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Select Al Index technical performance benchmarks vs. human performance
Source: Al Index, 2025 | Chart: 2025 Al Index report

120% "‘ lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ..‘

Same red box as previous slide..

Human baseline .
100%)] = = = = = - - - - - - - : -

sox Additional questions:

oo "Which ML" will we be
' - talking about in 10 yrs from
NOW?

40%

Performance relative to the human baseline (%)

20%

0%

. (btw: are science ano
2012 2013 2014 2015 2016 é017 2018 2019 2020 2021 2022 2023 2024 .E . .
et eeeeeeeeeeeseeeee et e s et eeseeeeeseeeeeneeeeeeeseneeneren . Industry going towards the
- |mage classification (ImageNet Top-5) Visual reasoning (VQA) S a m e d i re Cti O n S ?)_

Medium-level reading comprehension (SQuAD 2.0) English language understanding (SuperGLUE)

- Multitask language understanding (MMLU) Competition-level mathematics (MATH)
- PhD-level science questions (GPQA Diamond) - Multimodal understanding and reasoning (MMMU)

5 D. Bonacorsi



A

Al "winters": are we now living in an infinite “spring”?  ew

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Past “winters” of A Current “spring” exp\ainable by:

» '60: shallow NN hard to train . "Big data”

* '90: Support Vector Machines (SVM), Boostea

Decision Trees (BDT), .. * Technology + ML research

/  (Accessibility)

e 2000+: advanced deep NN architectures

-
o3 L]

E G()()SIC Cloud Platform
) ~

O PyTorch

f" Kerasmsé\z@

TensorfFlow Sp Qr K
. ot DL4J

6 D. Bonacorsi



Number of Articles

o M[;?errri]aell;nSCience ° /)
ML/DL in HEP i

8000

o)
-
-
-

AN
-
-
o

l “Traditional” ML

2000+

O —
| | I | |
2000 2005 2010 2015 2020
Year E

ML in HEP started by using domain knowledge to perform feature extraction/engineering

« HEP physicists design high-level features, and send them as input to traditional ML “shallow” algorithms

/ D. Bonacorsi



Using ML to improve the determination of particle properties is
now commonplace in all LHC experiments

E.g. energy deposited in calorimeters is recorded by many
sensors, which are clustered to reconstruct the energy of the
original particle

————nes e s b W & & & § 3':':":NC')
.. ] . y,

¢ e.g. CMS trained BDTs to learn corrections using all information
available in the various calorimeter sensors - thus resulting in a
sizeable improvement in resolution

Background rejection

« Alog L(p -m)

x10°>  CMS Preliminary \s=13TeV,L=22fb" x10°  CMS Preliminary [s=13TeV,L=22fb" . PI‘ObNNp
> 60_'111 llllllllllll L L xllerlustIerl_ > :ITIII..IIII]III [T T T T[T T S]ulpercmster
O - ECAL B Ecorocion © 9 ECAL ™ Scoreded ' '
(\D - Barrel-Barrel J-[ Ersal::)ercmste: (\5 8:_ Endcap-Endcap ﬂ _E's"ﬂ”:efguste,_— ()2 () 4 () 6
o 0 | I B S — B Signal eff1c1ency
| - ) B ) - 7 - E5x5 crystals —
g’ 40 - g’ ; - [courtesy: M.Williams]
L1 I . L 6
g i3 Similarly, ML | y used to identify particl
30 : imilarly, IS commonly usead to identity particle types
A 41
20 35_ e e.g. LHCb used NNs trained on O(30) features from all its
_f : subsystems, each of which is trained to identity a specitic
ol 2F particle type
- 1
: : : e ~3x less mis-ID bkg /particle. Further estimates indicated
%0 60 70 80 90 100 110 120 130 20 60 70 80 90 100 110 120 130 already that more advanced algorithms may reduce bkg by
m(e’e) [GeV] m(e’e) [GeV] another ~50%

