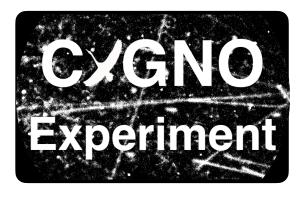
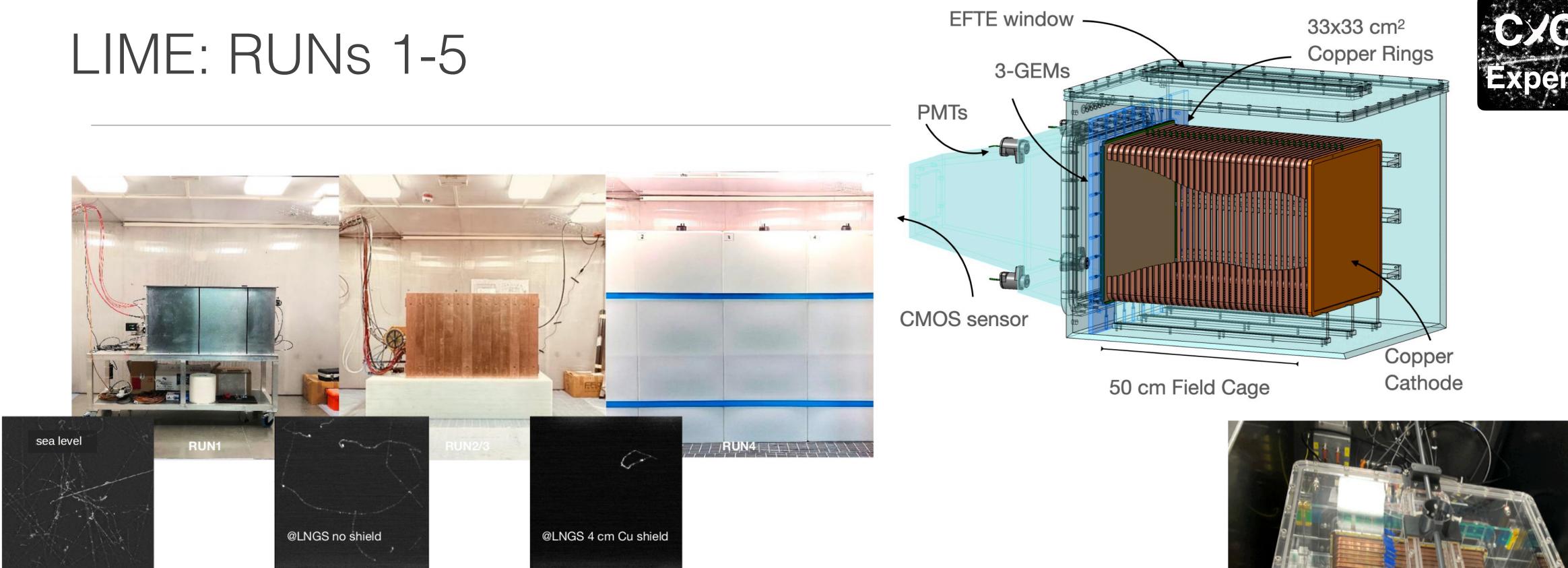


CYGNO status and plans Feb 2025

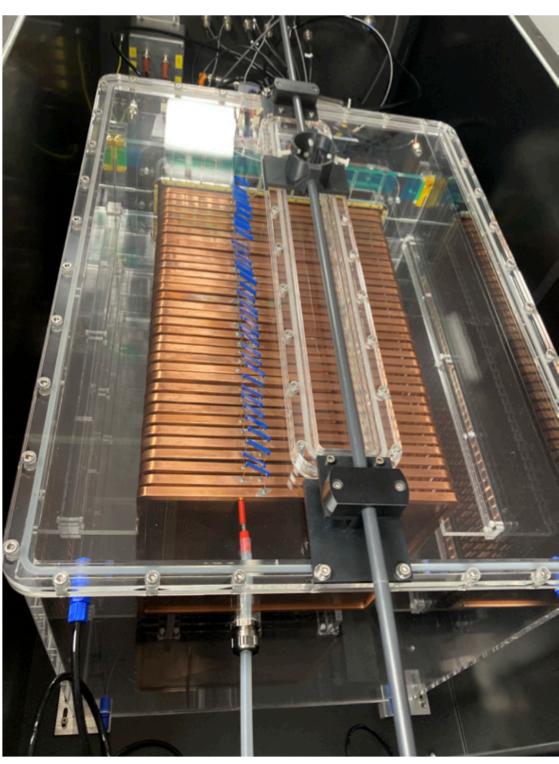
CBPF



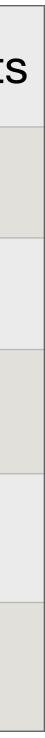
European Research Council Established by the European Commi

