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What we know: flavor mixing 

Maybe the right time to ask AI 
agents to solve the flavor 
problem
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What we know: flavor mixing 

after several trials...

...I gave up and 
took from the web

Maybe the right time to ask AI 
agents to solve the flavor 
problem
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Flavor mixing: current situation 

three-neutrino fit based 
on data available in 
September 2024
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Flavor mixing: current situation 

three-neutrino fit based 
on data available in 
September 2024

octant degeneracy

Pαβ∼sin
2
(2θ)sin2(

Δm2L
4 Eν

)

mass hierarchy
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Flavor mixing: current situation 

three-neutrino fit based 
on data available in 
September 2024

measuring CP violation?

Pαβ

CPV
∼sin (θ13)(

Δm sol
2

Δmatm
2 )sinδCP
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The Flavor Problem (I)

Mass hierarchies

very small neutrino 
masses
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The Flavor Problem (II)

Fermion mixing

almost a diagonal matrixall mixing are large but 
the 13 element

Why are they so different?
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Let us focus on mixing: Some suggested solutions

Let us analyze the magnitude of 
the PMNS matrix elements
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Let us focus on mixing: Some suggested solutions

Let us analyze the magnitude of 
the PMNS matrix elements

some useful approximations

T BM T TBM T GR

Bi-maximal 
mixing

Tri-Bi-
maximal 
mixing

Golden 
Ratio
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Some suggested solutions

why do not we take them seriously?

T BM T TBM T GR

Bi-maximal 
mixing

Tri-Bi-
maximal 
mixing

Golden 
Ratio
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Some suggested solutions

why do not we take them seriously?

T BM T TBM T GR

Bi-maximal 
mixing

Tri-Bi-
maximal 
mixing

Golden 
Ratio

tan(θ12)=1 tan(θ12)=
1

√2
tan(θ12)=

2√5

√5+√5
nice
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Some suggested solutions

why do not we take them seriously?

T BM T TBM T GR

Bi-maximal 
mixing

Tri-Bi-
maximal 
mixing

Golden 
Ratio

tan(θ23)=1 tan(θ23)=1 tan(θ23)=1

accceptable

tan(θ12)=1 tan(θ12)=
1

√2
tan(θ12)=

2√5

√5+√5
nice
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Some suggested solutions

why do not we take them seriously?

T BM T TBM T GR

Bi-maximal 
mixing

Tri-Bi-
maximal 
mixing

Golden 
Ratio

corrections are necessary

tan(θ12)=1 tan(θ12)=
1

√2
tan(θ12)=

2√5

√5+√5
nice

sin(θ13)=0 sin(θ13)=0 sin(θ13)=0

tan(θ23)=1 tan(θ23)=1 tan(θ23)=1

bad

accceptable
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Non-abelian discrete symmetries

Non-abelian Discrete symmetries

easy to get the 
neutrino mass 
matrix:

diagonalized by

S4: permutation group of four 
elements

Altarelli et al., 
0903.1940
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Non-abelian discrete symmetries

Non-abelian Discrete symmetries

easy to get the 
neutrino mass 
matrix:

diagonalized by

S4: permutation group of four 
elements

Altarelli et al., 
0903.1940

Altarelli et al., 
0903.1940

Corrections are needed from 
charged lepton diagonalization U PMNS=U cl

+⋅U ν ∼(
1 λC λC

λC 1 0
λC 0 1 )

introduced by hand (me/mu ~ l2
c )

U cl
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Non-abelian discrete symmetries

Non-abelian Discrete symmetries

easy to get the 
neutrino mass 
matrix:

diagonalized by

S4: permutation group of four 
elements

Altarelli et al., 
0903.1940

Altarelli et al., 
0903.1940

Corrections are needed from 
charged lepton diagonalization U PMNS=U cl

+⋅U ν ∼(
1 λC λC

λC 1 0
λC 0 1 )

introduced by hand (me/mu ~ l2
c )

O(λC )

O(λC )

good results:
[θ13

PMNS=O(1)⋅θ12
CKM ]

U cl
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Non-abelian discrete symmetries

Non-abelian Discrete symmetries

O(λC )

O(λC )
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Non-abelian discrete symmetries

