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We know what this is.


We know why it happened 
at this point in time.


What we don’t know:

Will it last? How will this plot 
look in 10 years from now?



ML/DL vs humans
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Additional questions:


“Which ML” will we be 
talking about in 10 yrs from 
now?


(btw: are science and 
industry going towards the 
same directions?)

Same red box as previous slide..



AI “winters": are we now living in an infinite “spring”?
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Past “winters” of AI


• ’60: shallow NN hard to train


• ’90: Support Vector Machines (SVM), Boosted 
Decision Trees (BDT), ..


• 2000+: advanced deep NN architectures 

Current “spring” explainable by:


• “Big data”


• Technology + ML research


• (Accessibility)



ML/DL in HEP
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ML in HEP started by using domain knowledge to perform feature extraction/engineering


• HEP physicists design high-level features, and send them as input to traditional ML “shallow” algorithms

“Traditional” ML



Particle id, energy resolution, and more..

D. Bonacorsi8

Using ML to improve the determination of particle properties is 
now commonplace in all LHC experiments


E.g. energy deposited in calorimeters is recorded by many 
sensors, which are clustered to reconstruct the energy of the 
original particle


• e.g. CMS trained BDTs to learn corrections using all information 
available in the various calorimeter sensors - thus resulting in a 
sizeable improvement in resolution

betterbetter

[ 2015 ECAL detector performance plots, CMS-DP-2015-057. Copyright CERN, reused with permission ]

Similarly, ML is commonly used to identify particle types


• e.g. LHCb used NNs trained on O(30) features from all its 
subsystems, each of which is trained to identify a specific 
particle type 


• ~3x less mis-ID bkg /particle. Further estimates indicated 
already that more advanced algorithms may reduce bkg by 
another ~50%

[courtesy: M.Williams]

Exa
mpl

e

https://cds.cern.ch/record/2114735


ML in the Higgs discovery + study
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ML played a key role in the discovery of the Higgs 
boson 


• especially in the diphoton analysis by CMS, where BDTs (used 
to improve the resolution and to select/categorise events) 


• → sensitivity increased by roughly the equivalent of 
collecting ~50% more data 

[courtesy M.Pierini]

ML impact also on the study of Higgs properties 


→ e.g. analysis of 𝜏 leptons at LHC complex, as they 
decay before detection + loss of subsequently 
produced neutrinos + bkg from Z decays


• e.g. ATLAS divided the data sample into 6 distinct 
kinematic regions, and in each a BDT was trained using 
12 weakly discriminating features [1] → improved 
sensitivity by ~40% vs a non-ML approach 

[1]  JHEP 04 (2015) 117

We were not supposed to discover the Higgs boson as early as 2012


• Given how machine progressed, we expected discovery by end 2015 / mid 2016


We made it earlier thanks (also) to ML

Exa
mpl

e



High-precision tests of the SM
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CMS and LHCb were the first to find evidence for the B0s→𝜇+𝜇- decay with a combined 
analysis [1] (as rare as ~ 1 / 300 billion pp collisions..)


• BDTs used to reduce the dimensionality of the 
feature space - excluding the mass - to 1 dimension, 
then an analysis was performed of the mass spectra 
across bins of BDT response


• decay rate observed is consistent with SM prediction 
with a precision  of ~25%, placing stringent  
constraints on many proposed extensions to the SM


To obtain the same sensitivity without ML by 
LHCb as a single experiment would have required ~4x more data

[1] Nature 522 68–72 (2015)

[2] Phys.Rev.Lett. 118 (2017) 19, 191801

Mass distribution of the selected B0 → μ+μ− candidates with BDT > 0.5 [2] 

Exa
mpl

e



ML/DL in HEP
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Soon, ML (DL) in HEP started to seek for more advanced techniques, e.g. deep NNs


• Use all the features space at its full dimensionality to train deep NN - no more manual feature engineering


→ extract best from data, and do so by exploiting any architecture that might work for a given use-case (e.g. input 
from CV and NLP solutions..)

“Traditional” ML Seeking DL solutions
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Fully Connected Neural Networks (FCNNs / MLPs)


• Used in early applications (e.g. event classification, 
regression )


• Still widely used for tasks with structured tabular input 
(e.g. particle 4-vectors)


• Examples: S/B discrimination, parameter estimation, ..