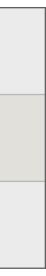

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

Collaboration Meeting 2024



- testing and optimisation of ancillary systems (HV, Gas, Slow Control, DAQ, Reco, Monitoring);
- development and optimisations of data analysis algorithms and performance study;
- development and validation of **detector** and **background simulation**;





LIME: RUNs 1-5

			Time slotNumber of pictures		Number of events
RUN 1: No-shielding		3 Nov 2023 - 15 Dec 2023	4 10 ⁵	35 Hz	4 10 ⁶
RUN 2: 4 cm Cu shielding		15 Feb 2023 - 15 March 2023	4.5 10 ⁵	3.5 Hz	5 10 ⁵
RUN 3: 10 cm Cu shielding		5 May 2023 - 16 Nov 2023	1.6 10 ⁶	1.5 Hz	7.3 10 ⁵
RUN 4: 10 cm Cu + 40 cm water shielding		30 Nov 2023 - 31 March 2024	2 10 ⁶	1.0 Hz	6 10 ⁵
RUN 5: 10 cm Cu shielding (neutron flux measurements)		17 May 2024 - 1 Dec 2024	12 10 ⁶	1.5 Hz	5.4 10 ⁶
Special data takings					·
AmBe for Nuclear Recoils		2-4 Aug 2023	2 10 ⁵	0.04 Hz of NR	2.5 10 ³ NR
²⁴¹ Am for Electron Recoils	7	-16 Nov 2023	7 10 ⁵	50 Hz	106
AmBe for Nuclear Recoils	5	-15 Dec 2024	6 10 ⁵	0.04 Hz of NR	7.0 10 ³ NR

LIME PLANS

With the end of RUN4 in March 2024, LIME data taking for PHASE_0 is considered closed;

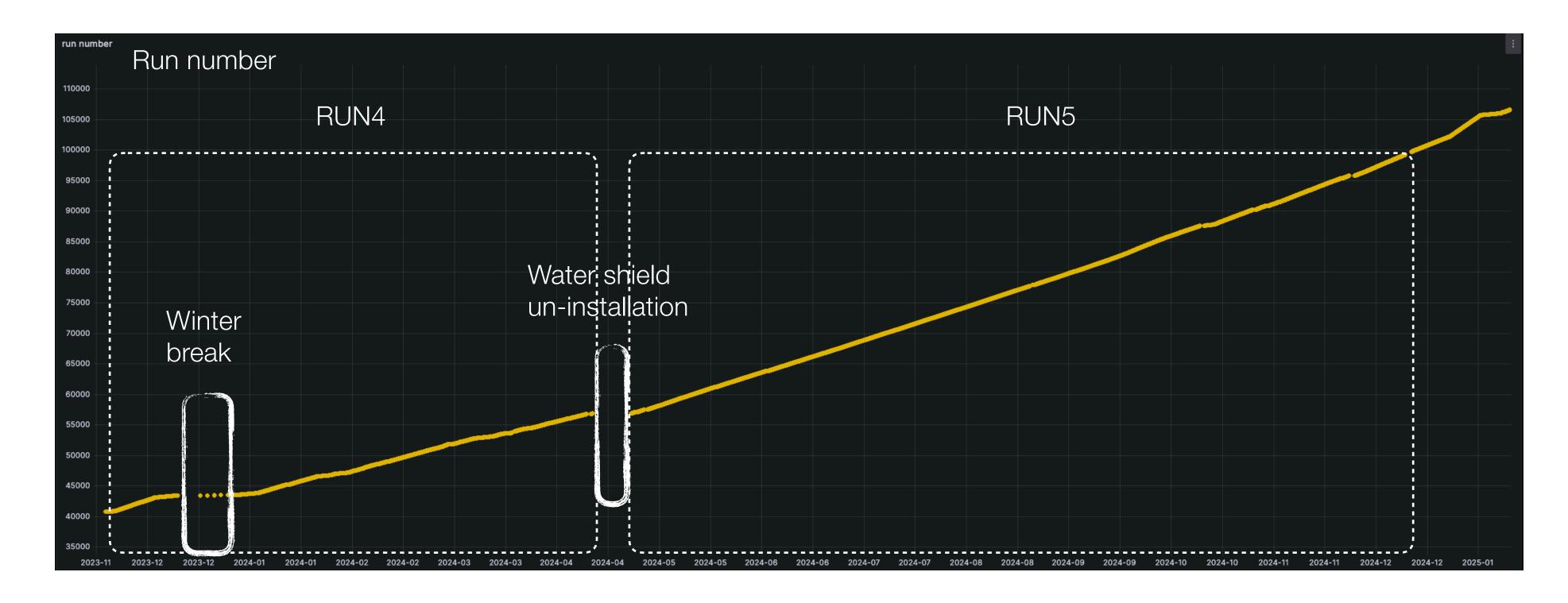
works) in over **27 months of operations**;

