

Dark sector searches at e^+e^- colliders

Neutrino and Flavour: a stairway to New Physics - Workshop

April 2-3, 2025, INFN Pisa- Pisa, Italy

Luigi Corona - University and INFN of Pisa A luigi.corona@pi.infn.it

Outline

- Introduction to dark sectors
- Introduction to the experiments at e⁺e⁻ colliders
- Overview of dark sector searches (Belle II, Belle, BaBar, KLOE, BES III)
- Summary and Conclusions

NuDM2024. Dark sector searches at Belle II. Dec. 11-14, 2024. Luigi Corona

Introduction to dark sectors

Evidences of dark matter

Many **astrophysics** and **cosmological observations** provide evidences for dark matter existence

- Flat rotational curves of galaxies
 - → First evidence of unseen mass
- Gravitational lensing
- Cosmic Microwave Background anisotropy

- It is one of the most compelling phenomena in support for physics beyond the Standard Model
- Awaiting for discovery

particles

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

ICC 3198

halo

Dark matter searches

If DM weakly couples to SM particles, it can be produced in SM particles annihilation at accelerators

Involve dark sector

mediators

Dark sector landscape

- No evidence of DM at electro-weak scale in experiments
 - Light DM with M ~ O(MeV-GeV) well motivated
 - They may solve "DM puzzle" and explain observed anomalies like the $(g - 2)_{\mu}$
- Light dark mediators involved in the DM interaction with SM
 - → "portals" of interaction

S. Gori et al., arXiv:2209.04671 [hep-ph] (2022)

"Portals" of interaction

Experiments at e^+e^- colliders

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

What we can do at e^+e^- colliders?

e⁺e⁻ collisions

- Clean, low background, energy conserving environment
- Closed kinematics, 3D momentum conservation
- Full Event Interpretation^[1]

Capabilities for the following signatures

- Low multiplicity signatures
- Fully neutral final states
- Missing energy signatures
- Dark sector signatures in *B*, *D*, τ , ϕ , *J*/ ψ and Υ decays

Energies

- **DA** ϕ **NE** \simeq 1 GeV (ϕ resonance)
- **BEPC** ≈ 2 5 GeV
- **PEP-II**, **KEKB**, **SuperKEKB** \simeq 10 11 GeV (Υ (nS) resonances)
- Most of the interesting cross sections scale with 1/s

Cross sections at Belle II – SuperKEKB

[1] T. Keck et al., Comput. Softw. Big. Sci. 3, 6 (2019)

 $\sigma(e^+e^- \rightarrow b\overline{b}) \approx 1.1 \text{ nb}$ $\sigma(e^+e^- \rightarrow c\overline{c}) \approx 1.3 \text{ nb}$ $\sigma(e^+e^- \rightarrow \tau^+\tau^-) \approx 0.9 \text{ nb}$

- Cleanliness and luminosity compensate for cross section
- Probe dark sector at the MeV GeV scale,
- Unique places to study some rare light meson decays
 - B, D, τ , ϕ , J/ ψ and Υ factories

Experiments at e^+e^- colliders

• Many experiments at e⁺e⁻ colliders have been providing important contribution to dark sector searches

- Experiments at **B-factories**
 - BaBar at PEP-II (2000-2008)
 - Belle at KEKB (1999 2010)
 - Belle II at SuperKEKB (2018)
 - → √s ~ 10 11 GeV
- KLOE (2001 2006) KLOE-2 (2014 – 2018) at DAΦNE
 - → $\sqrt{s} \simeq 1 \text{ GeV}$
- BES III (2009) at BEPC II
 - → √s ≃ 2 5 GeV

KLOE detector

Experiments at *e*⁺*e*⁻ colliders: *B*-factories

• Many experiments at e⁺e⁻ colliders have been providing important contribution to dark sector searches

 $\int \mathscr{L} dt \approx 1 \text{ ab}^{-1}$

Si vtx. det. 3/4 lyr. DSSD

- Experiments at **B-factories**
 - BaBar at PEP-II (2000-2008)
 - Belle at KEKB (1999 2010)
 - Belle II at SuperKEKB (2018)
 - → √s ~ 10 11 GeV

 Asymmetric e⁺e⁻ colliders optimized for the production of B meson pairs, but also D mesons, τ leptons, ...

