April 2 – 3, 2025

Pisa

Neutrino and Flavour BSM models: a review

Davide Meloni Dipartimento di Matematica e Fisica, Roma Tre

What we know: flavor mixing

Maybe the right time to ask AI agents to solve the *flavor problem*

What we know: flavor mixing

Maybe the right time to ask AI agents to solve the *flavor problem*

$$egin{bmatrix}
u_e \
u_\mu \
u_ au \end{bmatrix} = egin{bmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{\tau 1} & U_{\tau 2} & U_{ au 3} \end{bmatrix} egin{bmatrix}
u_1 \
u_2 \
u_3 \end{bmatrix}.$$

after several trials...

...I gave up and took from the web

Flavor mixing: current situation

three-neutrino fit based on data available in September 2024

	Normal Ore	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 6.1)$	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
$\sin^2 \theta_{12}$	$0.308^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.345$	$0.308^{+0.012}_{-0.011}$	0.275 ightarrow 0.345	
$\theta_{12}/^{\circ}$	$33.68\substack{+0.73\\-0.70}$	$31.63 \rightarrow 35.95$	$33.68\substack{+0.73\\-0.70}$	$31.63 \rightarrow 35.95$	
$\frac{\Delta m_{21}^2}{10 - 5 - 12^2}$	$7.49^{+0.19}_{-0.19}$	$6.92 \rightarrow 8.05$	$7.49^{+0.19}_{-0.19}$	$6.92 \rightarrow 8.05$	

Flavor mixing: current situation

three-neutrino fit based on data available in September 2024

$\sin^2 \theta_{23}$	$0.470\substack{+0.017\\-0.013}$	$0.435 \rightarrow 0.585$	$0.550^{+0.012}_{-0.015}$	$0.440 \rightarrow 0.584$
$\theta_{23}/^\circ$	$43.3^{+1.0}_{-0.8}$	$41.3 \rightarrow 49.9$	$47.9_{-0.9}^{+0.7}$	$41.5 \rightarrow 49.8$
$\sin^2 \theta_{13}$	$0.02215\substack{+0.00056\\-0.00058}$	$0.02030 \rightarrow 0.02388$	$0.02231\substack{+0.00056\\-0.00056}$	$0.02060 \rightarrow 0.02409$
$\theta_{13}/^{\circ}$	$8.56_{-0.11}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.59^{+0.11}_{-0.11}$	$8.25 \rightarrow 8.93$
$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.513^{+0.021}_{-0.019}$	$+2.451 \rightarrow +2.578$	$-2.484\substack{+0.020\\-0.020}$	$-2.547 \rightarrow -2.421$

$P \sim \sin^2(r)$	$\mathbf{P}(\mathbf{A}) \sin^2(\mathbf{A})$	$\Delta m^2 L$
$\Gamma_{\alpha\beta}$ S_{111} (2)		$\overline{4E_v}^{j}$

Flavor mixing: current situation

The Flavor Problem (I)

very small neutrino masses

Mass hierarchies

$$m_d \ll m_s \ll m_b$$
, $\frac{m_d}{m_s} = 5.02 \times 10^{-2}$,
 $m_u \ll m_c \ll m_t$, $\frac{m_u}{m_c} = 1.7 \times 10^{-3}$,
 $\frac{m_s}{m_b} = 2.22 \times 10^{-2}$, $m_b = 4.18$ GeV;

 $\frac{m_c}{m_t} = 7.3 \times 10^{-3}, \ m_t = 172.9 \text{ GeV};$

The Flavor Problem (II)

Fermion mixing

Let us focus on mixing: Some suggested solutions

Let us analyze the magnitude of the PMNS matrix elements

	$(0.801 \rightarrow 0.842)$	$0.519 \rightarrow 0.580$	$0.142 \rightarrow 0.155$
$ U _{3\sigma}^{\rm IC19\ w/o\ SK-atm} =$	$0.248 \rightarrow 0.505$	$0.473 \rightarrow 0.682$	$0.649 \rightarrow 0.764$
	$0.270 \rightarrow 0.521$	$0.483 \rightarrow 0.690$	$0.628 \rightarrow 0.746$

NuFIT 6.0 (2024)