[ 2015 ECAL detector performance plots, CMS-DP-2015-057. Copyright CERN, reused with permission |
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y ML in the Higgs discovery + study (NN

o ® ® - ] L
ML played a key role in the discovery of the Higgs = T VOF eoma
< - (s=8TeV, 20.3fb" T N
boson @ [ arias __H025) =1)
S 10°F B Others E
. . . . AT [ " Fake t
 especially in the diphoton analysis by CMS, where BDTs (used et Shuans
to improve the resolution and to select/categorise events) i
10F
e — sensitivity increased by roughly the equivalent of R —
collecting ~50% more data § 1.5|
1o—e—o
g8 | & of s |
.g”z.si— — BODT y classifier g 105— —— BDT y classifier g 05 L I o
'§ L FISTO Y e S 9 :_ Rule-based y selector -1 -05 O 05 1
§ 2 ~§ 3 BDT output
2 o B E
o § o ML impact also on the study of Higgs properties
) i \\ — e.g. analysis of 7 leptons at LHC complex, as they
e Q F [courtesy M.Pierini] ,
R O e decay before detection + loss of subsequently
riaos Hass (BeD riaos Hass (BeD oroduced neutrinos + bkg from Z decays
We were not supposed to discover the Higgs boson as early as 2012 * e.g. ATLAS divided the data sample into 6 distinct
kinematic regions, and in each a BDT was trained using
» Given how machine progressed, we expected discovery by end 2015 / mid 2016 12 weakly discriminating features [1] = improved

sensitivity by ~40% vs a non-ML approach

We made it earlier thanks (also) to ML

[1] JHEP 04 (2015) 117

9 D. Bonacorsi
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High-precision tests of the SM INFN

C

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

CMS and LHCb were the first to find evidence for the BO,—u+u- decay with a combinead
analysis [1] (as rare as ~ 1 / 300 billion pp collisions..)

Mass distribution of the selected BO — u*u~ candidates with BDT > 0.5 [2]

| | | CS 35 Total
» BDTs used to reduce the dimensionality of the > 20 E — - BY >ty
feature space - excluding the mass - to 1 dimension, § 2 oo BY ot
then an analysis was performed of the mass spectra o225t e Cgmbinato{ial
across bins of BDT response PP e Y | By =0k
o 20 o B,
R I S
» decay rate observed is consistent with SM prediction 'g 15
with a precision of ~25%, placing stringent O 10 Fo
constraints on many proposed extensions to the SM s
I S o e

5400 5600 5800 6000

To obtain the same sensitivity without ML by e MeVIC]

LHCb as a single experiment would have required ~4x more data

1] Nature 522 68-72 (2015)

2] Phys.Rev.Lett. 118 (2017) 19, 191801 10

D. Bonacorsi
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Soon, ML (DL) in HEP started to seek for more advanced techniques, e.g.

e Use all the features space at its full dimensionality to train deep NN - no more manual feature engineering

— extract best from data, and do so by exploiting any architecture that might work for a given use-case (e.g. input
from CV and NLP solutions..)

17 D. Bonacorsi



The zoo [1/2]

ALMA MATER STUDIORUM
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Fully Connected Neural Networks (FCNNs / MLPs)

* Used in early applications (e.g. event classitication,
regression )

* Still widely used for tasks with structured tabular input

(e.g. particle 4-vectors)

Convolutional Neural Networks (CNNs)

 Suitable for image-like data: calorimeter hits, tracking
detector layouts, jet images

* Benefit from local connectivity and translational
INnvariance

A

[ DISCLAIMER: the list is not intended to be complete, and the INEN
classification is not rigorous but just for illustrative purposes ] (_

Recurrent Neural Networks (RNNs), then
LSTMs and GRUs

» Handle sequential data, time-series, pulse shapes

Graph Neural Networks (GNNs)

* Represent events as graphs (e.g., hits, tracks, or
particle interactions as nodes/edges)

» State-of-the-art for tracking, jet reconstruction, and
physics object identification

Autoencoders (VAEs) (and Variational-AE)

* Used for anomaly detection and dimensionality
reduction

D. Bonacorsi



The zoo [2/2]

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Generative Adversarial Networks (GANSs)

e Fast surrogate models for simulation (e.qg.,
calorimeter shower generation).

Transformers

e QOiriginally from NLP, now extended to handle
structured or variable-length (long!) inputs.

» Strong performance in classification ana
generative modelling, even in physics.

13

A

[ DISCLAIMER: the list is not intended to be complete, and the INEN
classification is not rigorous but just for illustrative purposes ] (_

Normalizing Flows

» Provide exact likelihood estimates and invertible
mappings for complex distributions.