Convolutional Neural Networks (CNNs)


• Suitable for image-like data: calorimeter hits, tracking 
detector layouts, jet images


• Benefit from local connectivity and translational 
invariance


• Examples: jet tagging, energy deposition maps, neutrino 
detectors

Recurrent Neural Networks (RNNs), then 
LSTMs and GRUs


• Handle sequential data, time-series, pulse shapes


• Examples: Waveform analysis in neutrino or dark 
matter experiments, trigger streams

Graph Neural Networks (GNNs)


• Represent events as graphs (e.g., hits, tracks, or 
particle interactions as nodes/edges)


• State-of-the-art for tracking, jet reconstruction, and 
physics object identification


• Examples: Track finding, calorimeter clustering, 
particle flow

Autoencoders (VAEs) (and Variational-AE)


• Used for anomaly detection and dimensionality 
reduction


• Examples: Searching for rare or unknown physics events.

The zoo [1/2] [ DISCLAIMER: the list is not intended to be complete, and the 
classification is  not rigorous but just for illustrative purposes ]



D. Bonacorsi13

Normalizing Flows

• Provide exact likelihood estimates and invertible 

mappings for complex distributions.


• Applications: Simulation surrogates, likelihood-free 
inference, reweighting.

Generative Adversarial Networks (GANs)


• Fast surrogate models for simulation (e.g., 
calorimeter shower generation).


• Examples: Simulation acceleration, anomaly 
detection

Physics-Informed Neural Networks (PINNs)


• Incorporate physical laws (e.g. PDEs) directly into the loss 
function


• Examples: Solving PDEs in lattice QCD, fluid dynamics, or 
accelerator physics.

Diffusion models

• Model data generation as reversing a diffusion 

process (progressive noise addition)


• Examples: fast calorimeter and tracking simulation, 
anomaly detection, structured generation

Transformers

• Originally from NLP, now extended to handle 

structured or variable-length (long!) inputs.


• Strong performance in classification and 
generative modelling, even in physics.


• Examples: Event classification, generative 
modelling, scientific document parsing.

The zoo [2/2] [ DISCLAIMER: the list is not intended to be complete, and the 
classification is  not rigorous but just for illustrative purposes ]



Pervasive ML in HEP [1/3]
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ML in data acquisition and trigger 

• Bkg and trigger rate reduction 


• Signal specific trigger paths


• Anomaly detection in data taking


• Unsupervised new physics mining

E.g. LHC experiments’ trigger is a strong “driver” for 
high-performances ML applications


• Next-gen trigger systems → real-time reconstruction → real 
time analysis


Challenge is the trade-off between algorithmic 
complexity and the performances achievable under 
severe time constraints in inference

[ Credits: M.Pierini (CMS) ]



Pervasive ML in HEP [2/3]
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ML in Event Simulation


The production of simulated events (full/fast 
simulation) is extremely intense from the 
computation standpoint (up to the point it 
might impact the physics reach of the 
experiments). ML can help to reduce such load


• Calorimeter shower surrogate simulator


• Analysis level simulator


• Pile-up overlay generator


• Monte Carlo integration 


• ML-enabled fast-simulation


• Invertible full-simulation (probabilistic 
programming, …)


• …
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ML in Event Simulation


The production of simulated events (full/fast 
simulation) is extremely intense from the 
computation standpoint (up to the point it 
might impact the physics reach of the 
experiments). ML can help to reduce such load


• Calorimeter shower surrogate simulator


• Analysis level simulator


• Pile-up overlay generator


• Monte Carlo integration 


• ML-enabled fast-simulation


• Invertible full-simulation (probabilistic 
programming, …)


• …

ML in Event Reconstruction


Online/offline reconstruction might be partially 
replaced by surrogate models (approximate → 
faster) or by new algorithms (that might offer 
unprecedented performances)


• Charged particle tracking (GraphNN, vertexing, …)


• Calorimeter reconstruction (local, clustering, …)


• Particle flow (GraphNN, …)


• Particle identification (boosted 
jets, isolation, …)


• Pileup mitigation


• Energy regression (end-2-end, …)


• …



Pervasive ML in HEP [3/3]
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Data: IML

ML in Data Analysis



Pervasive ML in HEP [3/3]
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ML in Computing Operations


Application of ML to non-event (meta-)data 
might help to increase efficiency and reduce 
the need of personpower in Ops, e.g. 
automating specific tasks, developing 
intelligent/adaptive systems, ultimately acting 
on the full chain - from data collection to data 
analysis - and make it more agile


• Detector control


• Data quality monitoring


• Operational intelligence


• Predictive maintenance


• …

Data: IML

ML in Data Analysis



ML/DL in HEP

?