Let us analyze the magnitude of the PMNS matrix elements

some useful approximations

$$T_{BM} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} & 1\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{GR} = \begin{pmatrix} c_{12} & s_{12} & 0\\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

Bi-maximal mixing mixing mixing

$$T_{BM} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} & 1\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} & \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{GR} = \begin{pmatrix} c_{12} & s_{12} & 0\\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

why do not we take them seriously?

$$T_{BM} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{GR} = \begin{pmatrix} c_{12} & s_{12} & 0\\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

mixing

why do not we take them seriously?

nice
$$\tan(\theta_{12}) = 1$$
 $\tan(\theta_{12}) = \frac{1}{\sqrt{2}}$ $\tan(\theta_{12}) = \frac{2\sqrt{5}}{\sqrt{5+\sqrt{5}}}$

 $\tan \theta_{12} = 1/\phi$, with $\phi = (1 + \sqrt{5})/2$

$$T_{BM} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{GR} = \begin{pmatrix} c_{12} & s_{12} & 0\\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

mixing

why do not we take them seriously?

nice $\tan(\theta_{12})=1$ $\tan(\theta_{12})=\frac{1}{\sqrt{2}}$ $\tan(\theta_{12})=\frac{2\sqrt{5}}{\sqrt{5+\sqrt{5}}}$ accceptable $\tan(\theta_{23})=1$ $\tan(\theta_{23})=1$

 $\tan \theta_{12} = 1/\phi$, with $\phi = (1 + \sqrt{5})/2$

$$T_{BM} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad T_{GR} = \begin{pmatrix} c_{12} & s_{12} & 0\\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

mixing

why do not we take them seriously?

nice $\tan(\theta_{12})=1 \qquad \tan(\theta_{12})=\frac{1}{\sqrt{2}} \qquad \tan(\theta_{12})=\frac{2\sqrt{5}}{\sqrt{5+\sqrt{5}}}$ accceptable $\tan(\theta_{23})=1 \qquad \tan(\theta_{23})=1 \qquad \tan(\theta_{23})=1$ bad $\sin(\theta_{13})=0 \qquad \sin(\theta_{13})=0$

corrections are necessary

 $\tan \theta_{12} = 1/\phi$, with $\phi = (1 + \sqrt{5})/2$

Non-abelian discrete symmetries

Non-abelian Discrete symmetries

Altarelli et al.,

Non-abelian discrete symmetries

Non-abelian Discrete symmetries

Non-abelian discrete symmetries

Non-abelian Discrete symmetries

```
S_4: permutation group of four
        elements
                                                                                                                                                                     Altarelli et al..
                                                                                                                                                                     0903.1940
 easy to get the neutrino mass matrix: \begin{pmatrix} x & y & y \\ y & z & x-z \\ y & x-z & z \end{pmatrix} \xrightarrow{\text{diagonalized by}} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \end{pmatrix}
                                                                           Corrections are needed from
charged lepton diagonalization
                                                                                                                       introduced by hand (me/mu ~ \lambda_c^2)
                                                        \sin^2 \theta_{12} = \frac{1}{2} - O(\lambda_C)\sin^2 \theta_{23} = \frac{1}{2}\sin \theta_{13} = \frac{1}{\sqrt{2}} O(\lambda_C)
    good results:
```

 $\begin{bmatrix} \theta_{13}^{PMNS} = O(1) \cdot \theta_{12}^{CKM} \end{bmatrix}$

Non-abelian Discrete symmetries

A (very very very) preliminar scan of A₄ models

Asked **Grok** to analyze the abstract of more than 200 papers related to A_a

Sum of Masses ($\Sigma m\nu$): A heavily skewed distribution towards the 0.06-0.10 eV range, with a decreasing tail for higher masses

Hierarchy: A dominant peak for NO, a smaller bar for IO, and a minor bar for indeterminate models (both hierarchies are fine).

Effective Mass (|m\beta\beta|): A pronounced peak in the 0.001-0.005 eV range, a smaller peak in the 0.015-0.050 eV range, showing a bimodal distribution.