• Collisions occur at Y(nS) resonances

- → Mainly at Y(4S): \sqrt{s} = 10.58 GeV, just above the production threshold of *BB*, *BR*(Y(4S) → *BB*) > 96%
- Asymmetric beam energies: boosted *BB* pairs, for CP-violation timedependent measurements
- High peak luminosity L > 10³⁴ cm⁻²s⁻¹

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

 μ / K_L detection 14/15 lvr. RPC+Fe

Central Drift Chamber

small cell +He/C_H

The Belle II experiment at SuperKEKB

- Belle II Luminosity-frontier experiment that searches for physics beyond the Standard Model
- SuperKEKB Asymmetric e⁺e⁻ collisions mainly at 10.58 GeV, i.e. at the Y(4S) resonance

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

Interaction

The Belle II experiment at SuperKEKB

- Belle II Upgrade of Belle at KEKB → Hermetic detector with excellent particle identification (PID) performance
- Well known initial-state condition (e⁺e⁻ collisions)
- Clean environment with low background
- Dedicated low-multiplicity triggers
 - Suppress high-cross-section QED processes without "killing" the signal
 - Precise knowledge of acceptance and efficiencies of the detector required
 - Example: single-photon trigger available in the full collected data set → makes Belle II dataset unique

Excellent reconstruction capabilities for low multiplicities and missing energy signatures

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

- Dark sector experimental signatures
- Searches are usually driven by models or proceed according to heuristic approaches
- The relationship between mass of the mediators and mass of DM candidates leads to different topologies
- Negligible interaction probability of DM with the detector
 - Search for final states with missing mass
 - Search for mediators (visible or invisible)
 - Search for both
- In models where decay to SM is suppressed
 - Long-lived mediators

Visible dark photon A', Z', ALP $\rightarrow \gamma\gamma$, ALP $\rightarrow ff$, ...

Invisible decays Decays to SM particles ALPs $\rightarrow \gamma\gamma$ Dark Higgs

Exploring the dark sectors at experiments at e^+e^- colliders

Invisible decays Decays to SM particles ALPs $\rightarrow \gamma\gamma$ Dark Higgs

Exploring the dark sectors at experiments at e^+e^- colliders

Search for Z' bosons

Shuve et al., Phys. Rev. D 89 , 113004 (2014) D. Curtin et al., JHEP 02 (2015) 157 Altmannshofer et al., JHEP 106 (2016)

- Massive Z' boson with a coupling g' only to leptons with μ and τ -lepton numbers $\rightarrow L_{\mu} L_{\tau}$ extension of the SM
 - → It may explain $(g 2)_{\mu}$ anomaly and DM abundance
- Possible decays:
 - → Z' → invisible (vv or $\chi\bar{\chi}$), Z' → $\mu\mu$, Z' → $\tau\tau$
- $Z' \rightarrow \text{invisible} (Z' \rightarrow v\overline{v}/\chi\overline{\chi})$
 - → If light DM χ kinematically accessible exists, BR(Z' → invisible) = 100%
 - Profit from the excellent Belle II capabilities for missing energy signatures
- Existing limits from BaBar (2016), CMS (2019), Belle II (2020), Belle (2022), BESIII (2024), NA64-e (2022), NA64-μ (2024), neutrino-nucleus scattering experiments (CCF, CHARM)

$Z' \rightarrow$ invisible at Belle II

I. Adachi et al., Phys. Rev. Lett. 130, 231801 (2023)

- Searched for through the process $e^+ e^- \rightarrow \mu^+ \mu^- Z'$, $Z' \rightarrow inv$.
- Signal signature is a narrow peak in the recoil mass of the two final-state muons
- Challenging e⁺e⁻ → τ⁺τ⁻ (γ) suppression tackled with neural network trained simultaneously on all Z' mass hypotheses
 F. Abudinén et al., Eur. Phys. J. C 82, 121 (2022)
 - Based on Z' property to be emitted as final state radiation (FSR) from one of the two muons in the final state
 - Different origin of missing energy with respect to main background components
- Signal extracted through **2D binned likelihood fit to** M^{2}_{recoil} vs θ^{CMS}_{recoil}

NuDM2024. Dark sector searches at Belle II. Dec. 11-14, 2024. Luigi Corona

$Z' \rightarrow$ invisible at Belle II

I. Adachi et al., Phys. Rev. Lett. 130, 231801 (2023)

- No significant excess found in 79.7 fb⁻¹
 - → $(g 2)_{\mu}$ region escluded for $M_{Z'} \in (0.8, 5.0)$ GeV/ c^2 for $\Gamma(Z' \rightarrow \text{inv.}) = 100\%$