Non-abelian Discrete symmetries
+-----------------------------+
| 1. Choice of S₄ Reps   
| - S₄: 1₁, 1₂, 2, 3₁, 3₂    
| - Assign SM fermions  
+-----------------------------+
                  ↓
+-----------------------------+
| 2. Charge Assignments   
| - Left-handed fields         
| - e_R, μ_R, τ_R                
| - Higgs/Flavons               
+-----------------------------+
                  ↓
+-----------------------------+
| 3. Yukawa Interactions   
| - renormalizable             
| - higher-dim operators   
+-----------------------------+
                   ↓
+-----------------------------+
| 4. Flavon Fields & Breaking 
| - scalar sector    
+-----------------------------+

O(λC )

O(λC )
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A (very very very) preliminar scan of A
4
 models

Asked Grok to analyze the abstract of 
more than 200 papers related to A

4

Sum of Masses (Σmν): A heavily skewed 
distribution towards the 0.06-0.10 eV range, with 
a decreasing tail for higher masses

Hierarchy: A dominant peak for NO, a smaller 
bar for IO, and a minor bar for indeterminate 
models (both hierarchies are fine).

Effective Mass (|mββ|): A pronounced peak in 
the 0.001-0.005 eV range, a smaller peak in the 
0.015-0.050 eV range, showing a bimodal 
distribution.

CP Violation Phase (δCP): A major peak for CP 
conservation (0°/180°), a smaller bar for 270°, 
and minimal presence for 90°
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Non-abelian discrete symmetries

colors are ordered from 
least to most problematic

my personal perspective

Most probably we need 
a new perspective

Issue Why Flavor Symmetries Don’t Fully 
Solve It

Origin of Yukawa Couplings Flavor symmetries impose textures but do 
not explain why Yukawa couplings take 
their specific values.

Connection to Quark Sector Most models treat neutrinos and quarks 
separately, failing to explain the observed 
patterns in both sectors simultaneously.

Hierarchy of Masses Symmetries predict mass structures but do 
not fully explain why neutrino masses are 
so small compared to quarks and charged 
leptons.

CP Violation Many flavor symmetry models struggle to 
naturally generate the observed leptonic 
CP phase without additional assumptions.

Lack of Unique Prediction Different symmetries (A , S , (96), etc.) ₄ ₄ Δ
can fit the same data, making it unclear 
which one (if any) is the fundamental 
symmetry of nature.

Breaking Mechanisms Many models require ad-hoc symmetry 
breaking sectors, introducing additional 
fields and parameters, reducing 
predictivity.
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Quark-lepton complementarity

O(λC )

O(λC)

Let me rewrite the intriguing relations:

typical leptonic 
quantity

typical hadronic 
quantity

are they connected at a more profund level?
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Quark-lepton complementarity

O(λC )

O(λC)

Let me rewrite the intriguing relations:

typical leptonic 
quantity

typical hadronic 
quantity

are they connected at a more profund level?

~33o
~45o~13o ~2o
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Quark-lepton complementarity

complete failure:

~8.5o ~0.2o

we need to replace the bad relation with a promising one:
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Quark-lepton complementarity

complete failure:

~8.5o ~0.2o

we need to replace the bad relation with a promising one:

θ13
PMNS=O(1)⋅θ12

CKM same order of 
magnitude

Flavor symmetries do the 
job, Cabibbo angle needed to 
fit the charged lepton mass 
ratios 

GUT? Promising but not viable 
in its simplest application
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Experimental facts

GUT: simple example from SU(5)

Let us take the electron and 
down quark relation: me=md

T

V CKM=U u
+⋅U dU PMNS=U cl

+⋅U ν
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Experimental facts

GUT: simple example from SU(5)

Let us take the electron and 
down quark relation: me=md

T

V CKM=U u
+⋅U dU PMNS=U cl

+⋅U ν

Let us diagonalize the matrices:

U clmeER
+ =me

D U dmdDR
+ =md

D

this implies

U cl=DR
*

relations involve unobservable right-handed rotations 
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A new Perspective: Modular symmetry

minimal yet powerful alternative to 
conventional discrete flavor symmetries

typical Yukawa term: y ψ h ψ

Feruglio [1706.08749]
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A new Perspective: Modular symmetry

minimal yet powerful alternative to 
conventional discrete flavor symmetries

typical Yukawa term: y ψ h ψ

y ( τ)ψ h ψ
Modular approach:

Feruglio [1706.08749]

modulus, 
complex 
variable

Step 1. 