CP Violation Phase (\deltaCP): A major peak for CP conservation (0°/180°), a smaller bar for 270°, and minimal presence for 90°

my personal perspective

Issue	Why Flavor Symmetries Don't Fully Solve It
Origin of Yukawa Couplings	Flavor symmetries impose textures but do not explain why Yukawa couplings take their specific values.
Connection to Quark Sector	Most models treat neutrinos and quarks separately, failing to explain the observed patterns in both sectors simultaneously.
Hierarchy of Masses	Symmetries predict mass structures but do not fully explain why neutrino masses are so small compared to quarks and charged leptons.
CP Violation	Many flavor symmetry models struggle to naturally generate the observed leptonic CP phase without additional assumptions.
Lack of Unique Prediction	Different symmetries (A4, S4, Δ (96), etc.) can fit the same data, making it unclear which one (if any) is the fundamental symmetry of nature.
Breaking Mechanisms	Many models require ad-hoc symmetry breaking sectors, introducing additional fields and parameters, reducing predictivity.

colors are ordered from least to most problematic

Most probably we need a new perspective

Let me rewrite the **intriguing** relations:

are they connected at a more **profund** level?

Let me rewrite the **intriguing** relations:

we need to replace the bad relation with a promising one:

we need to replace the bad relation with a promising one:

same order of magnitude

Flavor symmetries do the job, Cabibbo angle needed to fit the charged lepton mass ratios

GUT? Promising but not viable in its simplest application

Experimental facts

<u>GUT: simple example from SU(5)</u>

Let us take the electron and down quark relation:

$$m_e = m_d^T$$

$$U^{PMNS} = U_{cl}^{+} \cdot U_{v} \qquad V^{CKM} = U_{u}^{+} \cdot U_{d}$$

Experimental facts

<u>GUT: simple example from SU(5)</u>

Let us take the electron and down quark relation:

$$m_e = m_d^T$$

$$U^{PMNS} = U_{cl}^{+} \cdot U_{v} \qquad V^{CKM} = U_{u}^{+} \cdot U_{d}$$

Let us diagonalize the matrices:

relations involve <u>unobservable</u> right-handed rotations

A new Perspective: Modular symmetry

minimal yet powerful alternative to conventional discrete flavor symmetries

typical Yukawa term:

 $y \psi h \psi$

Feruglio [1706.08749]

A new Perspective: Modular symmetry

minimal yet powerful alternative to conventional discrete flavor symmetries

typical Yukawa term:

Modular approach:

<u>Step 1.</u>

Yukawa couplings treated as functions of $\boldsymbol{\tau}$

fermion masses depend of $\boldsymbol{\tau}$

modulus, complex variable

 $y(\tau)\overline{\psi} h \psi$

Feruglio [1706.08749]

Step 2.

 $\boldsymbol{\tau}$ has well defined transformation properties under the **modular group**

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

$$\gamma \tau = \frac{a \tau + b}{c \tau + d}$$

$$\Gamma(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \}$$

<u>Step 3.</u>

 $Y(\tau)$ has well defined transformation properties under the group: they are called **Modular Forms**

$$Y(\gamma \tau) \rightarrow (c \tau + d)^{k} \rho(\gamma)_{ij} Y(\tau)$$
unitary representation of Γ_{N}

representative element of $\Gamma_{_{\rm N}}$

<u>Step 3.</u>

 $Y(\tau)$ has well defined transformation properties under the group: they are called **Modular Forms**

R. C. Gunning, Lectures on Modular Forms, Princeton, New Jersey USA, Princeton University Press 1962

<u>Step 3.</u>

 $Y(\tau)$ has well defined transformation properties under the group: they are called **Modular Forms**

<u>Step 3.</u>

 $Y(\tau)$ has well defined transformation properties under the group: they are called **Modular Forms**

Step 4.

Fields have well defined transformation properties under the **modular** group

$$\chi(x)_i \rightarrow (c \tau + d)^{-k_i} \rho(\gamma)_{ij} \chi(x)_j$$

not modular forms ! No restrictions on ki Step 4.