$Z' \rightarrow$ invisible prospects at Belle II

• Next update based on Belle II Run 1 luminosity in progress

 $J/\psi \rightarrow \mu\mu X_{0,1}$ at BES III

M. Ablikim et al., Phys. Rev. D 109, L031102 (2024)

- (8.998 ± 0.039) x 10⁹ J/ψ
- X_0 and X_1 are a light scalar and vector particles respectively
- Signal: narrow peak in the recoil mass distribution of the $\mu\mu$ system, extracted through fits
- Best 90% CL upper limits to g'_1 for 200 < $m(X_1)$ < 860 MeV/ c^2 in the invisible $L_{\mu} L_{\tau}$

SM Backgrounds $J/\psi \rightarrow \mu^+\mu^-,$ $e^+e^- \rightarrow \mu^+\mu^-,$ $J/\psi \rightarrow$ hadrons

$\tau \rightarrow I \alpha$ (invisible) decay at Belle II

I. Adachi et al., Phys. Rev. Lett. 130, 181803 (2023)

- No excess observed in 62.8 fb⁻¹
 - 95% CL most stringent limits
 - Previous existing limits from ARGUS^[1]

[1] ARGUS Collaboration, Z. Phys. C 68, 25 (1995)

Invisible decays Decays to SM particles ALPs $\rightarrow \gamma\gamma$ Dark Higgs

Exploring the dark sectors at experiments at e^+e^- colliders

$Z' \rightarrow \mu\mu$ at BaBar and Belle

- $e^+e^- \rightarrow \mu + \mu Z' (\rightarrow \mu^+\mu^-)$ •
 - → Four-track invariant mass compatible with collision \sqrt{s}
 - No extra energy **>**
- Signal signature is a **narrow peak in the opposite-charge** dimuon mass $M(\mu\mu)$
- BaBar used 514 fb⁻¹, Belle used 643 fb⁻¹ •

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

17

J. P. Lees et al., Phys. Rev. D 94, 011102(R) (2016)

$Z' \rightarrow \mu\mu$ at Belle II

I. Adachi et al., Phys. Rev. Lett. 130, 181803 (2023)

P. Harris et al., arxiv-2207.08990 (2022) S. Gori et al., arxiv-2209.04671 (2022)

- No significant excess found in 178 fb⁻¹
 - → Competitive 90% CL upper limits on the g' coupling of the L_{μ} L_{τ} model (Z') with BaBar (> 500 fb⁻¹) and Belle (> 600 fb⁻¹) results → agressive background suppression through neural networks
 - First 90% CL upper limits for the **muonphilic scalar model** from a dedicated search

τ τ-resonance in e⁺e⁻ → μ⁺μ⁻τ⁺τ⁻ at Belle II

I. Adachi et al., Phys. Rev. Lett. 131, 121802 (2023)

- Four-track final state: τ decay in $\tau \rightarrow lv\overline{v}$, $\tau \rightarrow hv\overline{v}$
- Signal peaks in the recoil mass of μ⁺μ⁻ M_{recoil}(μμ)
- Challenging background rejection through neural networks
 - Eight classifiers trained on different regions of recoil mass
 - Based on resonance X properties (FSR) and ττ system
- Signal extracted through fit to M_{recoil}(μμ) distribution
 - Background measured directly on data to minimize impact of not correctly simulated backgrounds
 - Smooth background on the scale of signal resolution (~10 MeV) → not problematic

τ τ-resonance in e⁺e⁻ → μ⁺μ⁻τ⁺τ⁻ at Belle II

I. Adachi et al., Phys. Rev. Lett. 131, 121802 (2023)

- No significant excess found in 62.8 fb⁻¹
 - First limits at 90% CL for a leptophilic dark scalar S model with $m_s > 6.5 \text{ GeV}/c^2$
 - → First direct limits at 90% CL for axion-like particle ALP $\rightarrow \tau \tau$

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

J. P. Lees et al., PhysRevLett.125.181801 (2020) M. Bauer et al., JHEP09-056 (2022)

Dark photon (A') at BaBar and LHCb

Гнср

- A' mixes with SM through **mixing strenght** ε
- **BaBar** with 514 fb⁻¹
 - → $e^+e^- \rightarrow \gamma_{ISR}A' (\rightarrow e^+e^-/\mu^+\mu^-)$
 - Signature: bump in the di-lepton invariant mass
 - Set 90% CL upper limit on ε at level of O(10⁻³)