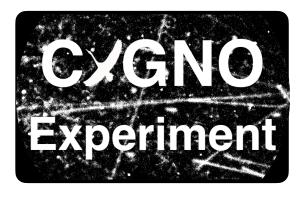
The water shielding was then removed and in May 2024 and RUN5 has been taken for 6 months to experiments";

like events;

From January 2025 we are taking some "technical runs" to study the effects of gas filters, a new camera, and calibration with ⁸⁵Kr

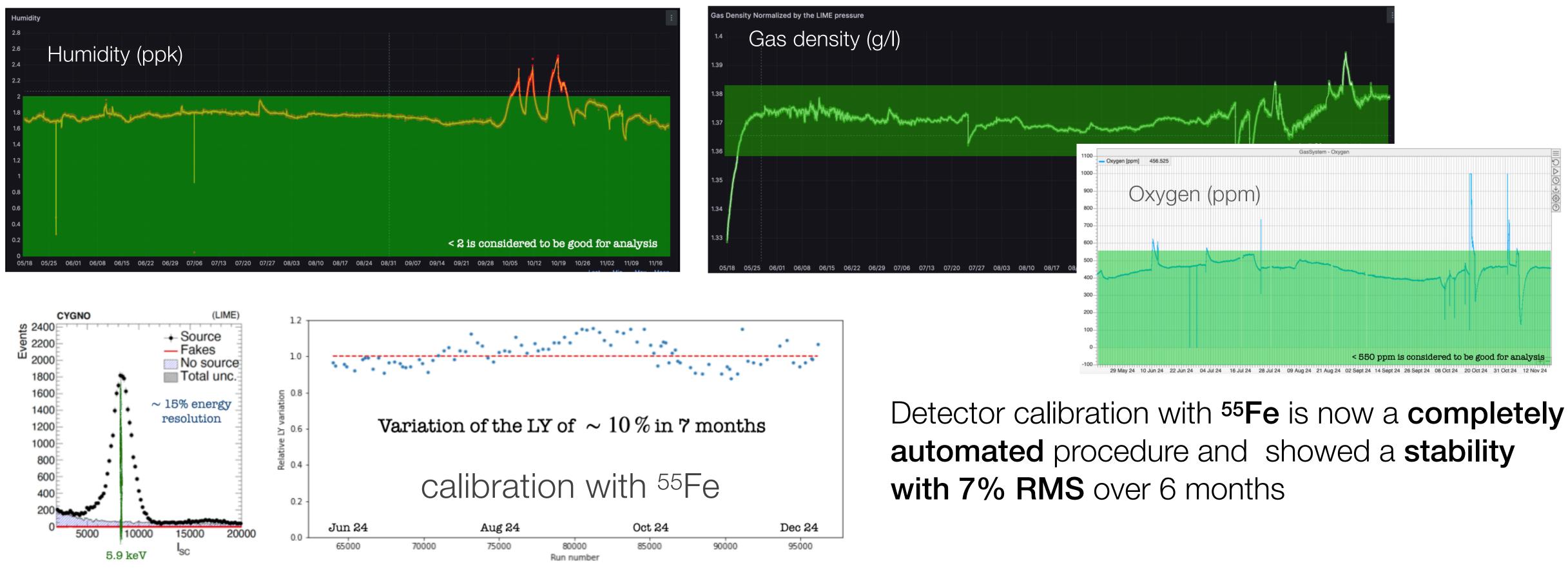
- The whole schedule successfully concluded with **3 months delay** (including the delayed start due to civil)
- measure the flux of underground neutrons, in the framework of PRIN "Zero Radioactivity on future
- Good exercise to tune and test simulation and analysis algorithms for NR, propaedeutical to DM search;
- In December 2024 a 10 days long AmBe campaign was performed to have a good calibration on signal-