Diffusion models

* Model data generation as reversing a diffusion
process (progressive noise addition)

Physics-Informed Neural Networks (PINNs)

* Incorporate physical laws (e.g. PDEs) directly into the loss
function

D. Bonacorsi



ML in data acquisition and trigger
* Bkg and trigger rate reduction
» Signal specific trigger paths
e Anomaly detection in data taking

» Unsupervised new physics mining

A £

[ Credits: M.Pierini (CMS) |

Pervasive ML in HEP [1/3]

C

E.g. LHC experiments’ trigger is a strong “driver” for
high-performances ML applications

* Next-gen trigger systems — real-time reconstruction — real
time analysis

Challenge is the trade-oft between algorithmic
complexity and the performances achievable under

severe time constraints in inference

1 KHz

1 MB/event
—
Offline

14 D. Bonacorsi
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Pervasive ML in HEP [2/3] INFN

C
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ML in Event Simulation

The production of simulated events (full/fast
simulation) is extremely intense from the
computation standpoint (up to the point it
might impact the physics reach of the
experiments). ML can help to reduce such load

e Calorimeter shower surrogate simulator
e Analysis level simulator
 Pile-up overlay generator

e Monte Carlo integration

e ML-enabled fast-simulation

e Invertible full-simulation (probabilistic
programming, ...)

15 D. Bonacorsi



Pervasive ML in HEP [2/3] INFN

s " C
ML in Event Simulation ML in Event Reconstruction

The production of simulated events (full/fast Online/oftline reconstruction might be partially
simulation) is extremely intense from the replaced by surrogate models (approximate —
computation standpoint (up to the point it faster) or by new algorithms (that might offer
might impact the physics reach of the unprecedented performances)

experiments). ML can help to reduce such load e Charged particle tracking (GraphNN, vertexing, ...)

e Calorimeter shower surrogate simulator . . .
e Calorimeter reconstruction (local, clustering, ...)

e Analysis level simulator e Particle flow (GraphNN, ...)

e Pile-up overlay generator - - L
P Y 9  Particle identification (boosted

e Monte Carlo integration jets, isolation, ...)

d -~

 Pileup mitigation <

e ML-enabled fast-simulation

* Invertible full-simulation (probabilistic » Energy regression (end-2-end, ...)
programming, ...)

16 D. Bonacorsi



Pervasive ML in HEP [3/3] INFN

Q
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ML in Data Analysis

4%
13% 6%
7%
10% —
— 7%
— 2%
— 3%
N__ 40
12% 1%
13%
4%
4%
16%
| Data: IML
® W/Z tagging @ Dparticle identification
@ H-b bar neutrino detectors

© quarks and gluons @ direct Dark Matter detectors

top quan:k tagging @ cosmology, astroparticle, and cosmic ray physics
@ strange jets ® tracking

® b-tagging , |
® flavor physics - heavy ions / nuclear physics

¢ BSM particles and models

17 D. Bonacorsi
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ML in Data Analysis

13%

10%

12%

4%

16% |

W/Z tagging particile iIdentification
H—b bar neutrino detectors
quarks and gluons direct Dark Matter detectors

top quark tagging cosmology, astroparticle, and cosmic ray physics

strange jets
b-tagging
flavor physics
BSM particles and models

tracking
heavy ions / nuclear physics

Data: IML

4%
6%

7%

7%

— 3%

13%

4%

Pervasive ML in HEP [3/3]

ML in Computing Operations

IN-N

C

Application of ML to non-event (meta-)data
might help to increase efficiency and reduce

the need of personpower in Ops, e.g.
automating specific tasks, developing

intelligent/adaptive systems, ultimately acting

on the full chain - from data collection to data

analysis - and make it more agile

* Detector control
» Data quality monitoring
» Operational intelligence

e Predictive maintenance

18
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ML/DL in HEP

What next?
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Observations in astronomy:

p
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[ credits: D. Kostunin, A. Alkan, A. Chaikova, V. Sotnikov et al. ]
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| Realtine Committew - -
Fermi-LAT gamma-ray observations of lceCube-
Event sessoge ™~ s * 220918A and detection of a new gamma-ray source
: Fermi J0502.5+0037
‘:'( -II(
-Fage
Ew on 19 Sep 2022; 20:50 UT
l' (\'-
Ale
2 rection refined to:
Pt 3 astroghysical in erigls
AR 1 ¥ sat tw 1y
ALars Ratle. Musber per yob pril
——— . ‘ J2000
sutring sergy (in Tew) v ript | J2008
AfULer error of the Seerce, Statistical esty. (S0% concaissent) instruments to help identify a possible astrophysical source for the candidate neutrinc
§ te"dey tat. e¢ 5yS e of the instrumented volume, larger than usual error regions are found As 2 result,
b uncertainty region The nearest gamma-ray source 1s 4FGL JO505.6+0415 at RA:76.40,
ent position). It i1s also noted that TXS 05064056 1s located within the 98% uncertaint
peter neutring detector operating at the geographic South Pole, Antarctica. The IceCube
roc@icecube wisc.edu
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| L Ms tor Multimessenger Astronomy INFN
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Description: Referred to by Alel #: 8706,8718, 8783, 8789 On Jan 14, 2016, the Large Area

Telescope (LAT) observed strong gamma-ray emission from a new source. The best-fit AN exam ple text based on
location of this gamma-ray source (RA=8.91 deg, Dec=61.52 deg,J2000.0) has a 95%

containment radius of 0.08 deg. This source is not in any published LAT atalog and in the ATel Messages

past has not been detected by AGILE or EGRET. The closest candidate counterpart is the (astronomerste | edram .org)

radio source [87GBI00S25 274611352

M object name; the type of the object or physical phenomena; event type

Goal is to build an information extraction system, i.e. recognise a list of predefined concepts (celestial objects,
astronomical facilities, physical properties, people, organisation etc.) from a text and produce LLM-generated event

summaries based on the parameters of each event

obs Telescope [wight - [ob]
A Cycle 6 ALMA proposal for 4 epochs of stand-alone Atacama Compact Array Band 7 observations of variables in Serpens identified

Survey l'uson G_rant
by the JCMT Transient Survey has been accepted (Pl: Logan Francis, project code 2018.1.00917.S ). These observations will : ..
From entity recognition...

|Wavelength)

complement results from the contemporaneous Transient Survey by observing at 850 \u03bc m with a resolution of 38 (compared to

tel !

the 146 resolution of the JCMT), sufficient to reach the scale of the inner envelopes (\u223c1500 au) of protostars in Serpehs.

coreferring_to

_C location_of
MASTER OT J710.5440.86-39131§6 - PSN in PGC600519 ( 2.9"E,7"N ) MASTER-SAAOQO auto-detection system ( Lipunov et al. , " MASTER Global Robotic Net " , Advances in Astronomy , 2010 , 30L )
o o o to Semantlc relatlonShlp : location_of \—coreferﬂng_to \@
extraction discovered OT source at ( RA , Dec ) = 10h 54 m 40.86s , -39d 13 m 195.0 on 2016 - 10 - 08 02:56:46.019UT with m_OT=16.5 . This PSN is in 2.9"E,7"N from the center of PGC600519 and is seen on 8
images . We have reference image without OT on 2015 - 02 - 27 22:35:30UT with m_lim=19.8 Spectral observations are required The discovery and reference images are
coreferring_to
d Llocation_or

http://master.sai.msu.ru/static/OT/MASTEROTJ105440.86-391319.0.jpg. MASTER OT J160918.30 - 333456.7 discovery - bright possible dwarf nova outburst , ampl&gt;5.4 m MASTER-SAAO

D. Bonacorsi
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https://astronomerstelegram.org/

A 7B LLM fine-tuned on Cosmology papers and textbooks L'f'?

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

"Cosmosage”, a general-purpose Al-assistant specialised in answering questions
about cosmology (based on Mistral-7B-v0.1)

* training dataset: arXiv papers, astro textbooks, physics textbooks, wikipedia

user: .
What came before the Big Bang? .
user: Detailed
Instrumentation

cosmosage: . o . .
The concept of what came before the Big Bang is a topic of debate and speculation | | N DMux, the SQUID is nulled via Digital Active Nulling at
MHz frequencies. How is the SQUID kept nulled at low

In the realm of cosmology. The Big Bang theory states that our universe began 5
approximately 13.8 billion years ago from a singularity, an infinitely dense and hot ‘;r:g:‘ir;gé-e.