J.P. Lees et al., Phys. Rev. Lett. 113, 201801 (2014)

- **LHCb** with 5.5 fb⁻¹
 - → $A' \rightarrow \mu^+ \mu^-$ in *p*-*p* collisions at 13 TeV
 - In the ~ 200 -700 MeV range better results
 - First displaced exclusion not from beam dump experiments

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

Dark photon (A') at BES III

 $e^+e^- \rightarrow \gamma_{ISR} A', A' \rightarrow I^+I^- (I = e, \mu)$

- 2.93 fb⁻¹ at √s = 3.773 GeV
- Untagged photon method to increase statistics
- Search for a narrow peak in m_{I+I-} spectrum
- 90% CL UL on $\varepsilon \sim O(10^{-4} 10^{-3})$, 1.5 < $m_{A'} < 3.4 \text{ GeV}/c^2$

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

 $J/\psi \rightarrow A' \eta/\eta', A' \rightarrow e^+e^-$

- First search for dark photon via electromagnetic Dalitz decays with 1.3 billion J/ψ
- 90% CL limits on $\varepsilon \sim O(10^{-3} 10^{-2})$ for $0.1 < m_{A'} < 2$. GeV/ c^2

M. Ablikim et al., Phys. Rev. D 104, 099901 (2021)

Dark photon (A') at KLOE/KLOE-2

 $e^+e^- \rightarrow \gamma_{ISR} A', A' \rightarrow e^+e^-$

- 1.54 fb⁻¹ at √s = 1.019 GeV
- Search for a narrow peak in *m*_{e+e} spectrum
- 90% CL UL on ε² ~ O(10⁻⁶ 10⁻⁴) in the mass range 5 520 MeV/c²

- $e^+e^- \rightarrow \gamma_{ISR} A', A' \rightarrow \mu^+\mu^-/\pi^+\pi^-$
- 1.93 fb⁻¹ at √s = 1.019 GeV
- Search for a narrow peak in $m_{\mu+\mu-/\pi+\pi-}$ spectrum
- 90% CL UL on ε² ~ O(10⁻⁷) in the mass range 519–987 MeV/c²

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

Dark scalar at BaBar and Belle

- ϕ_L is a **leptophlic scalar**
 - → It would be produced predominantly through radiation from a τ lepton
- ϕ_{L} reconstructed as invariant mass of the $l^{+}l^{-}$ system
- Results exclude ϕ_L as explanation for $(g-2)_{\mu}$ for masses below 4 GeV/ c^2 , at 90% CL

D. Biswas et al., Phys. Rev. D 109, 032002 (2024)

LLP in $b \rightarrow s$ transitions at Belle II

I. Adachi et al., Phys. Rev. D 108, L111104 (2023)

- Search for a **new scalar** S in *B* meson decays in $b \rightarrow s$ transitions
 - → S can mix with SM Higgs boson with mixing angle θ_s → natural long-lived particle (*LLP*) for small θ_s
 - High performance in LLP vertex reconstruction are necessary
- First Belle II dark sector search in *B*-meson decays with LLP signature
- **B** meson decays
 - Eight exclusive "visible" channels reconstructed
 - Prompt decay of K or K* + opposite-charged tracks that make a displaced vertex
- Signal extracted through fit to the LLP reduced mass, separately for each channel and lifetime

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

$$\frac{W^{-}}{S} = \frac{e^{+}}{x^{-}} + \frac{W^{-}}{Y(4S)} + \frac{e^{-}}{y(4S)} + \frac{e^{-}}{y(4S)$$

 $M'(\pi^{+}\pi^{-})$ (GeV/ c^{2})

b —

LLP in $b \rightarrow s$ transitions at Belle II

I. Adachi et al., Phys. Rev. D 108, L111104 (2023)

•

Limits for each channel and lifetime

Invisible decays Decays to SM particles $ALPs \rightarrow \gamma\gamma$ Dark Higgs