Fields have well defined transformation properties under the **modular** group

$$\chi(x)_i \rightarrow (c \tau + d)^{-k_i} \rho(\gamma)_{ij} \chi(x)_j$$

not modular forms ! No restrictions on ki

putting all steps together

$$L_{eff} \in Y(\tau) \times \chi^{(1)} ... \chi^{(n)}$$

invariance requires:

$$Y_{i}(\gamma \tau) \rightarrow (c \tau + d)^{k} \rho(\gamma)_{ij} Y_{j}(\tau)$$
$$\chi(x)_{i} \rightarrow (c \tau + d)^{-k_{i}} \rho(\gamma)_{ij} \chi(x)_{j}$$

$$\rho_f \otimes \rho_{\chi_1} \otimes \ldots \otimes \rho_{\chi_n} \supset I$$
$$k = \Sigma_i k_i$$

Final results of this contruction:

small number of operators (few free parameters) → *predictability*

no new matter fields → *minimality*

no new scalar fields beside Higgs(es) \rightarrow symmetry breaking dictated by the vev of τ

charged lepton hierarchy by symmetry arguments → "*appealing*"

Dots are the best fit values of $\boldsymbol{\tau}$ in selected models

Feruglio: 2211.00659

Clustering of points fall close to the self-dual point: $|\tau - \iota| < 0: 25$

Typical "modular" predictions

Analysis of 14 models, several N

Typical "modular" predictions

Analysis of 14 models, several N

Conclusions

Approach

Discrete Non-Abelian Symmetries

Modular Forms

Advantages

Flexibility: Wide choice of groups (e.g., A₄, S₄) and representations to fit data. Established Precedents: Wellstudied and widely applied Intuitive Structure: Directly imposes order on mass matrices via group invariants.

Disadvantages

Complexity: Requires additional scalar fields and non-trivial vacuum alignment. Free Parameters: Many degrees of freedom (flavon VEVs, coupling constants) reduce predictivity. Ad Hoc: Phenomenologically motivated, less tied to fundamental theories.

Elegance: Reduces the number of fields (only τ as a 'flavon-like' field), simplifying the model. Predictivity: Yukawa couplings constrained by modular forms, with fewer free parameters. Theoretical Foundation: Naturally arises from string theory or extradimensional geometries. <u>T Stabilization</u>: Determining the modulus t's value is challenging. <u>Limited Flexibility</u>: The form of couplings is fixed by modular weight and level. <u>Mathematical Complexity</u>: Requires familiarity with modular forms and the SL(2, \mathbb{Z}) group.

Disclaimer

A highly debated topic: I present my point of view and what fascinates me about BSM connected to neutrinos.

Backup slides

corresponding to:

everywhere but

fixed points

Generators of Γ_{N} : elements S and T satisfying

$$S^{2}=1, \quad (ST)^{3}=1, \quad T^{N}=1$$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$
orresponding to:
$$\tau \xrightarrow{s} - \frac{1}{\tau} \qquad \tau \xrightarrow{\tau} \tau + 1$$

$$\boxed{\tau = i} \qquad \tau \xrightarrow{s} - \frac{1}{\tau}$$

$$\tau \xrightarrow{s} - \frac{1}{\tau}$$

$$\boxed{\tau = e^{i2/3\pi}} \qquad \tau \xrightarrow{sT} - \frac{1}{\tau + 1}$$

$$\boxed{\tau = i\infty} \qquad \tau \xrightarrow{\tau} \tau + 1$$

 $\tau = i \infty$

Courtesy by Joao Penedo

We start from

Feruglio, 1706.08749

$$\Gamma(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \}$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)=SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called$ *homogeneous modular group* $<math>\Gamma$

 $\Gamma(N)$, N>=2 are infinite normal subgroups of Γ

the group $\Gamma(N)$ acts on the complex variable τ (Im $\tau > 0$)

$$\gamma \tau = \frac{a \tau + b}{c \tau + d}$$

Important observation for N=1:

a transformation characterized by parameters {a, b, c, d} is identical to the one defined by {-a, -b, -c, -d}

 $\Gamma(1)$ is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = $\overline{\Gamma}$

inhomogeneous modular group (or simply Modular Group)

In addition:

$$\overline{\Gamma}(2) = \Gamma(2) / \{1, -1\}$$

$$\downarrow$$
since 1 and -1 cannot be

$$\overline{\Gamma}(N) = \Gamma(N) \qquad N > 2$$

е distinguished

since 1 and -1 **can** be distinguished

<u>Finite</u> Modular Group:

$$\Gamma_{N} = \frac{\overline{\Gamma}}{\overline{\Gamma}(N)}$$

Modular Forms:

holomorphic functions of the complex variable τ with well-defined transformation properties under the group $\Gamma(N)$