point. At this point, space, time, matter, and energy were all created simultaneously. | ,
Scientists cannot explain with any certainty why the Big Bang happened, so any In DfMux, the SQUID is kept nulled at low frequency by using a low-frequency flux-
locked loop (FLL). The FLL is a feedback system that maintains the SQUID in its

speculation about what came "before" is pure theoretical musings. The Big Bang is D , | =
widely accepted as accounting for everything we have been able to observe about nulled state by adjusting the input current to cancel out the flux signal. This is
necessary because the SQUID is sensitive to magnetic fields, and the magnetic field

the universe, but it doesn't explain itself. There are many theories and models that , , ,
generated by the input current can change the bias flux, causing the SQUID to lose

attempt to explain the pre-Big Bang universe, such as the cyclic model, the | o , =
ekpyrotic model, and the string theory landscape. However, these theories are stil its null state. The FLL helps to maintain the null state by continuously adjusting the
iInput current to counteract any changes in the bias flux.

under development and have not been proven to be accurate descriptions of the : : : LS o .
actual events that took place before the Big Bang. ChatGPT 3.5 says [... passive nulling ... without requiring active intervention...]
ChatGPT 3.5 gives a similar quality answer. which is exactly the wrong answer.

user: Data analysis user: Current cosmological
Why does a cross-spectrum not suffer from noise bias? principles What is the current best measure of the optical depth parameter constraints
cosmosage: to reionization?

An auto spectrum suffers from noise bias because the noise is correlated with itself, cosmosage:

leading to an overestimation of the signal. In contrast, a cross spectrum does not The current best measure of the optical depth to reionization is T=0.054+0.007, as
have this noise bias because the noise in different maps is uncorrelated. Therefore, determined by the Planck Collaboration et al. (2018). This value provides strong
Cross spectra are often preferred for cosmological analysis because they provide an evidence for reionization at high redshift and helps constrain models of cosmic
unbiased estimate of the signal. reionization.

ChatGPT 3.5 says [... cross-spectra are less prone to noise due to cancellation ChatGPT 3.5 talks about future measurements but does not mention a numerical
effects ...] which is incorrect. value or even mentions Planck.

[ credits: Tijmen de Haan ] 23 D. Bonacorsi



A

A LLM-based Al-assistant for a CERN experiment

"ChATLAS"” a prototype LLM project in a LHC experiment (ATLAS) at CERN (as of end
2023)

Data gathering part is interesting (data chunking and data retrieval not described here)

» Docs: twiki (>2k), sw docs (>500), e-groups/mails archive (>10k), indico meetings’ agendas incl. attached
slides and minutes (>440k), Mattermost, Jira tickets, experiment’ papers and internal notes (>66k)

» Either HTML or scraped into markdown

Many open challenges:

* highly heterogeneous data

* ensure that collaboration DBs are accessible and exportable; websites should live on a git repo; pubs
should be saved as latex, and compiled separately; discussion forums should have anonymisation

options... Estimates indicate that this would have saved ~1 yr of data wrangling

 Hallucinations are a real problem

* Not many gpu-hrs, but many expert-hrs, needed for any high-quality fine-tuned Al assistant

[ credits: Cary Randazzo ] 24 D. Bonacorsi



- Educational Outreach with Al-Assisted CERN Open Data v~

UNIVERSITA DI BOLOGNA

open

CERN Help About »

e
Explore more than five petabytes /
of open data from particle physics!
@
search examples: collision datasets, keywords:education, energy:7TeV /

Explore
datasets ATLAS
. o
software ALICE
environments CMS
documentation L HCb
OPERA
PHENIX

Data Science

https://opendata.cern.ch/

25 D. Bonacorsi
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Get draft code for it

Define a training goal

sorted_indices = np.argsort(event_E)[::-1]

len(sorted_indices) <

ATLAS Open Data Higgs analysis guide idx1, idx2 = sorted_indices[:2]

By Philipp Gadow &
El, E2 = event_E[idx1], event_E[idx2]

etal, eta2 = event_etal[idx1l], event_etal[idx2]

Guides on Higgs boson data analysis with ATLAS Open Data.

phil, phi2 = event_phi[idx1l], event_phi[idx2]

What is the Higgs boson and how can | measure its m... Show me how to plot the invariant mass distribution ...
OO P
How do | read ROOT files for my analysis? How can | fit the mass peak of the Higgs and how can...
@ I\/lessage ATLAS Open Data Higgs analysis guide... @ I\Aessage ATLAS Open Data Higgs analysis guide...

ChatGPT can make mistakes. Consider checking important information. ChatGPT can make mistakes. Consider checking important information.