Exploring the dark sectors at experiments at e^+e^- colliders

$ALP \rightarrow \gamma \gamma$ at Belle II

F. Abudinén et al., Phys. Rev. Lett. 125, 161806 (2020)

- ALP-photon coupling (g_{avv}) dominates: BR(ALP $\rightarrow \gamma \gamma$) ~ 100%
- $e^+e^- \rightarrow \gamma ALP (\rightarrow \gamma \gamma)$
 - electromagnetic calorimeter trigger (efficiency ~100%)
 - three- γ invariant mass compatible with collision \sqrt{s}
- Signal signature is a narrow peak in M²_{γγ} or M²_{recoil} (depending on best resolution of signal peak)
- Largest background from $e^+e^- \rightarrow \gamma\gamma(\gamma)$
- Segnal extracted through fit
 - No excess observed in 0.445 fb⁻¹ (Belle II commissioning run)
 - Upper limits at 95% CL on g_{avv}
 - World-leading limits for $m_a \sim 0.5 \text{ GeV}/c^2$

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

 $m_{\rm a}$ [GeV/ c^2]

27

$ALP \rightarrow \gamma \gamma$ prospects at Belle II

Next update based on Belle II Run 1 luminosity in progress

•

$B \rightarrow K^{(*)} a (\rightarrow \gamma \gamma)$ at BaBar and Belle

- Axion-like particles in B decays
 - ALP decaying 100% to γγ
- Probe ALP-W coupling in $b \rightarrow s$ transitions
- $B \rightarrow K^{\pm}a (\rightarrow \gamma \gamma)$ at **BaBar** with 424 fb⁻¹

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

Belle with 711 fb⁻¹ $B = \begin{bmatrix} \overline{b} & \overline{b} & \overline{b} \\ u, d & \overline{b} \end{bmatrix}$

W

• Four kaon modes: K⁺, K_s⁰ and K^{*+}, K^{*0}

•

Set 90% CL world-leading upper limits to the g_{aW} coupling

K

Invisible decays Decays to SM particles ALPs $\rightarrow \gamma\gamma$ Dark Higgs

Exploring the dark sectors at experiments at e^+e^- colliders

Search for a dark Higgs (and a dark photon)

$h' \rightarrow A'A', A' \rightarrow II, hh at BaBar and Belle$

hadron

hadron

l, hadron I. hadron

hadron

hadron

M_{h'} > M_A

- BABAR^[1] and Belle^[2] searched for the visible h'
 - Signal: three pairs of tracks (*ee*, $\mu\mu$, $\pi\pi$) at the same mass and no missing energy
 - Background: almost background free
- Full data-sets from both experiments (BABAR: 516 fb⁻¹, Belle: 977 fb⁻¹)
- 90% CL upper limits on ε² · α_D at the level of O(10⁻¹⁰ 10⁻⁸):
 - Belle limits improve upon and explore slightly wider mass ranges than BaBar

 $\lambda \dot{\lambda} \lambda \lambda A$

e

J. P. Lees et al., Phys. Rev. Lett. 108, 211801 (2012)
 J. Jaegle et al., Phys. Rev. Lett. 114, 211801 (2015)

$h' \rightarrow \text{invisible at KLOE/KLOE-2}$

First limits for $M_{\mu'} < M_{\alpha'}$

A. Anastasi et al., Phys. Lett. B 747 365-372 (2015)

• $e^+e^- \rightarrow A'h'$, $A' \rightarrow \mu\mu$, $h' \rightarrow$ invisible

- h' rconstructed as recoil to the $\mu\mu$ system
- Signature: 2D peak in recoil vs dimuon mass
- 1.65 fb⁻¹ at the ϕ resonance, 0.21 fb⁻¹ off-peak
- Limits on $\varepsilon^2 \cdot \alpha_D$ range from $10^{-9} 10^{-8}$
- Assuming $\alpha_D = \alpha_{em} \rightarrow \epsilon \sim O(10^{-4} 10^{-3})$

$h' \rightarrow \text{invisible at Belle II}$

$h' \rightarrow$ invisible prospects at Belle II

• Next update based on Belle II Run 1 luminosity in progress

Inelastic dark matter with a dark Higgs at Belle II

•

Inelastic dark matter

- Eludes constraints from direct searches
- A', χ_1 is stable (relic candidate), χ_2 is long-lived
- Focus on $m_{A'} > m_{\chi_1} + m_{\chi_2}$: the decay $A' \rightarrow \chi_1 \chi_2$ is favored

Dark higgs h'

- *h*' mixes with Standard Model Higgs with θ
- **h' is natural long-lived** (LLP) for small θ

 $e^+e^- \rightarrow h'(\rightarrow x^+x^-)A'(\rightarrow \chi_1\chi_2(\rightarrow \chi_1e^+e^-), x = \mu, \pi, K$

