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Overview

• Neutrino oscillations, sources and experiments

• Why combine neutrino experiments?

– Breaking degeneracies

– Precision measurement

– New Physics

• How should we combine experiments?

– Methods of combining results

– Combining likelihoods
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Neutrinos oscillations

• Mixing of 

flavour and 

mass 

eigenstates

• Oscillation 

probability is 

function of 

neutrino 

energy, E, and 

propagation 

distance L

M. Scott 4

𝑃α→β  = ෍

𝑖

𝑈α𝑖
∗ 𝑈β𝑖𝑒−𝑖𝑚𝑖

2 Τ𝐿 2𝐸

2



Oscillation probabilities

• Leading order oscillation 

probabilities for 𝜈𝜇 survival 

and 𝜈𝑒 appearance
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• Measuring oscillation 

probability requires accurate 

reconstruction of neutrino 

energy!



Neutrino sources

• Many natural sources of neutrinos across huge energy range
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Neutrino sources

• Many natural sources of neutrinos across huge energy range
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Many experiments to enjoy (oscillation focus)
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Neutrino sources

• Neutrino beams and atmospheric neutrinos overlap
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Beam 

neutrinos

Rev. Mod. Phys. 92 (2020) 45006



Neutrino beams

• Significant overlap in 

energy between 

neutrino beams

• Different energies 

give different physics 

and interaction 

sensitivities

– Background for 

Hyper-K is signal 

in DUNE
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Plot courtesy C. Wret



Why combine data? Breaking degeneracy 

• Example from T2K + Super-K 

sensitivity studies

– T2K uses neutrino beam

– SK uses atmospheric 

neutrinos

• T2K measures δCP more 

precisely than Super-K 
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• Example from T2K + Super-K 

sensitivity studies

– T2K uses neutrino beam

– SK uses atmospheric 

neutrinos

• T2K measures δCP more 

precisely than Super-K 

• Combined result breaks 

degeneracy seen by T2K 

around CP conserving values
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PoS NOW 2022, 008

Why combine data? Breaking degeneracy 



Why combine data? Precision measurements
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• Non-unitarity not seen in 

quarks (yet)

• Would indicate new physics

– Generic search (steriles, 

neutrino decay, NSIs etc.)

• Requires over-constraint of 

PMNS parameters

CKMFitter, CKM 2023 workshop



Unitarity measurements in PMNS

M. Scott 14

• Many contributions

– Daya Bay

– JUNO

– SNO

– Hyper-K / DUNE

– DUNE / Hyper-K 

/ IceCube

S. Parke, M. Ross-Lonergan, Phys. Rev. D 93, 113009 (2016)



Unitarity measurements in data
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• PMNS unitarity circa 2020

– Combined 

experiments(JUNO, 

IceCube, DUNE, HK) gives 

greater precision

– Necessary to isolate 

individual PMNS elements

• Also look at consistency of 

experiments

– Compare θ13 measured by 

reactors and long-baseline 

neutrinos

PHYS. REV. D 102, 115027 (2020)



Future experiments

21st November 2018
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NOvA NSI results

• Measuring disappearance of muon (anti)neutrinos and appearance of 

electron (anti)neutrinos

• Looking for phase and magnitude of NSI in 𝑒 → 𝜇 and 𝑒 → τ
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https://arxiv.org/abs/2403.07266 

https://arxiv.org/abs/2403.07266


NOvA NSI results

• Impact on PMNS 𝛿𝐶𝑃 and 

octant

• At single experiment including 

NSI removes almost all 

sensitivity to 𝛿𝐶𝑃 and octant in 

standard PMNS matrix

– Effects are degenerate!
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21st November 2018
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From PhysRevLett.122.211801

• HK neutrinos travel 295km

• DUNE neutrinos travel 1300km

• See different NSI terms have 

different effects

– Combining data from multiple 

experiments allows us to gain 

sensitivity

– Break degeneracy with regular 

PMNS oscillations

Multi-experiment NSI

https://doi.org/10.1103/PhysRevLett.122.211801


How to combine experimental results?

• Lots of existing expertise

– LHC experiments

– NuFit et al.