5

5k + 1

R. C. Gunning, Lectures on Modular Forms, Princeton, New Jersey USA, Princeton University Press 1962

Fundamental Domain

relevant for model building:

for N \leq 5, the finite modular groups $\Gamma_{_{N}}$ are isomorphic to non-Abelian discrete groups

$$\Gamma_2 \simeq S_3 \qquad \Gamma_3 \simeq A_4 \qquad \Gamma_4 \simeq S_4 \qquad \Gamma_5 \simeq A_5$$

Then the question is: why Modular Symmetry ?

Model Building

Key points:

1. Modular forms of weight 2k and level $N \ge 2$ are invariant, up to the factor $(c\tau + d)^k$ under $\Gamma(N)$ but they transform under Γ_N !

$$f_{i}(\gamma\tau) = (c \tau + d)^{k} \rho(\gamma)_{ij} f_{j}(\tau)$$

representative element of $\Gamma_{_{\rm N}}$

unitary representation of $\Gamma_{_{N}}$

2. in addition, one assumes that the fields of the theory $\chi_{_{\!\!\!\!\!\!l}}$ transforms non-trivially under $\Gamma_{_{\!\!\!\!N}}$

$$\chi(x)_i \rightarrow (c \tau + d)^{-k_i} \rho(\gamma)_{ij} \chi(x)_j$$

not modular forms ! No restrictions on ki

Key points:

- **1.** Modular forms of weight 2k and level $N \ge 2$
- **2.** fields of the theory χ_{t} transforms non-trivially under Γ_{N}

3. Combine modular forms and fields:

$$\begin{array}{ccc} L_{e\!f\!f} \in & Y\left(\, \tau \right) \! \times \! \chi^{\!(1)} \! ... \, \chi^{\!(n)} \\ \swarrow \\ & \swarrow \\ & \texttt{modular} \\ & \texttt{forms} \end{array}$$

Let us find the functions $f(\tau)$!

The group ${f S_3}$ contains 1+1'+2

- two independent modular forms can fit into a doublet of S₃

Dedekind eta functions
$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$$
 $q \equiv e^{i2\pi\tau}$

S:
$$\eta(-1/\tau) = \sqrt{-i\tau} \eta(\tau)$$
, T: $\eta(\tau+1) = e^{i\pi/12} \eta(\tau)$

 $\eta^{\rm 24}$ is a modular form of weight 12

Model Building

Constructing the Modular Forms

Crucial observation:

$$\text{if} \qquad g(\tau) \rightarrow e^{i\alpha}(c \tau + d)^k g(\tau)$$

$$\text{then} \qquad \frac{d}{d \tau} \log[g(\tau)] \rightarrow (c \tau + d)^2 \frac{d}{d \tau} \log[g(\tau)] + k c (c \tau + d)$$

$$\text{this term prevents of }$$

The inhomogeneous term can be removed if we combine several $f_i(\tau)$ with weights k_i

this term prevents of having a modular form of weight 2 k = 2

$$\frac{d}{d\tau} \Sigma_i \log[g_i(\tau)] \rightarrow (c\tau + d)^2 \frac{d}{d\tau} \Sigma_i \log[g_i(\tau)] + (\Sigma_i k_i) c(\tau + d)$$
with $\Sigma_i k_i = 0$

A case study: $\Gamma_2 \sim S_3$

Dedekind eta functions

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) \qquad q \equiv e^{i2\pi\tau}$$

Under T:

$$\eta(2\tau) \rightarrow e^{i\pi/6} \eta(2\tau)$$

$$\eta(\tau/2) \rightarrow \eta((\tau+1)/2)$$

$$\eta((\tau+1)/2) \rightarrow e^{i\pi/12} \eta(\tau/2)$$

1

Under S:
$$\begin{cases} \eta(2\tau) \rightarrow \sqrt{-i\tau/2} \eta(\tau/2) \\ \eta(\tau/2) \rightarrow \sqrt{-2i\tau} \eta(2\tau) \\ \eta\left(\frac{(\tau+1)}{2}\right) \rightarrow e^{-i\pi/12} \sqrt{-i\tau(\sqrt{3}-i)} \eta\left(\frac{(\tau+1)}{2}\right) \end{cases}$$

