	$C_{qq}^{(3)aa33}$	0.0083 ± 0.0064	21.1
$C_{qq}^{(3)a33a}$	0.0132 ± 0.0082	18.5	$C_{qq}^{(3)3333}$	-0.020 ± 0.014	14.3	C_{uu}^{aabb}	0.65 ± 0.93	1.9
C_{uu}^{abba}	1.1 ± 1.3	1.6	C_{uu}^{aa33}	1.2 ± 1.2	1.6	C_{uu}^{a33a}	0.49 ± 0.45	2.6
C_{uu}^{3333}	-0.29 ± 0.61	2.6	C_{dd}^{aabb}	4.2 ± 5.3	0.8	C_{dd}^{abba}	5.3 ± 6.7	0.8
C_{dd}^{aa33}	6.7 ± 8.1	0.8	C_{dd}^{a33a}	-6.65 ± 0.35	0.8			

deBlas et al; see also Allwicher et al; Bartocci et al; Hiller et al;

Jennifer2, Pisa, 3/4/25

Conclusions

- Impressive experimental progress in CPV in B and D decays, best summarized by the UTA
- Current data still allow for NP contributions in $\Delta F=2$ processes at the level of 25-30% of the SM. This however already corresponds to impressive bounds on the NP scale.
- First steps towards a fully general SMEFT analysis, long way to go but leads to unbiased NP search and hopefully to evidence of NP!