LIME DATA TAKING SUMMARY



Ancillary systems: DAQ and Slow control

Data taking started in October 2023 never stopped; More than 7x10⁴ runs have been taken for a total of 28 x 10⁶ pictures;


All of them have been promptly transferred on the INFN-Cloud and reconstructed; **Reco-files** are made available to the CYGNO users **few minutes after** the run was taken;



Ancillary systems: Gas and HV

Less than one **spark-**like every 3 days was recorded in 2024 (12 times lesser than previous best limit ...) Several grafana pages allows to monitor the detector operation, its main parameters and data quality; Gas humidity, oxygen and other contaminants were under control for the whole 2024

CYGNO04

TDR CYGNO financial plan and CSN2 proposal


The TDR submitted in **2022** included:

- infrastructure installation by Oct 2024;
- detector installation by Dec 2024; _
- start of data taking Sept 2025;

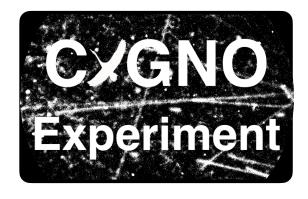
Since the spring **2024** an important delay started to accumulate leading to 5-6 months delay

- infrastructure installation by the end of Feb 2025; —
- detector installation by summer 2025; -
- data taking to start at the beginning of 2026; -

La commissione apprezza il lavoro di analisi compiuto dalla collaborazione su LIME ma invita la collaborazione a finalizzare la realizzazione di CYGNO-04 non oltre i primi mesi del 2026, recuperando, ove possibile i ritardi. La CSN2 raccomanda alla collaborazione un adeguato periodo di presa dati prima del decommissioning previsto nel 2027. La commissione inoltre puntualizza che la maggior parte delle spese di costruzione costruzione e caratterizzazione di CYGNO-04 devono essere sostenute su fondi ERC e si impegna a dare supporto all'esperimento secondo il piano finanziario esposto nel CDR a fronte del raggiungimento delle *milestone* di progetto, che saranno puntualmente verificate dai Referee.

Financial profile for ERC and INFN from the 2022 TDR

Year	INITIUM/ERC	CYGNO/INFN
2019	20	54
2020	201	44
2021	71	96
2022	40	96
2023	374	120
2024	302	125
2025	60	135
2026	0	95
2027	0	50
Tot 23-27	736	52
Tot	1068	815

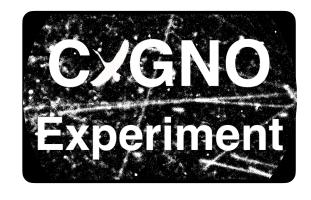

CYGNO04 drawings

CYGNO04 was unrecoverable by relying solely on the forces available to LNF's Design Dervice

can be the **opportunity to finalise the work** done so far in a reasonable time interval;

including:

- a designer from both the Labs (Alessandro Lalli LNGS and Antonio Croce LNF) —
- with the supervision of the two heads of the Services (Donato Orlandi LNGS and Cesidio Capoccia -LNF, head of the service)
- having as direct link to CYGNO Collaboration the Technical Coordinator (Davide Fiorina since November after Giovanni Mazzitelli resigned in April) supported by Davide Pinci as CYGNO spokesperson;



- Between **December and January**, it became clear that the **delay** in producing the **executive drawings for**
- We therefore asked the LNGS Design Service for support: merging and sharing their resources with LNF's one
- In order to reach this aim, the proposal issued by the LNGS+LNF Design Services is the creation of a task force

CYGNO current financial plan

The new situation had very negligible effects on the financial plans:

- A total of **490 k**€ are expected to being funded by INFN for the quinquennium 2023-2027 (515 k€ foreseen in the **TDR**)
- In particular **305** $k \in$ foreseen by INFN in 25-27; -
- A total of **1099 k**€ are expected to being funded by ERC for the quinquennium 2023-2027 (**1068 k**€ foreseen in the **TDR**)