Constructing the Modular Forms

the system is closed under modular transformation

candidate modular form

 $Y(\alpha,\beta,\gamma) = \frac{d}{d\tau} \left[\alpha \log \eta(\tau/2) + \beta \log \eta((\tau+1)/2) + \gamma \log \eta(2\tau) \right]$

 $\alpha + \beta + \gamma = 0$

A case study: $\Gamma_2 \sim S_3$

Constructing the Modular Forms

Under **T**: $Y(\alpha, \beta, \gamma) \rightarrow Y(\gamma, \beta, \alpha)$

Under S: $Y(\alpha,\beta,\gamma) \rightarrow \tau^2 Y(\gamma,\alpha,\beta)$

representation of generators

$$\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}$$

Constructing the Modular Forms

Equations to be satisfied:

$$\begin{pmatrix} Y_1(-1/\tau) \\ Y_2(-1/\tau) \end{pmatrix} = \tau^2 \rho(S) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}, \qquad \begin{pmatrix} Y_1(\tau+1) \\ Y_2(\tau+1) \end{pmatrix} = \rho(T) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}$$

 $Y_1(\alpha,\beta,\gamma) \sim Y(1,1,-2)$

 $Y_2(\alpha,\beta,\gamma) \sim Y(1,-1,0)$

$$Y_{1}(\tau) = \frac{i}{4\pi} \left(\frac{\eta'(\tau/2)}{\eta(\tau/2)} + \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} - \frac{8\eta'(2\tau)}{\eta(2\tau)} \right)$$

$$Y_{2}(\tau) = \frac{\sqrt{3}i}{4\pi} \left(\frac{\eta'(\tau/2)}{\eta(\tau/2)} - \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} \right),$$

doublet of S3: Y

representation of generators

 $\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

 $(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}$

3. Combine modular forms and fields:

Matteo Parriciatu & DM, JHEP 09 (2023) 043, 2306.09028 [hep-ph]

$$\mathcal{W}_e^M = \alpha E_1^c H_d (D_\ell Y_2^{(2)})_1 + \beta E_2^c H_d (D_\ell Y_2)_{1'} + \gamma E_3^c H_d \ell_3$$

modular forms of weight 4

for $|Y_1| \sim 7/100$ $(m_\tau, m_\mu, m_e) \sim m_\tau(1, |Y_1|, |Y_1|^2).$

<u>Mass hierarchy scaling naturally</u> <u>reproduced</u>! (no fit so far...)

<u>Ready for Neutrinos</u>: key ingredient is to fix k₁ to generate *Weinberg* operators

several possible choices. The best one gives $(k_1=2)$:

$$\begin{split} m_{\nu}^{k_{\ell}=2} &= \frac{2gv_{u}^{2}}{\Lambda} \begin{bmatrix} \begin{pmatrix} -(Y_{2}^{2}-Y_{1}^{2}) & 2Y_{1}Y_{2} & \frac{g'}{2g}2Y_{1}Y_{2} \\ 2Y_{1}Y_{2} & (Y_{2}^{2}-Y_{1}^{2}) & -\frac{g'}{2g}(Y_{2}^{2}-Y_{1}^{2}) \\ \frac{g'}{2g}2Y_{1}Y_{2} & -\frac{g'}{2g}(Y_{2}^{2}-Y_{1}^{2}) & 0 \end{pmatrix} + \\ & + \begin{pmatrix} \frac{g''}{g}(Y_{1}^{2}+Y_{2}^{2}) & 0 & 0 \\ 0 & \frac{g''}{g}(Y_{1}^{2}+Y_{2}^{2}) & 0 \\ 0 & 0 & \frac{g_{p}}{g}(Y_{1}^{2}+Y_{2}^{2}) \end{pmatrix} \end{split}$$