- Four tracks in the final state •
 - 2 forming a **pointing displaced vertex** →
 - 2 forming a **non-pointing displaced** vertex
- Missing energy

Inelastic dark matter with a dark Higgs at Belle II

- Cut-and-count strategy for extracting signal yields
- Expected background estimated in data from sidebands
- No significant excess found in 365 fb⁻¹ in the individual final states or the combination
 - → set 95% CL upper limits
- Scan of (*m_h*, sinθ) for different values of the other parameters
 - Process cross section does not depend on θ , efficiency does
 - Many more plots (~30) for different configurations

Summary and conclusions

Summary and conclusions

Experiments at *e*⁺*e*⁻ colliders offer excellent opportunities to probe dark sector models

- Some searches are motivated by the $(g-2)_{\mu}$ anomaly \rightarrow Their future depends from external inputs
- Growing interests in LLP searches \rightarrow low SM background; open the possibility to explore small couplings

Belle II

- Larger data sets (427 fb⁻¹ (Run1) + 148 fb⁻¹ (Run 2) collected)
 - Reasonable luminosity projections
- Improved analysis techniques
- Increase in luminosity leads to increase in background levels
- Keep low-multiplicity trigger lines (single-photon, -track, -muon, ...) in working conditons

CHALLENGES

SHORT TERM

IMPROVEMENTS

- **Displaced-vertex trigger and tracking** (in preparation)
- Belle II is expected to lead the world sensitivity in most of the dark sector searches

Backup slides

B-factories

- Asymmetric e⁺e⁻ colliders optimized for the production of B meson pairs, but also D mesons, τ leptons, ...
- Collisions occur at Y(nS) resonances
 - Mainly at Y(4S): √s = 10.58 GeV just above the production threshold of BB BR(Y(4S) → BB) > 96%
- Asymmetric beam energies: boosted BB pairs, for CP-violation time-dependent measurements
- High peak luminosity L > 10³⁴ cm⁻²s⁻¹

Heavy neutral lepton in τ decays at Belle

Around the K⁰ mass

M. Nayak, Phys. Rev. D 109, L111102 (2024)

- Heavy sterile neutrinos N appears in many extensions of the SM^[1]
 - ➤ N mixes with v_{SM}
 - → **N long-lived** for small values of *N*-*v*_{SM} mixing
- Limits on $|V_{\tau N}|^2$ are much weaker than limits on $|V_{eN}|^2$, $|V_{\mu N}|^2$ ^[2]
- Process: $e^+e^- \rightarrow \tau^+\tau^-$
 - → Signal side: $\tau^- \rightarrow \pi^- N (\rightarrow \mu^+ \mu^- v_\tau)$ $N \rightarrow \mu^+ \mu^-$ form a displaced vertex (DV) > 15 cm from the beam axis
 - → Tag side: $\tau^+ \rightarrow \pi^+ \overline{\nu}_{\tau}, \tau^+ \rightarrow \pi^+ \pi^0 \overline{\nu}_{\tau}, \tau^+ \rightarrow l^+ \nu_l \overline{\nu}_{\tau}$
- Main background from $K^0 \rightarrow \pi^+\pi^-$ vetoed
- Signal region divided in
 - → Low mass, SRL: m^{DV} < 0.42 GeV/c²
 - High mass SRH: m^{DV} > 0.52 GeV/c²

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

DV = Displaced Vertex

IP = Interaction Point

Heavy neutral lepton in τ decays at Belle

M. Nayak, Phys. Rev. D 109, L111102 (2024)

- Full kinematics of the signal-decay chain reconstructed with | a two-fold ambiguity (m₊ and m₋)
 - In SRL and SRH observed respectively 0 and 1 events in 915 fb⁻¹

- No significant excess observed
 - → 95% CL limits on $|V_{\tau N}|^2$ in the mass range 300 1600 MeV/ c^2

ττ-resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$ at Belle II: Z'