Financial plan for INFN from the 2024 Progress Report

INFN - CSN2	2025	2026	2027		
Gas Bottles	16	20	10		
Gas Recovery	15	20	10		
Consumables	25	10	20		
Optics and DAQ	50	0	0		
Tot w/o Travels (k€)	106	50	40		
Travels - Shift	14	20	10		
Travels - Installation	25	10	30		
Tot Travels (k€)	39	30	40		
Tot (k€)	145	80	80		

Year	INITIUM/ERC	CYGNO/INFN				
2019	20	54				
2020	201	44				
2021	71	96				
2022	40	96				
2023	164	93.5				
2024	528	91.5				
2025	75	145				
2026	0	80				
2027	0	80				
Tot 23-27	767	490				
Tot	1099	780				

CYGNO04 Economic sustainability

Currently, from the ERC fundings, to cover the core costs of CYGNO04, there are a total of **304 k**€ available at **INFN** and **GSSI**

Part of the equipment is being used and validated on LIME:

- high voltage system;
- gas system;
- DAQ and trigger;

According to the latest quotations received, the **oth** costs expected for the construction of CYGNO04 304 k€, therefore an expense that can be fully cove with ERC funds.

Deadline for finalizing **purchases: August 2025**

The total value of CYGNO04 is of about 920 k€.

er	
is of	
ered	

		Unit cost	Needed Quantity	Total Cost	We Have	To Buy	Still To Spend	Still To Spend			
CAR MOLLINE	Cone and GEM holders	5	1	5	0	1	5				
GAS VOLUME	Vessel	30	1	30	0	1	30	35			
	4-GEM Set	10	2	20	2	0	٥				
READOUT	Orca Quest	26	6	156	6	٥	0				
	Camera mechanics	1	6	6	0	6	6	14			
	Lenses	2	6	12	2	4	8	-4			
	PMT+Socket	1	16	16	16	0	0				
CATHODE	Frame+foil+feedthrough	17	1	17	٥	1	17	17			
FIELD CAGE	Field Cage	13	1	13	0	1	13	13			
CALIBRATION	Kripton-Rubidium	6	1	6	0	1	6	0			
SYSTEM	55-Fe system	2	1	2	0	1	2	8			
	4 ton Copper Elsasser	156	1	156	1	0	28				
	copper precision machinering	10	1	10		1	10				
	Opera copper refurbishing	30	1	30	0	1	30				
	High Voltage feed through	10	1	10	0	1	10				
SHIELDING	Optical windows	10	1	10	0	1	10	193			
	water tanks	65	1	65	0	1	65				
	frame	20	1	20	0	1	20				
	polietilene	20	1	20	0	1	20				
	gas system	85	1	85	1	0	0				
SAS SYSTEM	filters	1	8	8	8	0	0	0			
	GEM-HV	5	1	5	1	0	0	0			
HV SYSTEM	PMT-HV	3	2	6	2	0	0	0			
	Cathode HV	5	1	5	1	0	0	0			
DAQ & SLOW CONTROLS	modules	45-5	1	45-5	1	٥	٥	0			
COMPRESSED AIR SYSTEM	filters and pipes	5	1	5	0	1	5	5			
	power distribution system	10	1	10	1	0	0				
ELECTRIC SERVICES	cables & connectors	5	1	5	1	0	0	0			
	UPS	5	1	5	1	0	0	0			
NETWORK	network distribution system	13	1	13	1	0	٥	0			
	Conditioning	20	1	20	1	0	0				
COOLING and	Cameras chiller	5	1	5	1	0	0	0 0 5 0			
CONDITIONING	PMTs flow system	2	1	2	0	1	2	4			
	Cables & connectors	2	1	2	0	1	2				
	pra+vinca	6	1	6	1	0	0	13 8 193 0 0 5 0 5 0 5 0 4 0 15			
	fire detection	10	1	10	1	0	0	_			
SAFETY (PRA-VIA)	gas monitor	15	1	15	1	0	0	0			
	safety design	10	1	10	1	0	0				
CIVIL WORK	total	40	1	40		0	0	0			
DESIGN AND	software	5	1	5	0	1	6	-			
DESIGN AND DOCUMENTATION	final audit	10	1	10		1	10	15			
		6	n Total	024 5			20.4				
		Gra	n Total	921.5			304	30			

Component Validation - Copper Shield

Copper analysis with ICPMS

- They used the described procedure to clean it and

	Etching 2	Etching 3
	[pg * g ⁻¹]	[pg * g ⁻¹]
Th	9 ± 3	7 ± 2
U	5 ± 2	2 ± 1

- The

radionuclide	concentrations:	