– PDG

– T2K + NOvA, T2K + Super-K
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Sum of χ2 

contributions

• Independent, Gaussian 

measurements with known 

correlations – relatively easy

Courtesy N. Wardle



Potential issues

• Unknown correlations

– Y-axis is ~error on combined 

result

– Most conservative assumption 

not necessarily given by fully 

(un)correlated uncertainties
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• Asymmetric errors

– ln L from approx. of Poisson

– OK at ~1 sigma, diverges past this

– How do we interpret published value?

https://arxiv.org/abs/2411.15499 
Courtesy N. Wardle

https://arxiv.org/abs/2411.15499


Other methods of combination

• Publish χ2 maps of the parameters of interest

– Easy to combine experiments (just add maps)

– Allows simple correlation of parameters between experiments

– Can include multiple dimensions to get correlations within an experiment
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https://arxiv.org/abs/2309.05989 

• In future might need high-

dimensionality surfaces at high 

significance

– >3σ for CPV discovery?

• Disjoint likelihoods, such as mass-

ordering hypotheses, pose 

difficulties

https://arxiv.org/abs/2309.05989


Combining experiments directly

• Next generation of experiments aim for precision neutrino physics

– Require combining data from multiple experiments

• JUNO measures mass ordering, mass splittings and θ12 very precisely

• Daya Bay gives θ13 very precisely, but same reactor as JUNO, 

therefore correlated systematics

• Ideally, combine likelihoods from experiments directly and make likelihoods 

publicly available for future use

– Full information available to analysis

– Energy reconstruction performed by experiment simulation

• Can correctly predict reconstructed neutrino energy distribution for any 

value of oscillation parameters

• Get L/E correct!
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x

y

Warning about combining likelihoods

• Experiments marginalise/profile nuisance parameters – combining these 

reduced likelihoods not always correct
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Example from L. Lyons

• Fit straight line to two data samples

• Marginalise over parameter c

• Combine…



Wrong!^

x

y

Warning about combining likelihoods

• Experiments marginalise/profile nuisance parameters – combining these 

reduced likelihoods not always correct
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Example from L. Lyons

• Need to study correlations of data and models when combining

– Demonstrate (in)compatibility of model with data at very least



Difficulties facing combined analyses

• Measurements from Daya-Bay, JUNO, Hyper-K, DUNE, IceCube-Upgrade, 

KM3NeT, P-ONE etc. will be systematics limited

– Cannot rely on statistical combination of results

• To date community has struggled to produce a neutrino interaction model that 

can correctly predict event rates at a different experiment / neutrino source

– Scaling of interaction cross section across energies, nuclear targets difficult

– Removing effects of detector from measurements also tricky

– Does parameter A in HK’s model mean the same as parameter A’ in the 

model used by DUNE?

• Beam experiments tune neutrino flux and interaction cross section models to 

near detector data

– Need to “combine” near detector analyses as well
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Neutrino event generators

• Currently five (that I know) main event generators:

• Three are regularly used by experiments

• Include different interaction models, and different assumptions about 

implementation – predicted event rates not always directly comparable

• Common I/O format being developed

– NuHEPMC

– Essential for future combined analysis
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Overcoming difficulties

• Start talking about them!

– Help experiments develop analyses with ease of combination in mind

– Help with sociological side of combined analyses

– Support development of common formats (NuHEPMC etc.)

• Start doing it now!

– T2K + NOvA and T2K + SK demonstrate how to do this

– Discover (and address) potential issues for future experiments

• Potential to have joint facilities in future!

– NA61/SHINE for next gen experiments

– Neutrino beamline at CERN (NuSTORM, EnuBET etc.) with argon, 

scintillator, water Cherenkov detectors
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Summary
• Many ways to combine experiment results

– Simple methods not easy for (high statistics) neutrino data!