I. Adachi et al., Phys. Rev. Lett. 131, 121802 (2023)

Belle II perspectives

Target integrated luninosity: 50 ab⁻¹ Luminosity projection (plan for next years) Target peak luminosity: 6x10³⁵ cm⁻² s⁻¹ Peak luminosity [×10³⁵cm⁻²s⁻¹] ab Peak luminositv w/o QCS upgrade Snowmass paper arxiv:2207.06307 (delivered) in 1.52 Integrated luminosity (delivered) **Belle II** Simulation, $L_{II} - L_{T}$ Expected 90% CL UL 10 w/o QCS upgrade w/ QCS upgrade Belle II. 0.276 fb⁻¹ in LS2 **Projected by SuperKEKB/Belle II** 10^{-1} luminosity Z' "invisibile" 10^{-2} LS1 LS₂ g, 10⁻³ We are here Integrated $\int L \, dt = 80 \, fb^{-1}$ 10 $\int L \, dt = 500 \, \text{fb}^{-1} \quad \text{------} \quad \int L \, dt = 5 \, \text{ab}^{-1}$ ----- $\int L dt = 1 ab^{-1}$ ----- $\int L dt = 50 ab^{-1}$ 10^{-5} 1 at at 10^{-1} 10⁻² 10^{0} Jan 2039 Jan 2024 Jan 2029 Jan 2034 $m_{7'}$ [GeV/c²] Date

- 575 fb⁻¹ collected (Run 1 (427 fb⁻¹) + Run 2 (148 fb⁻¹))
- **Obtained results are strongly limited by statistics** World-leading results already published with early datasets (less than collected dataset of 427 fb⁻¹)

- In next years, Belle II will collect 100-times the dataset collected up to now
 - The best is yet to come!

SuperKEKB/Belle II - Run 2 status

Run 2 (2024 – ongoing)

- Back to operations at 4 x 10³⁴ cm⁻²s⁻¹
- Sudden beam losses have happened frequently
 - Significant beam charge loss (> a few %) that occurs suddenly without any precursory phenomena
 - Very large dose in the detector
- Two such losses led to damage of 2% of new PXD (installed during LS1)
 - Turned off PXD as a precautionary measure until beam losses mitigated
- So far Run 2 has been largely dedicated to machine studies
 - Only ~130 fb⁻¹ collected
- Some understanding of how the losses start
 - Remediation begun in summer shutdown

Low-multiplicity triggers

Two-level trigger

- Hardware-based Level 1 Trigger (L1): < 30 kHz
 - It combines info from CDC, ECL, KLM (tracks, clusters, **→** muons)
- Software-based High Level Trigger (HLT): < 10 kHz

Devised specific low-multiplicity trigger lines

- Suppress high-cross-section QED processes without "killing" the signal
- Precise knowledge of acceptance and efficiencies of the detector required
- Examples
 - Single-photon trigger (ECL) →
 - Single-muon trigger (CDC + KLM) →
 - Single-track trigger (Neural network based) →

Neutrino and flavour: a stairway to New Physics. Dark sector. Apr. 2-3, 2025. Luigi Corona

Axion-like particles (ALPs) at Belle II

F. Abudinén et al., Phys. Rev. Lett. 125, 161806 (2020)

- GeV-scale ALPs: pseudo-scalar portal mediator between dark sector and Standard Model
- If ALP-photon coupling $(g_{a\gamma\gamma})$ dominates, than $BR(a \rightarrow \gamma\gamma) \sim 100\%$
- Focus on mass region where ALP decay is prompt and photons can be well resolved by Belle II

Search for an ALP at Belle II

F. Abudinén et al., Phys. Rev. Lett. 125, 161806 (2020)

- Select events with three photon invariant mass compatible with • collision \sqrt{s}
- Search for a narrow peak in M^2_{yy} or M^2_{recoil} , depending on best • resolution of signal peak
- Largest background from $e^+e^- \rightarrow \gamma \gamma(\gamma)$ •

2.5

2.0

σ_{CB} [GeV²/c⁴]

0.5

0.04

[GeV²/c⁴]

80.0 D 0.00

 $m_a [\text{GeV}/c^2]$

Diphoton

Recoil

Search for an ALP at Belle II: result

F. Abudinén et al., Phys. Rev. Lett. 125, 161806 (2020)

- Search ranges from 0.2 < m_a < 9.7 GeV/ c^2 , with the 0.445/fb collected in 2018 with Belle II
 - 500 fits with steps of half mass resolution
- No excess in data observed
 - Highest local significance 2.8 σ , observed at $m_a = 0.477 \text{ GeV}/c^2$