						-	
nd measur	ed the U and Th	o conte	ent		October		Significant improvement
nese were	the Matthias res	sults		Layer_0 (1-20 keV) [evts/yr]	14655 ± 347		thanks to ICP-MS measurement of Schriebe copper
radionuclide Th-232: Ra-228: Th-228:	concentrations: < 0.38 mBq/kg < 0.20 mBq/kg	<==>	< 9.3 E-11 g/g < 4.9 E-11 g/g	Layer_1 (1-20 keV) [evts/yr]	4518 ± 176		Huge statistics required see first effects of Bi210 i
U-238: Ra-226 Th-234 Pa-234m U-235:	< 0.44 mBq/kg < 17 mBq/kg < 11 mBq/kg < 0.37 mBq/kg	<==> <==> <==>	< 3.5 E-11 g/g < 9.3 E-10 g/g < 6.5 E-10 g/g < 6.5 E-10 g/g	Layer_2 (1-20 keV) [evts/yr]	10588 ± 2671		OPERA's copper → more storage space needed
K-40: Cs-137: Co-60:	< 3.2 mBq/kg < 0.14 mBq/kg < 0.12 mBq/kg	<==>	< 1.0 E-7 g/g	TOTAL	29761 ± 2700		In light of the updated res
Co-58: Mn-54:	(0.8 +- 0.1) mBq/kg (0.12 +- 0.05) mBq/kg	I				1	most viable option is still 4 cm clean copper + 6 c

Upper limits on U and Th obtained with Germanium detector, 10 times larger than actual values

⁵⁸Co has an half life of 70 days

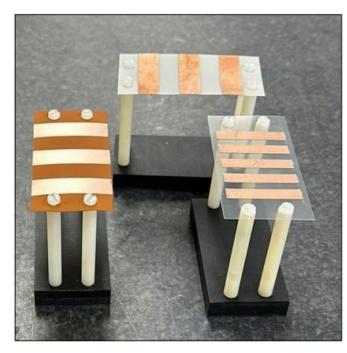
⁵⁴Mn has an half life of 1 year

Field Cage and GEM foils are now on queue for the ICPMS measurements

nt ber's ed to 0 in е

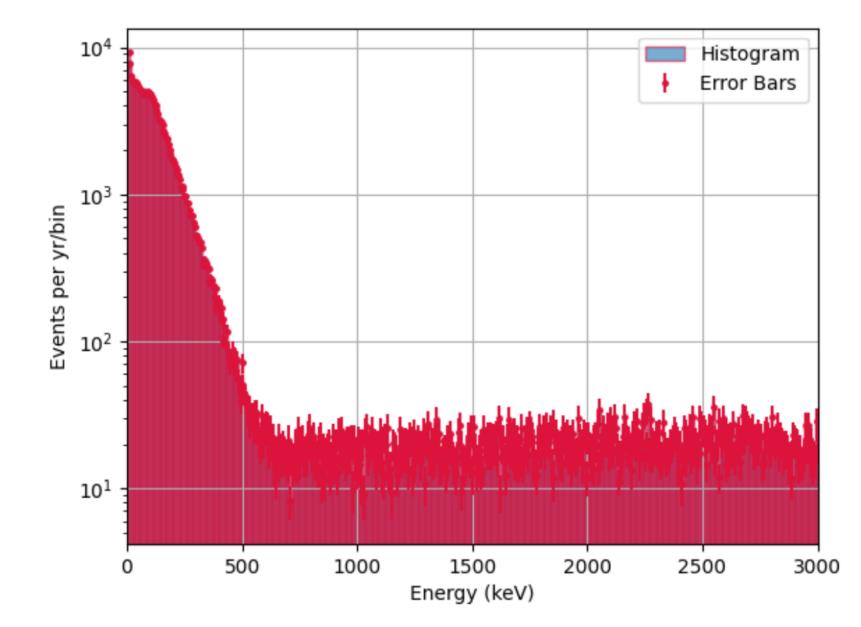
results, the cm OPERA

Component Validation - Field Cage


Field Cage Foils

- Three different field cage foils:
- > **PET+Cu with glue**: a polyethylene foil with Cu strips glued by spreading the adhesive over the entire foil
- **PET+Cu with no glue**: a polyethylene foil with Cu strips glued by applying the adhesive only between the strips and the foil
- **Kapton+Cu:** a kapton foil with Cu strips
- The foils were measured at LNGS