“Traditional” ML Seeking DL solutions What next?

?
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Of course… → a mention to (second-generation) Large Language Models (LLM)



LLMs for Multimessenger Astronomy

[ credits: D. Kostunin, A. Alkan, A. Chaikova, V. Sotnikov et al. ] D. Bonacorsi21

Observations in astronomy:



LLMs for Multimessenger Astronomy
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An example text based on 
ATel messages


(astronomerstelegram.org)

From entity recognition…

… to semantic relationship 
extraction

Goal is to build an information extraction system, i.e. recognise a list of predefined concepts (celestial objects, 
astronomical facilities, physical properties, people, organisation etc.) from a text and produce LLM-generated event 
summaries based on the parameters of each event

[ credits: D. Kostunin, A. Alkan, A. Chaikova, V. Sotnikov et al. ]

https://astronomerstelegram.org/


A 7B LLM fine-tuned on Cosmology papers and textbooks
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“Cosmosage”, a general-purpose AI-assistant specialised in answering questions 
about cosmology (based on Mistral-7B-v0.1)


• training dataset: arXiv papers, astro textbooks, physics textbooks, wikipedia

[ credits: Tijmen de Haan ]



A LLM-based AI-assistant for a CERN experiment
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“ChATLAS” a prototype LLM project in a LHC experiment (ATLAS) at CERN (as of end 
2023)


Data gathering part is interesting (data chunking and data retrieval not described here)


• Docs: twiki (>2k), sw docs (>500), e-groups/mails archive (>10k), indico meetings’ agendas incl. attached 
slides and minutes (>440k), Mattermost, Jira tickets, experiment’ papers and internal notes (>66k)


• Either HTML or scraped into markdown


Many open challenges:


• highly heterogeneous data


• ensure that collaboration DBs are accessible and exportable; websites should live on a git repo; pubs 
should be saved as latex, and compiled separately; discussion forums should have anonymisation 
options… Estimates indicate that this would have saved ~1 yr of data wrangling


• Hallucinations are a real problem


• Not many gpu-hrs, but many expert-hrs, needed for any high-quality fine-tuned AI assistant

[ credits: Cary Randazzo ]



Educational Outreach with AI-Assisted CERN Open Data

https://opendata.cern.ch/ 
D. Bonacorsi25

https://opendata.cern.ch/


An example: a Higgs analysis guide
Define a training goal Get draft code for it

Get explanations, refine, learn
Reach the training objective

[ credits: Paul Philipp Gadow et al ] D. Bonacorsi26



LLM for particle accelerators

GAIA (@DESY): a General AI-assistant for Intelligent Accelerator Ops


• Experimental “procedures” defined as a collection of high-level “actions” in a Control System 
e.g. for managing machine pre-sets 


• Exploring a LLM (mixtral:8x7b-instruct-v0.1-q8_0 with 32k context size), agent implemented in 
Python using the langchain module, prompting based on ReAct (as a combination of chain-of-
though prompting and information injection via “actions”)

EPA project (@CERN), AccGPT, etc..


• EPA = Efficient Particle Accelerator project


• AccGPT = accelerating science via a chatbot for knowledge retrieval for CERN 
specific content

[ credits: F. Mayet, J. Kaiser. F. Rehm et al ] D. Bonacorsi27

A variety of projects..


Plenty of work in progress on LLMs, showing potential towards natural language driven autonomous particle 
accelerators


• Attempts with GPT 3.5 Turbo, Megadolphin, Vicuna 7B 16K, Mistral 7B, Mixtral 7x8B, Starling-LM, GPT 4 Turbo, GPT4, Orca 2 7B, 
Orca 2 13B , Llama 2 70B, Falcon 180B, ..


• Constant seek for (and tests with) better models, better prompting, … 



A possible (?) path
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[ Credits: Sasha Caron ]



A possible (?) path
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[ Credits: Sasha Caron ]

OK, the past..