Dark higgsstrahlung at Belle II

F. Abudinén et al., Phys. Rev. Lett. 130, 071804 (2023)

- $e^+e^- \rightarrow A'h', A' \rightarrow \mu\mu, h' \rightarrow \text{ invisible}$
- Same final state as for the invisible Z', similar backgrounds: $e^+e^- \rightarrow \tau^+\tau^-(\gamma), e^+e^- \rightarrow \mu^+\mu^-(\gamma), e^+e^- \rightarrow e^+e^-\mu^+\mu^-$
- Signal signature is a 2D peak in the recoil mass vs the dimuon mass
- Event selection
 - Two reconstructed muons, $p_T^{\mu} > 0.1 \text{ GeV/c}$
 - Recoil momentum in the ECL barrel, no nearby photon
 - → Cut on dimuon helicity angle
 → efficiently suppress background
- Signal extraction through 2D fit in M_{recoil} vs $M_{\mu\mu}$ plane in elliptical windows

$B \rightarrow K^{(*)} a (\rightarrow \gamma \gamma)$ at Belle, highlights

• Signal appears as a narrow peak in the $\gamma\gamma$ invariant mass, $M_{\gamma\gamma}$

- Main background contribution from coontinum $e^+e^- \rightarrow q\overline{q}, e^+e^- \rightarrow B\overline{B}$, photons from π^0 decays, SM peaking backgrounds
- SM **background suppression** performed using **BDTs** applied to two different mass regions
 - Low mass region: M_{γγ} < 1 GeV/c²
 - High mass region: M_{γγ} > 1 GeV/c²
- π , η and η ' regions are vetoed from the search
- Signal extracted through fit scan over $M_{\gamma\gamma}$

$M_{\gamma\gamma}$ for the K^+ mode

Search for a dark Higgs at KLOE/KLOE-2

A. Anastasi et al., Phys. Lett. B 747 365-372 (2015)

Visible dark photon at Belle II

${\bf B}{\bf A}{\bf B}{\bf A}{\bf R}^{[1]}$

- Full data-set of 514 fb⁻¹
- dark photon visible decay in e^+e^- and $\mu^+\mu^-$ final states
- Signature: bump in the di-lepton invariant mass
- Background: QED processes $e^+e^- \rightarrow e^+e^-(\gamma)$, $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ and resonant backgrounds from J/ψ , $\psi(2S)$ etc. (vetoed)
- Set 90% CL upper limit on the mixing strength ϵ at level of O(10⁻³)

Belle II is expected to achieve the leading sensitivity $\ensuremath{^{[3]}}$ (search in progress)

[1] J.P. Lees et al, Phys. Rev. Lett. 113, 201801 (2014) [2] E. Kou et al, Prog Theor Exp Phys (2019)

Expected 90% CL exclusion on ε

- $e^+e^- \rightarrow \gamma_{ISR}A'$ (A' $\rightarrow inv.$): very promising at Belle II, even with low statistics^[1]
 - Expected to perform better than BaBar^[2] 10^{-2} Smaller boost: larger acceptance Muon detector veto: reject events with a ω photon undetected in the calorimeter 10⁻³ No e.m calorimeter cracks in pointing to the → BaBar 201 interaction region: **better calorimeter hermeticity** Belle II simulation 20 fb 258000 Directernion relic target Belle II 10^{-4} Malorana rene farget Scalar relic target Belle II $\alpha_{\rm p} = 0.5, \, {\rm m}_{\rm s} = {\rm m}_{\rm s}/3$ 10⁻⁵ 10^{-2} 10⁻¹ 10 m_A. (GeV/c²)

$\mu\mu$ -resonance in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ at Belle II recoil candidate I. Adachi et al., Phys. Rev. D 109, 112015 (2024) μ Four-track final state with at least three identified as muons μ \sim Four-track invariant mass compatible with collision \sqrt{s} μ e^{+} No extra energy Signal signature is a **narrow peak in the opposite-charge** di-muon mass $M(\mu\mu)$ $L dt = 178 \text{ fb}^{-1}$ Belle II 1800 +u_u+u_ 1600 Entries/(100 MeV/c²) Challenging aggressive suppression of main **SM** 1400 background $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ (a=u.d.c.s)1200 data 1000 Based on classifiers trained exploting the features 800 of kinematic distributions in signal events 600 J/ψ 400 Y(1S) Presence of a resonance in both candidate and 200 recoil muon pairs <u>Data</u> sim Signal extracted through fits to $M(\mu\mu)$ 0.5 2 3 8 9 10 $M(\mu\mu)$ [GeV/c²] 45

•

→

→

→