– Direct combination of likelihoods preferred

• Must understand correlations of both nuisance and signal parameters across 

reactor, atmospheric, solar and beam neutrinos

• Compatibility of event rate model across experiments likely a key issue

– Must be able to compare near detector data between experiments

– Unified event generator I/O, common analysis tools

– Multiple detectors in shared neutrino beam ~ideal to study this

• Multi-experiment analyses take a long time to perform (4-8 years based 

on LHC and T2K+NOvA) so must start planning earlier rather than later!
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Thank you!
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Electron (anti)neutrino appearance

Neutrino

A
n
ti
n
eu

tr
in
o

Image by A. Himmel / NOvA



T2K Off-axis beam

• Two-body pion decay

– Angle and energy of 

neutrino directly linked

• Moving off axis:

– Lower peak energy

– Smaller high energy tail

– Less energy spread

• T2K is at 2.5° off-axis
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Flux and Cross-section at T2K and DUNE

• T2K: CCQE + resonant pion production

• DUNE: CCQE + resonant pion + DIS

– Oscillation suppresses higher energy flux



T2K systematic errors (2020)
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• Final column is “CP-violating” systematic error

– Nucleon removal energy fixed in later analysis

– ND constrained rate error can be reduced

– Electron neutrino cross-section more difficult to reduce – target for next gen

– Disappearance parameters also a leading error term

PhysRevD.103.112008
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A note on NOvA

• Functionally identical near and far detector

• Neutrino interaction model and beam flux uncertainties 

significantly reduced

• Detector response/reconstruction more important

https://arxiv.org/pdf/2108.08219.pdf
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Atmospheric neutrino oscillation

• Earth mass introduces resonance in upward-going electron 

neutrino appearance sample

• Provides sensitivity to neutrino mass ordering
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Atmospheric neutrinos – SK samples

• Samples of “fully-contained”, “partially contained” and “upward-

going muon” events

• PC and Up-mu are dominated by DIS events

T. Wester, PhD thesis
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Atmospheric neutrinos – SK samples
T. Wester, NNN2023
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Atmospheric neutrinos – SK systematics

• Mass ordering sensitivity from upward-going, multi-GeV 

electron-like samples

• Tau cross-section uncertainty dominant systematic

– Hyper-Kamiokande will have statistical error <2%

T. Wester, NNN2023
C. Bronner, 

https://indico-sk.icrr.u-tokyo.ac.jp/event/5223/
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Neutrino oscillation at IceCube

• Largest particle 

detector in existence 

(1Mt)

• Limited at low energy 

threshold ~ 10GeV

– Reduced to 1GeV 

with Upgrade

• Above threshold of tau 

production – can 

measure tau 

appearance

T. Stuttard, NuFact 2019
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Tau appearance at IceCube

• Largest tau neutrino sample to date (more recent results have 

focused on measurement of oscillation parameters)

• IceCube-Gen2 – completion in 2032, ~same as DUNE
T. Stuttard, NuFact 2019
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Tau neutrino cross-section

• As seen before, cross-section has significant uncertainty

• Very few (none?) tau neutrino cross-section measurements 

exist at 10 - 100GeV  that do not assume PMNS unitarity

– Wrong energy for terrestrial oscillations

– Hard to produce 

• Measurements exist from atmospheric neutrinos (IceCube, SK) 

and OPERA

– Must assume unitarity to measure cross-section

Or

– Assume lepton universality and large systematic error if 

testing non-unitarity
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DUNE for Tau neutrino appearance

• DUNE neutrino beam has tail to higher energies

• Could operate in “Tau optimized mode”

– Predict 800 tau

appearance events per

year

• Same issue with IceCube

– Tau cross-section

assumed from lepton

universality

– Large uncertainty

• Can flux shape information 

help? 

A. Aurisano, NuFACT2021
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DUNE for Tau neutrino appearance

• Additional difficulty in that tau threshold is above oscillation 

maximum

– Makes measurement of oscillation parameters ambiguous, 

since sin2 𝜃𝜇𝜏 alters shape as well as normalisation



M. Scott 45

Future limits on PMNS unitarity

• Depends on the assumptions used in analysis

– Here assuming 4 x 4 matrix, with the new state accessible

• Atmospheric neutrinos provide largest constraint on 3rd row of 

PMNS matrix

P. Denton, J, Gehrlein, JHEP06 (2022) 135
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Future limits on PMNS unitarity