A possible (?) path
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[ Credits: Sasha Caron ]

OK, the past.. OK, the present..



A possible (?) path
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[ Credits: Sasha Caron ]

OK, the past.. OK, the present.. Yes, work in progress..



A possible (?) path
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[ Credits: Sasha Caron ]

OK, the past.. OK, the present.. Yes, work in progress Ok, well.. maybe..



A possible (?) path
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[ Credits: Sasha Caron ]

OK, the past.. OK, the present.. Yes, work in progress Ok, well.. maybe.. Wait, what?!



A possible (?) path
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Is this a possible path that extrapolates the past to a “possible” future? 


Foreseeing “one big trainable unit”, that just goes end to end, and we 
get rid of more and more of the traditional pipelines we are confident 
with? What if e.g. the entire physics data “analysis" pipeline becomes 
trainable, e.g. all the experiment code becomes an end-to-end 
differentiable pipeline that can be adjusted for a goal?


How will we treat data? Will a large foundation model be a black box, or 
will it be interpretable? If the latter, through human-in-the-loop? Will we 
want to talk to our data via large language models? What about 
performance gains? What about scientific rigour and reproducibility?

[ Credits: Sasha Caron ]

“ “



Industry, in the meantime..
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Industry towards extremely large scale, multi-purpose models.. → foundation models



Industry, in the meantime..
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Notably, no true full-academia 
model (yet?)

[ Credits: Sasha Caron ]

Do you foresee particle physics to 
appear in this table at some time? → 
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A foundation model in general:


• A large-scale ML model trained on broad and diverse data, at scale, mainly with self-supervised learning objectives, designed to be 
adaptable to a wide range of downstream tasks with “minimal” fine-tuning


❖ In general: training on text (e.g. web, papers), audio, video, code, images, math, structured data, .. 


A foundation model for fundamental physics (LPM)?


• Training on large and diverse datasets within a given scientific domain


❖ In HEP: detector-level raw data, simulation-level data, reco-level data, analysis-level papers/plots/logbooks/docs, metadata, ..


• + transfer learning (minimal fine-tuning) + many parameters + multipurpose + some capability not explicitly included during training..

A Large “fundamental Physics” foundation Model?

arXiv:2501.05382

PROs


• Tailored to physics tasks and structures 


• Scaling to complex inference across simulation, data and 
theory 


• Shared infrastructure → scientific collaboration at scale 


• Potential to enhance discovery, reproducibility, and 
understanding 


• Can be open, not in the hand of companies 


• Prototype for other fields of science

CONs:


• High cost: compute, data, engineering, 
manpower, money


• Epistemic opacity: hard to interpret latent 
space reasoning 


• risk of premature hype without careful testing


• risk of “dead of arrival” (obsolete before 
completion) 


• risk of being less useful / capable
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D. Bonacorsi40 [ Credits: Sasha Caron ]



(my personal) reorganisation of the quoted recommendations 
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Scalable AI 
Infrastructure

Scientific LLMs & 
Foundation Models

Benchmarks & 
Reusability

Sustainable AI 
Practices

FAIR Principles & 
Open Science

Interdisciplinary 
Collaboration

Strategic 
Coordination

Centralised GPU-based facilities vs. federated/
hybrid HPC tailored for AI workloads


Invest in shared data platforms, and tools to 
support distributed training and inference


Ensure long-term sustainability and collaboration 
through structured, community-driven initiatives

From R&D to 
Production with 

MLOps

Training and Industry 
Collaboration
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Scalable AI 
Infrastructure From R&D to 

Production with 
MLOps

Benchmarks & 
Reusability

Sustainable AI 
Practices

FAIR Principles & 
Open Science

Interdisciplinary 
Collaboration

Strategic 
Coordination

Mature AI prototypes must get funding and 
support to become production-ready tools


Establish dedicated MLOps personnel 
dedicated to model deployment, 
reproducibility, and integration into large-
scale physics workflows


Promote standardisation of tools, APIs, and 
lifecycle management across the community

Scientific LLMs & 
Foundation Models

Training and Industry 
Collaboration

(my personal) reorganisation of the quoted recommendations 
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Scalable AI 
Infrastructure

Benchmarks & 
Reusability

Sustainable AI 
Practices

FAIR Principles & 
Open Science

Interdisciplinary 
Collaboration

Strategic 
Coordination

Invest in science-focused large language 
models.