Yukawa couplings treated as functions of t

fermion masses depend of t
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Modular symmetry

Step 2. 

t has well defined transformation properties under the modular group

γ τ=
a τ+b
c τ+d

Γ(N )={(a b
c d )∈SL(2 , Z ) ,(

a b
c d)=(1 0

0 1)(ModN )}

the group of 2x2 matrices with integer entries 
modulo N and determinant equals to one modulo N
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Modular symmetry

Step 3. 

Y(t) has well defined transformation properties under the group: they 
are called Modular Forms

Y (γ τ)→(c τ+d)kρ(γ)ij Y (τ )

unitary representation of G
Nrepresentative element of G

N
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Modular symmetry

Step 3. 

Y(t) has well defined transformation properties under the group: they 
are called Modular Forms

unitary representation of G
Nrepresentative element of G

N

            K < 0: 
no modular forms 

            K = 0: 
constant functions

            K > 0 (even number): 
          linear space of finite   
                           dimension

R. C. Gunning, Lectures on Modular 
Forms, Princeton, New Jersey USA, 
Princeton University Press 1962

k = weigth,  N  = level 

Y (γ τ)→(c τ+d)kρ(γ)ij Y (τ )
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Modular symmetry

Step 3. 

Y(t) has well defined transformation properties under the group: they 
are called Modular Forms

unitary representation of G
Nrepresentative element of G

N

            K < 0: 
no modular forms 

            K = 0: 
constant functions

            K > 0 (even number): 
          linear space of finite   
                           dimension

R. C. Gunning, Lectures on Modular 
Forms, Princeton, New Jersey USA, 
Princeton University Press 1962

- few combinations available
- once k is fixed, it is so for combinations 
  of modular forms

Y (γ τ)→(c τ+d)kρ(γ)ij Y (τ )
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Modular symmetry

Step 3. 

Y(t) has well defined transformation properties under the group: they 
are called Modular Forms

unitary representation of G
Nrepresentative element of G

N

            K < 0: 
no modular forms 

            K = 0: 
constant functions

            K > 0 (even number): 
          linear space of finite   
                           dimension

k = weigth,  N  = level 

for N ≤ 5, the finite 
modular groups G

N
  

are isomorphic to 
non-Abelian discrete 
groups 

G
2
 ≃ S

3
       G

3
≃ A

4
       G

4
 ≃ S

4            
G

5
≃ A

5
 

Y (γ τ)→(c τ+d)kρ(γ)ij Y (τ )



35

Modular symmetry

Step 4. 

Fields have well defined transformation properties under the modular 
group

χ (x )i→(c τ+d )− k iρ(γ)ij χ (x) j not modular forms !
No restrictions on ki
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Modular symmetry

Step 4. 

Fields have well defined transformation properties under the modular 
group

χ (x )i→(c τ+d )− k iρ(γ)ij χ (x) j not modular forms !
No restrictions on ki

putting all steps together

Y i(γ τ)→(c τ+d)kρ(γ)ij Y j (τ)

χ (x )i→(c τ+d )− k iρ(γ)ij χ (x) j

Leff ∈ Y (τ)×χ
(1 )... χ(n)

k=Σi k i

ρf⊗ρχ1
⊗...⊗ρχn

⊃ I

invariance requires:
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Modular symmetry

Final results of this contruction:

# small number of operators (few free parameters) → predictability

# no new matter fields →  minimality

# no new scalar fields beside Higgs(es) → symmetry breaking dictated by  
                                                              the vev of t

# charged lepton hierarchy by symmetry arguments →  “appealing”



Modular symmetry

Feruglio: 
2211.00659

τ=i∞

τ=i
τ=ei2 /3π

Dots are the best fit values of t 
in selected models

Clustering of points
fall close to the self-dual 
point: |t-i| <  0: 25



Typical “modular” predictions

Feruglio: 
2211.00659

Mixing parameters

masses

phases

Analysis of 14 models, several N



Typical “modular” predictions

Feruglio: 
2211.00659

Mixing parameters

Analysis of 14 models, several N

masses

phases
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Conclusions

Approach Advantages Disadvantages

Discrete Non-Abelian 
Symmetries

Flexibility: Wide choice of groups 
(e.g., A , S ) and representations ₄ ₄
to fit data. 
Established Precedents: Well-
studied and widely applied 
Intuitive Structure: Directly 
imposes order on mass matrices 
via group invariants.

Complexity: Requires additional 
scalar fields and non-trivial 
vacuum alignment. 
Free Parameters: Many degrees 
of freedom (flavon VEVs, coupling 
constants) reduce predictivity. 
Ad Hoc: Phenomenologically 
motivated, less tied to 
fundamental theories.