Roma


NFN

Davide Pinci

2

Donatella Tozzi - Cygno CM 2024

Sample

FC-kapt

FC-PET

FC-PET

nylon6

GEM foi

nylon so

steel sc

SMD res

CMOS (

PMMA

e Name	~	⊙ in measure	~	• measured	~	analysed 🗸
ton+Cu		no	•	yes	•	yes
F+Cu		no	•	yes	•	yes
F+Cu no glue		no	•	yes	•	yes
		no	-	yes	+	on-going
bil		no	-	yes	-	on-going
screws		no	-	yes	+	on-going
crews		no	•	yes	•	on-going
esistors		no	•	yes	•	on-going
camera		no	-	yes	-	yes
		yes	-	no	-	no

In the low energy range (1-20 keV):

- (1.56 ± 0.01) 10⁵ evt/year;
- (1.20 ± 0.08) 10³ NR evt/year;

.O.P. Mano.¹ R.R. Marcelo ^{12,*} P. Meloni,^{2,3} A. Messina,^{7,7} raoletti,6 L. Passamonti,6 S. Pelosi, ríerluigi,6 D. Pinci,7 A. Prajapati,4,5 F.

Enhancing the light yield of $He:CF_4$ based gaseous detector

202

Nov

4

Ins

F. Borra^{g, n} . Costa^{b,c} E. Dané^f G. Dho^{d,e} ngeli^h H.P. Lima Júnior^k E. Kemp^{1,d} Marcelo Gregorioⁿ D.J.G. Margues^{d,e} essina^{g,h} C.M.B. Monteiro^a R.A. Nobrega^m S. Pelosiⁿ F. Petrucci^{b,c} S. Piacentini^{g,h} D. Piccolo

An analytical model of the response of the optically readout GEM based TPC for the CYGNO experiment

CYGNO: GANTT (22-27)

CYGNO/INITIUM

PROJE	CT TITLE	CYGNO/INIT	IUM	COMPANY NAM	IE INFN													
PROJE	CT MANAGER	Giovanni Ma	zzitelli	UPDATE DATE	30/6/22													
			APPROVAL (2022)		DESIGN and Pi	ROCUREMENT (2023)	CONSTRU	CTION, TEST & ISTAL	LATION (2024)		CO	MMISSIONING - DAT	TAKING (202	5-2026)		DI	COMMISSIONIN	G (2027)
WBS ID	TASK	1-4	5-8	9-12	1-4	5-8 9-12	1-4	5-8	9-12	1-4	5-8	9-12	1-4	5-8	9-12	1-4		9-12
WP1	Physics																	
1.1	solar neutrino sensitivity												M.1	.1				
1.2	dark matter sensitivity												M.1	.2				
1.3	physical parameters PHASE 2																D1.1	
WP2	Data Analysis																	
2.1	reconstruc/background v0								M2.1									
2.2	reconstruc/background v1											M2.2						
2.3	detector analisys PHASE 1																D2.1	
WP3	Detector Simulation																	
3.1	valdete PHASE 0 results					M3	1											
3.2	Montecarlo for PHASE 1								M3.2									
3.3	estimation for PHASE 2																D3.1	
WP4	Detector Design and Construct	ion																
4.1	executive layout infrastructure				M4.1													
4.2	executive layout of the detector					M4.2												
4.3	procurements of components							M4.	3									
4.4	install infrastructure								D4.1									
4.5	install detector								D4.2									
4.6	commissioning & calibration										M	4.4 -> D A	T A T	A K I N	G			
4.8	decommissioning																D4.3	
WP5	Auxiliary Services																	
5.1	validating gas system				D5.1													
5.2	validating DAQ v0					M5	.1											
5.3	validating DAQ v1								D5.2									
WP6	Research and Development																	
6.1	validating large GEM					M6.1												
6.2	validating sensors and lens								D6.2				011000 00000 00000 00000 00000					
6.3	validating field cage component						D6.1											
6.4	validating R&D for PHASE 2																D6.3	
WP7	Management	I																
7.1	ERC-FRP3					M7.1						M	7.2					
7.2	ERC-FRP4																	
7.3	CSN2 Progress Report					M7.3		<mark>M7.</mark> 4			M7.5			M7.6			M7.7	•
7.4	ERC-SRP2											D	7.1		1			
7.5	CSN2 Final Report											1000 000 0000 0000 0000 0000 0000 0000						D7