Train foundation models using real and 
synthetic physics data, incorporating domain 
knowledge


Govern the use of general-purpose commercial 
models w.r.t alternatives that prioritise 
transparency, automation, and interpretability 
in model development and evaluation

From R&D to 
Production with 

MLOps

Scientific LLMs & 
Foundation Models

Training and Industry 
Collaboration

(my personal) reorganisation of the quoted recommendations 
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Scalable AI 
Infrastructure

Benchmarks & 
Reusability

Sustainable AI 
Practices

FAIR Principles & 
Open Science

Interdisciplinary 
Collaboration

Strategic 
Coordination

Create standardised, extensible benchmarks for 
key physics ML tasks (e.g., classification, 
tracking, ..)


Encourage community-wide model sharing to 
enhance reproducibility and innovation

From R&D to 
Production with 

MLOps

Scientific LLMs & 
Foundation Models

Training and Industry 
Collaboration

(my personal) reorganisation of the quoted recommendations 
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Scalable AI 
Infrastructure

Benchmarks & 
Reusability

Sustainable AI 
Practices

FAIR Principles & 
Open Science

Interdisciplinary 
Collaboration

From red-AI to green(er)-AI


Promote community awareness of carbon 
footprint and a culture of monitoring and 
mitigating environmental impact of large models


Coordinate with HPC centres towards use of 
energy-efficient hardware and scheduling, and 
encourage optimisation of software frameworks 
and energy use in training

Strategic 
Coordination From R&D to 

Production with 
MLOps

Scientific LLMs & 
Foundation Models

Training and Industry 
Collaboration

(my personal) reorganisation of the quoted recommendations 
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Scalable AI 
Infrastructure

Benchmarks & 
Reusability

Sustainable AI 
Practices

FAIR Principles 
& Open Science

Interdisciplinary 
Collaboration

Strategic 
Coordination

Integrate FAIR (Findable, Accessible, 
Interoperable, Reusable) principles as standards 
into publishing and research practices, and 
develop tools to simplify their adoption


Incentivise FAIR-compliant work in funding 
decisions and career advancement, promote 
open science and data sharing through training 
and policy alignment.

From R&D to 
Production with 

MLOps

Scientific LLMs & 
Foundation Models

Training and Industry 
Collaboration

(my personal) reorganisation of the quoted recommendations 
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Scalable AI 
Infrastructure

Benchmarks & 
Reusability

Sustainable AI 
Practices

FAIR Principles & 
Open Science

Training and Industry 
Collaboration

Interdisciplinary 
Collaboration

Strategic 
Coordination

Ramp up in hands-on AI training courses, 
summer schools, etc tailored to physicists and 
researchers, both newcomers and upskilling, 
that cover topics beyond “traditional”, i.e. 
include in curricula reproducibility, FAIR 
principles, MLOps, AI infrastructures, etc


Partner with industry for co-hosted events, 
internships, specific trainings, even tool 
development

From R&D to 
Production with 

MLOps

Scientific LLMs & 
Foundation Models

(my personal) reorganisation of the quoted recommendations 
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Scalable AI 
Infrastructure

Benchmarks & 
Reusability

Sustainable AI 
Practices

FAIR Principles & 
Open Science

Interdisciplinary 
Collaboration

Launch goal-oriented collaborative efforts 
bringing together physicists, ML researchers, 
HPC experts, engineers and foster mutual 
learning.


Create research programs involving physicists, 
AI experts, HPC engineers, etc.


Enable cross-domain innovation via shared 
platforms and open source.

Strategic 
Coordination From R&D to 

Production with 
MLOps

Scientific LLMs & 
Foundation Models

Training and Industry 
Collaboration

(my personal) reorganisation of the quoted recommendations 
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Scalable AI 
Infrastructure

Benchmarks & 
Reusability

Sustainable AI 
Practices

FAIR Principles & 
Open Science

Interdisciplinary 
Collaboration

Strategic 
Coordination

Form a permanent structure to 
coordinate AI strategy in fundamental 
physics.


Use initiatives like EuCAIF as 
governance models?

From R&D to 
Production with 

MLOps

Scientific LLMs & 
Foundation Models

Training and Industry 
Collaboration

(my personal) reorganisation of the quoted recommendations 