Reach the training objective
Invariant Mass Distribution of the Two Highest Energy Photons

Get explanations, retine, learn

you are calculating the invariant mass using these ene

B Diphoton invariant mass

GeV (gigaelectronvolts), this could be the source of discrepancy leading to an unexpected range or 6000 -

empty plots.

To fix this, you should convert the energies from MeV to GeV before performing the invariant mass 5000 -

calculation. This can be done by dividing the energy values by 1000:

4000 -
python () Copy code "
§
El, E2 = event_E[idx1] / , event_E[idx2] / b 3000 -
Incorporate this conversion into your code where you define "E1" and "E2" and then plot the 2000 A
invariant mass distribution again. This adjustment should help @
1000 -
@ '\/Iessage ATLAS Open Data Higgs analysis guide... @ 0
0 25 50 75 100 125 150 175 200
ChatGPT can make mistakes. Consider checking important information. Invariant Mass (GeV)

[ credits: Paul Philipp Gadow et al ]| 26 D. Bonacorsi



1 -
LM for particle accelerators N

A variety of projects..

Plenty of work in progress on LLMs, showing potential towards natural language driven autonomous particle
accelerators

« Attempts with GPT 3.5 Turbo, Megadolphin, Vicuna 7B 16K, Mistral 7B, Mixtral 7x8B, Starling-LM, GPT 4 Turbo, GPT4, Orca 2 7B,
Orca 2 13B, Llama 2 70B, Falcon 180B, ..

« Constant seek for (and tests with) better models, better prompting, ...

GAIA (@DESY): a General Al-assistant for Intelligent Accelerator Ops

« Experimental “ " defined as a collection of high-level “actions” in a Control System
e.g. for managing machine pre-sets

» Exploring a LLM (mixtral:8x7b-instruct-v0.1-g8_0 with 32k context size), agent implemented in

Python using the langchain module, prompting based on ReAct (as a combination of chain-of-
though prompting and information injection via "actions”)

» EPA = Efficient Particle Accelerator project
CERN
\\_/ * AccGPT = accelerating science via a chatbot for knowledge retrieval for CERN

specific content

[ credits: F. Mayet, J. Kaiser. F. Rehm et al ] 27 D. Bonacorsi
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A possible (?) path NN

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Large

Deep Generative Foundation Physics

Learning Models Models Modela

[ Credits: Sasha Caron |

s this a possible path that extrapolates the past to a “possible” future?

1] 1]

Foreseeing "“one big trainable unit”, that just goes end to end, and we .(//i\\\///i\\‘.
get rid of more and more of the traditional pipelines we are confident ’V(//A\\\X'é"/’\\‘{‘\""’fg’\\‘%‘z///k\\‘v’
. . . . 11 T . . A\ Y B\, 7/ \/ )
with? What it e.g. the entire physics data “analysis" pipeline becomes .k%lé/‘\gg?i‘{/e\\\{ﬁf{%e\\g\3"{,/@\%,’/{'
. . D “:‘4& /i,‘ 1 I‘W‘Vo’:x # lv:‘\ 50,;"\ Q
trainable, e.g. all the experiment code becomes an end-to-end XA R SR
diff able pipeline th be adiusted f 2 0 S SU L 1ok @ Stk g S 1SS e o
ITTerentiable pipeline that can e aqjusted 1or a goal: A /,‘,.“",'\,v“g,, Sty
% XA W 4 »{u\\

SO
WA® ©@ 99,9 % PSHINR R

//‘" ¢ YA A‘\‘?\\\ Y X ».\\\ //":'7‘"‘\“’!."‘ X
‘ . ‘ © )% N\ 'o,% X\\‘ & 'ﬂ.{n 4\9‘\\‘ & .”17:{ ?,« ;,v N
How will we treat data? Will a large foundation model be a black box, or '¢:\§\%g¢‘\\p\'ﬁ’;‘5?&“g‘&m@:;&‘@/ﬁ,“‘"
‘//’ \\‘}/';' 4\\\ 715%\ é/lb"“{‘\&v ﬂ\\
SV N
k data via large | dels? What ab SV Ve
want to talk to our data via large language models? What about : ~

R
will it be interpretable? If the latter, through human-in-the-loop? Will we NN =C
performance gains? What about scientific rigour and reproducibility?
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Industry, in the meantime.. '