Modular Forms Elegance: Reduces the number of 
fields (only τ as a 'flavon-like' 
field), simplifying the model. 
Predictivity: Yukawa couplings 
constrained by modular forms, 
with fewer free parameters. 
Theoretical Foundation: Naturally 
arises from string theory or extra-
dimensional geometries.

τ Stabilization: Determining the 
modulus τ’s value is challenging.
Limited Flexibility: The form of 
couplings is fixed by modular 
weight and level. 
Mathematical Complexity: 
Requires familiarity with modular 
forms and the SL(2, ) group.ℤ
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Disclaimer

A highly debated topic: I present my point of view and 
what fascinates me about BSM connected to neutrinos.

FIS3 project - N2N
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Backup slides



Modular symmetry

Generators of G
N
 : elements S and T satisfying

S=( 0 1
−1 0) , T=(1 1

0 −1)
corresponding to:

τ→
S
−
1
τ

τ→
T
τ+1

S2=1, (ST )3=1 , T N=1

modular invariance
completely broken
everywhere but at three
fixed points

τ=i τ→
S
−
1
τ

τ=ei2 /3π τ→
ST
−
1

τ+1

τ=i∞ τ→
T
τ+1



Modular symmetry

Courtesy by Joao Penedo

τ=i∞ τ→
T
τ+1 ZT x Z2

S2



Modular Symmetry

We start from 

Γ(N )={(a b
c d )∈SL(2 , Z ) ,(

a b
c d)=(1 0

0 1)(ModN )}

G(1)=SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and 
determinant equals to one, called homogeneous modular group G

G(N), N>=2  are infinite normal subgroups of Γ

Feruglio, 1706.08749

the group of 2x2 matrices with integer entries 
modulo N and determinant equals to one modulo N

the group Γ(N) acts on the complex variable τ (Im τ >0)

γ τ=
a τ+b
c τ+d



Modular Symmetry

inhomogeneous modular group (or simply Modular Group)

Important observation for N=1:
  
a transformation characterized by parameters {a, b, c, d} is identical to the 
one defined by {-a, -b, -c, -d}

In addition:

Γ(2)=Γ(2) /{1 ,−1} Γ(N )=Γ(N ) N>2

since 1 and -1 can be distinguished

since 1 and -1 cannot be 
distinguished

G(1) is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = Γ

Finite Modular Group: ΓN=
Γ

Γ(N )



Modular Forms

Modular Forms:

holomorphic functions of the complex variable τ with well-defined 
transformation properties under the group G(N)

k = weigth,  N  = level 

            K < 0: 
no modular forms 

            K = 0: 
constant functions

            K > 0: 
          linear space of finite   
                           dimension

R. C. Gunning, Lectures on Modular 
Forms, Princeton, New Jersey USA, 
Princeton University Press 1962

f (γ τ )=(c τ+d )k f ( τ) , γ=(a b
c d)∈Γ(N )



Fundamental Domain

τ=ei2 /3π

τ=i∞

τ=i

Fundamental 
domain

Re(tau)1-1 0

Im(tau)

relevant for model building:

for N ≤ 5, the finite modular groups G
N
  are isomorphic to non-Abelian discrete groups 

Then the question is: why Modular Symmetry ? 

G
2
 ≃ S

3
       G

3
≃ A

4
       G

4
 ≃ S

4            
G

5
≃ A

5
 



Model Building

Key points:

1. Modular forms of weight 2k and level N ≥ 2 are invariant, up to the  
    factor (cτ + d)k under G(N) but they transform under G

N
  ! 

f i(γ τ )=(c τ+d )kρ(γ)ij f j (τ)

unitary representation of G
Nrepresentative element of G

N

2. in addition, one assumes that the fields of the theory c
i  
transforms non-   

    trivially under  G
N
  

χ (x )i→(c τ+d )− k iρ(γ)ij χ (x) j

not modular forms !
No restrictions on ki



Model Building

Key points:

1. Modular forms of weight 2k and level N ≥ 2 

2. fields of the theory c
i  
transforms non-trivially under  G

N
  

3. Combine modular forms and fields:

Leff ∈ Y (τ)×χ
(1 )... χ(n)

k=Σi k i

ρf⊗ρχ1
⊗...⊗ρχn

⊃ I

modular 
forms

Invariance requires:



The group S3 contains 1 + 1’ + 2

two independent modular forms can fit into a doublet of S3

Model Building in the Simplest Case: G
2 
~ S

3

Dedekind eta functions 

Let us find the functions f(t) !

h24 is a modular form of weight 12

S: T:



Model Building

Constructing the Modular Forms

Crucial observation:

if

then

this term prevents of 
having a modular form 
of weight 2 k = 2

The inhomogeneous term can be removed if 
we combine several f

i
(τ) with weights k

i

d
d τ

Σi log [g i(τ )] → (c τ+d )2
d
d τ

Σi log [gi( τ)]+ (Σi k i )c (c τ+d)

Σi k i=0with

g( τ) → eiα (c τ+d )k g( τ)

d
d τ
log [ g( τ)] → (c τ+d)2

d
d τ
log [ g( τ)]+k c (c τ+d )



A case study: G
2 
~ S

3

Dedekind eta functions 

Under T:

η(2 τ) → e iπ/6η(2 τ)

η(τ /2) → η((τ+1) /2)

η(( τ+1)/2) → ei π/12η( τ /2)

Under S:

η(2 τ) → √−i τ /2 η(τ /2)

η(τ /2) → √−2 i τ η(2 τ )

η((τ+1)2 ) → e−iπ /12√−i τ (√3−i )η( (τ+1)2 )



Model Building in the Simplest Case: G
2 
~ S

3

Constructing the Modular Forms

the system is closed under modular 
transformation

η(2 τ)
η(τ /2)

η((τ+1)2 )

T

T

S

S
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Model Building in the Simplest Case: G
2 
~ S

3

Constructing the Modular Forms

the system is closed under modular 
transformation

η(2 τ)
η(τ /2)

η((τ+1)2 )

T

T

S

S

candidate modular form

Y (α ,β , γ)=
d
d τ

[α log η(τ /2)+β logη((τ+1)/2)+ γ log η(2 τ) ]

α+β+ γ=0



A case study: G
2 
~ S

3

Constructing the Modular Forms

Under T:

Under S:

Y (α ,β , γ) → Y (γ ,β ,α)

Y (α ,β , γ) → τ2 Y (γ ,α ,β)

representation of generators



Model Building in the Simplest Case: G
2 
~ S

3

Constructing the Modular Forms

Equations to be satisfied:

Y 1(α ,β , γ)∼Y (1,1 ,−2) Y 2(α ,β , γ)∼Y (1 ,−1,0)

representation of generators

doublet of S3: Y



3. Combine modular forms and fields:

Model Building in the Simplest Case: G
2 
~ S

3

modular forms of weight 4

for |Y1| ~ 7/100
Mass hierarchy scaling naturally 
reproduced !        (no fit so far...)

Matteo Parriciatu & DM, 
JHEP 09 (2023) 043,  2306.09028 [hep-ph] 



Ready for Neutrinos: key ingredient is to fix k
l
 to generate Weinberg operators

several possible choices. The best one gives (k
l
=2):

Independent parameters: Re(τ), Im(τ), β/α, γ/α, g’/g, g’’/g, gp/g

Model Building in the Simplest Case: G
2 
~ S

3



Mass matrices against the experimental dataNumerical fit

data fit results

χ2~ O(0.1)

predictions

!!!

Model Building in the Simplest Case: G
2 
~ S

3



Origin of modular symmetry

Two periods in complex functions f : C → C

periods ∈ C such that ω2/ω1 ∉ ℜ

a lattice Λ can be generated in 
the complex plane, spanned
by the two directions ω1, ω2

elliptic function:

elliptic functions are translation-invariant in this lattice: f (z + λ) = f (z) for λ ∈ Λ

Thus, an elliptic function is single-valued on the quotient C/Λ, which is 
topologically known as a torus (T2). 



Origin of modular symmetry

Rescaling of the periods:

ω1 = 1 and ω2/ω1 = τ,  where τ is called the modulus

ω1

ω2/ω1

the torus is represented by a parallelogram with vertices z = 0, z = 1, z = τ and z 
= τ + 1 where the opposite sides are pairwise identified

courtesy by Matteo Parriciatu, 
Master Thesis

The lattice Λ can be equivalently 
described by a different basis (ω′

1
, ω′

2
) 

related to the old one by a linear map 
with integer parameters:



EDM

Eur. Phys. J. C (2024) 84:1329

same structure of CL in 
Meloni-Parriciatu model

bounds of free parameters
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