• Alternative assumes two inaccessible mass states

• Atmospheric muon neutrino disappearance and DUNE tau 

neutrino appearance now provide biggest constraint

P. Denton, J, Gehrlein, JHEP06 (2022) 135



Sterile neutrinos

• Right-handed neutrino needed for mass generation

• May explain other experimental anomalies

• “3+1” model (above) is most studied

M. Scott 47



Sterile oscillations

𝑃 𝜈𝜇 → 𝜈𝜇 ≈ 1 − sin2 2𝜃23 sin2 Δ31

 +2 sin2 2𝜃23 sin2 𝜃24 sin2 Δ31

 − sin2 2𝜃24 sin2 Δ41

and

1 − 𝑃 𝜈𝜇 → 𝜈𝑠 ≈ 1 − cos4 θ14 cos2 θ34 sin2 2θ24 sin2 Δ41

 − sin2 𝜃34 sin2 2𝜃23 sin2 Δ31

 +
1

2
sin 𝛿24 sin 𝜃24 sin 2𝜃23 sin Δ31

where Δ𝑖𝑗 =
Δ𝑚𝑖𝑗

2 𝐿

4𝐸𝜈

M. Scott 48

3-flavour oscillation 

formula in blue



Sterile oscillations
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3-flavour oscillation 

formula in blue

New parameters in 

red



Sterile oscillations
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All results from: BSM neutrino oscillations at NOvA, V Hewes, NuFact 2022



M. Scott 51



M. Scott 52



M. Scott 53



Neutrino interactions
• Three principal types of 

neutrino interaction

• Occur as both charged 

current (CC) and neutral 

current processes
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Quasi-elastic (CCQE)

Single pion production Deep inelastic scattering / Multi-pion production



Neutrino beams

• Proton beam collides with fixed target to 

produce charged mesons

• Focus positive or negative mesons to 

produce neutrino-dominated or 

antineutrino-dominated beam

• Wait for pions to decay into neutrinos

M. Scott 55



Water Cherenkov detectors in Kamioka

Mark Scott 56

Kamiokande

3kt mass

Super-Kamiokande 

22.5kt fiducial mass

Hyper-Kamiokande

188kt fiducial mass



Water Cherenkov detectors in Kamioka
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Kamiokande

3kt mass

Super-Kamiokande 

22.5kt fiducial mass

Hyper-Kamiokande

188kt fiducial mass

Combined with increased neutrino 

beam power will have factor 20 more 

events than T2K



Future long-baseline experiments
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• Liquid argon TPCs as far detector (40 ktonne)

• 1300km baseline

• 2 GeV neutrino energy



DUNE physics
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Future experiments

• Difference between neutrino and anti-

neutrino probability larger at low energies

–  Δm2L/E = 3π/2, second oscillation 

maximum



JUNO

M. Scott 60

• Jiangmen Underground Neutrino 

Observatory

– 20kt liquid scintillator detector

– 53km from two nuclear power 

plants

B. Wonsak, Neutrino 2018



JUNO physics
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• Precision reactor 

neutrino 

measurements

– Flux

– Spectrum

• Determination of 

mass ordering

• Precise 

determination of θ12 

and Δm2
12

• Supernovae ν, geo- 

ν, solar ν, sterile ν…

B. Wonsak, Neutrino 2018



JUNO physics
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• Precision reactor 

neutrino 

measurements

– Flux

– Spectrum

• Determination of 

mass ordering

• Precise 

determination of 

𝜽𝟏𝟐 and 𝚫𝒎𝟐
𝟏𝟐

• Supernovae ν, geo- 

ν, solar ν, sterile ν…

J. Zhang, NuFact 2022



Example energy bias – 2p2h interactions

• Similar to CCQE

• Neutrino interacts with correlated pair of nucleons – invisible to detector
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Example energy bias – 2p2h interactions

• Reconstructed neutrino energy is biased, leads to bias in oscillation parameters

• Requires improved experimental measurements or theoretical models
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DUNE-PRISM and IWCD

• Near / 

intermediated 

detectors for 

DUNE / HK

• Span a range of 

angles off the 

centre of the 

neutrino beam 

– DUNE-

PRISM – 

horizontal, 

~35m

– IWCD – 

vertical, 

~50m

DUNEPrism and E61

23rd October 2018

DUNE-

PRISM

IWCD
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PRISM concept

• Measure neutrino 

interactions at 

multiple off-axis 

positions

• Neutrino flux 

changes with 

position
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PRISM concept

• Measure neutrino 

interactions at 

multiple off-axis 

positions

• Neutrino flux 

changes with 

position
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