Industry towards extremely large scale, multi-purpose models.. & foundation models

100 MMLU

TP, WG, S ——————————————— N——

@ GPT o1* ‘

o
IS‘Sonneﬁ

Claude 3

GPTZi{ |13 1a 31 105 @ =
80 Saa S1ERR2en25  pubrseR-y
U-PalM GPT-4 Classic '
[A 70+ IDEAL A] .................................................................................................................................. y VO S———— g ‘ Iitan.....L ...........
P LLaMA-65B
80 Chinchilla o ® ® _ ellama323B
Styw°""138 RakutenAl-7B o @ Minitron-48
o o Nemotron-322B o () ¢ e
¢ , Baichuan 2 , OLMoE-1B-7B
‘ Galactica Griffin @ JetMoE-8B
Atlas
® .
¢ BLOOM o o HLAT
UL2 20B BloombergGPT ¥
¢ ® awk ® Rene
GPT-NeoX ¢ RWKV-v5 Eagle 7B
Mistral 7B ® ® o
ROBERTa ® OrApple!®n-Device Jun 24
AMD-Llama-135m
pre-2022 2022 2023 2024 2025
David McCandless, Tom Evans, Paul Barton MMLU = benchmark for measuring LLM capabilities
Informationisbeautiful // Jan 2024 * = parameters undisclosed // source: LifeArchitect // data
35
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Number of notable Al models by sector, 2003—-24

Source: Epoch Al, 2025 | Chart: 2025 Al Index report

Number of notable Al models

60
50
40
30
20
10 \
\'"/
Y 4
0 . -
23885883258 REegeEregggsyry
O Q0 O © © O O © O ©C o o
S 8§ 8§ 8 8 8 § @ ¥ & & @8 & & & & &« § & & &

Do you foresee particle physics to
appear in this table at some time? —

2024

1, Industry—government collaboration
0, Government
0, Industry-research collective collaboration

0, Academia—government collaboration
0, Academia

Model Domain Modalities
GNoME Materials Science C'ys.t.a' Structures,
stability
xTrimo V3 Life Sciences Genqmlcs, rmicroscopy,
proteins
. Protein-ligand-RNA
AlphaFold 3 Structural Biology structure
Modulus Physics (Simulation) PDEs, time series, fields
OpenCatalyst Cgtalysw, Atomistic Atom.lc configs, forces,
Sim reactions
Polaris Earth & Space Qeospaflal, imagery,
Science time series
Galactica General Sdence Text, code, citations
Text
SciBERT/ : : Text (NER, Q&A,
BioGPT Blomedcal NLE classification)

36

Industry, in the meantime..

IN-N

Notably, no true full-academia
model (yet?)

Multipurpose?

[

(NLP only)

::::; dation- Industry Partner(s) Comparable to Commercial LLMs?

Google DeepMind a)r(eaDomaln-spemflc; extremely capable in its

Shanghai Al Lab + bio A\ Not general-purpose, but very large-
industry scale

DeepMind + ¢ Narrow but best-in-class in structural
Isomorphic Labs prediction

NVIDIA 2 Solver-focused, not reasoning-based
Meta Al + Carnegie _ : : :

v

v Mellon University ¥ Specialized for chemical simulation

A In NASA + NVIDIA +

2 Not yet released, promising scope

development Google Cloud

A : ” :
(withdrawn) Meta Al /\ High ambition, but not currently available
— Allen Al / Microsoft / ¢ Narrow, but widely used in biomedical

Meta NLP

[ Credits: Sasha Caron |

Release
Date

Dec 2023

Oct 2024

May 2024

Ongoing

Ongoing
(0OC20: 2021)

In
development

Nov 2022
(retracted)

2019-2023

D. Bonacorsi
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A toundation model in general:

A Large “tundamental Physics” foundation Model?

/)
C

A large-scale ML model trained on broad and diverse data, at scale, mainly with self-supervised learning objectives, designed to be
adaptable to a wide range of downstream tasks with “minimal” fine-tuning

« |In general: training on text (e.g. web, papers), audio, video, code, images, math, structured data, ..

A foundation model for fundamental physics (LPM)?

e Training on large and diverse datasets within a given scientific domain

« In HEP: detector-level raw data, simulation-level data, reco-level data, analysis-level papers/plots/logbooks/docs, metadata, ..