Independent parameters: Re(τ), Im(τ), β / α , γ / α , g'/g, g''/g, g_p/g

Numerical fit

Mass matrices against the experimental data

data				fit results
$\begin{split} r &\equiv \Delta m_{\rm sol}^2 / \Delta m_{\rm atm}^2 \\ \sin^2 \theta_{12} \\ \sin^2 \theta_{13} \\ \sin^2 \theta_{23} \\ m_e / m_\mu \\ m_\mu / m_\tau \end{split}$	$\begin{array}{c} 0.0296 \pm 0.0008 \\ 0.303 \substack{+0.013 \\ -0.013} \\ 0.0223 \substack{+0.0007 \\ -0.0006} \\ 0.455 \substack{+0.018 \\ -0.015} \\ 0.0048 \pm 0.0002 \\ 0.0565 \pm 0.0045 \end{array}$	<i>x</i> ² ∼ O(0.1)	$\operatorname{Re} au$ $\operatorname{Im} au$ eta / lpha $\gamma / lpha$ g' / g g'' / g g_p / g	$\begin{array}{r}\pm 0.0895^{+0.0032}_{-0.0055}\\ 1.697^{+0.023}_{-0.016}\\ 14.33^{+0.58}_{-0.38}\\ 17.39^{+1.38}_{-0.87}\\ 31.57^{+27.59}_{-10.29}\\ 7.17^{+6.36}_{-2.36}\\ 8.51^{+7.99}_{-3.03}\end{array}$

predictions

Ordering	NO	
δ/π	$\pm 1.594^{+0.007}_{-0.010}$	
$m_1 [eV]$	$0.0182^{+0.0018}_{-0.0014}$	
$m_2 [eV]$	$0.0201^{+0.0017}_{-0.0013}$	
$m_3 [eV]$	$0.0537\substack{+0.0006\\-0.0005}$	
$\sum_i m_i [eV]$	$0.092^{+0.004}_{-0.003}$	
$ m_{\beta\beta} $ [meV]	$18.89^{+1.90}_{-1.47}$	
$m_{\beta}^{\text{eff}} \; [\text{meV}]$	$20.26^{+1.69}_{-1.30}$	
α_1/π	$\pm 1.124^{+0.014}_{-0.017}$	
α_2/π	$\pm 0.949^{+0.005}_{-0.005}$	

Origin of modular symmetry

Two periods in complex functions $f : C \rightarrow C$

elliptic function:

$$f(z + \omega_1) = f(z + \omega_2) = f(z)$$

rinds $\in C$ such that $\omega_2/\omega_1 \notin \Re$

periods \in C such that $\omega_2/\omega_1 \notin \Re$

a lattice Λ can be generated in the complex plane, spanned by the two directions ω_1 , ω_2

$$\Lambda = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2 = \{n_1\omega_1 + n_2\omega_2 \mid n_1, n_2 \in \mathbb{Z}\}$$

elliptic functions are translation-invariant in this lattice: f (z + λ) = f (z) for $\lambda \in \Lambda$

Thus, an elliptic function is single-valued on the quotient C/A, which is topologically known as a torus (T₂).

Rescaling of the periods:

 $\omega_1 = 1$ and $\omega_2/\omega_1 = \tau$, where τ is called the *modulus*

the torus is represented by a parallelogram with vertices z = 0, z = 1, $z = \tau$ and $z = \tau + 1$ where the opposite sides are pairwise identified

courtesy by Matteo Parriciatu, Master Thesis

The lattice Λ can be equivalently described by a different basis (ω'_1 , ω'_2) related to the old one by a linear map with integer parameters:

```
Eur. Phys. J. C (2024) 84:1329
```

$ d_e $	$< 4.1 \times 10^{-30} \mathrm{e} \mathrm{cm} [18]$	$\operatorname{Im}\left[\mathcal{C}_{e\gamma}'\right] < 1.8 \times 10^{-13}$
$ d_{\mu} $	$< 1.80 \times 10^{-19} \mathrm{e} \mathrm{cm}$ [22]	Im $[C'_{e\gamma}] < 7.9 \times 10^{-3}$
$ d_{ au} $	$< 1.85 \times 10^{-17} \mathrm{e} \mathrm{cm} [23]$	$\mathrm{Im}\left[\mathcal{C}_{e\gamma}'\right] < 8.2 \times 10^{-1}$