* + transfer learning (minimal fine-tuning) + many parameters + multipurpose + some capability not explicitly included during training..

Large Physics Models: Towards a collaborative
approach with Large Language Models and
Foundation Models

Kristian G. Barman*!, Sascha Caron*?, Emily Sullivan®, Henk W.
de Regt?, Roberto Ruiz de Austri®, Mieke Boon®, Michael Farber’,
Stefan Frose®, Faegheh Hasibi?, Andreas Ipp!'°, Rukshak Kapoor!!,
Gregor Kasieczka'?, Daniel Kostié¢'®, Michael Kramer'?, Tobias
Golling!', Luis G. Lopez'®, Jesus Marco!”, Sydney Otten!'®!”, Pawel

Pawlowski!, Pietro Vischia?’, Erik Weber!, and Christoph
Weniger?!

arXiv:2501.05382

PROs

Tailored to physics tasks and structures

Scaling to complex inference across simulation, data and
theory

Shared infrastructure = scientific collaboration at scale

Potential to enhance discovery, reproducibility, and
understanding

Can be open, not in the hand of companies

Prototype for other fields of science

37

CON:is:

High cost: compute, data, engineering,
manpower, money

Epistemic opacity: hard to interpret latent
space reasoning

risk of premature hype without careful testing

risk of “dead of arrival” (obsolete before
completion)

risk of being less useful / capable

D. Bonacorsi
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PN . Theoretical physics Particle physics . Nuclear physics
ting mathematical frameworks 1o predict Unlocking the secrets of the tiniest building \ Studying atomic nuclei to understand the
blocks of the universe forces that power stars and shape the

elements around us

Gravitational waves el  COosmology

Explornng COsSmMIC rays, neutnnos, and dark Listening 1o the rnipples in spacetime 1o , : Investigating the origins, evolution, and
matter 10 reveal the universe s mystenes witness the most violent cosmic events ultimate fate of the universe on the grandest

scales
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@ E u CAI F Home Activities Members How to join Contact

- European Coalition for Al
in Fundamental Pnysics

>
i
-

“UCAIFCon 2025 "

;s June 16 - 20, Sardinia




FuCAIF + friends outputs:
12 Al recommendations

e Strategic White Paper on Al Infrastructure for Particle, Nuclear, and
Astroparticle Physics: Insights from JENA and EuCAIF

On arxiv: 2503.14192 [astro-ph.IM] (WG4+ others)

[30/40] Should we collaborate moreii...

30/40] Should we collaborate Strategic White Paper on Al Infrastructure for
b e 1 Particle, Nuclear, and Astroparticle Physics: Insights
arge-scale ML models (e.qg.

foundation models) for physics? from JENA and EUCA'F

Sascha Caron, ®? Andreas lpp, ¢ Gert Aarts,? Gabor Bir6,>/ Daniele Bonacorsi,%"
Elena Cuoco,?" Caterina Doglioni,” Tommaso Dorigo,”* Julidn Garcia Pardinas,’
Stefano Giagu,”™ Tobias Golling,” Lukas Heinrich,’ Ik Siong Heng,” Paula Gina Isar,?
Karolos Potamianos,” Liliana Teodorescu,®* John Veitch,” Pietro Vischia,! Christoph
Weniger"

=»Survey + the 12 recommendations have been submitted as input to the European Strategy for Particle Physics

40 [ Credits: Sasha Caron | D. Bonacorsi



A

(my personal) reorganisation of the quoted recommendations ~ [NFN

N

Scalable Al

Strateqic
7 Infrastructure From R&D to

Coordination

Production with
MLOps
nterdisciolinar Centralised GPU-based facilities vs. tederated/
pinary hybrid HPC tailored tfor Al workloads
Collaboration
Invest in shared data platforms, and tools to Scientitic LLMs &
support distributed training and inference Foundation Models

Ensure long-term sustainability and collaboration

Training and Industry through structured, community-driven initiatives

Collaboration

Benchmarks &

Reusability
FAIR Principles &

Open Science Sustainable Al

Practices
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. | A
(my personal) reorganisation of the quoted recommendations  /NFN

C
~
From R&D to

Production with
MLOps

Strategic Scalable Al
Coordination Infrastructure

Mature Al prototypes must get funding ana
Interdisciplinary support to become production-ready tools

Collaboration

Establish dedicated MLOps personnel L
dedicated to model deployment, Scientific LLMs &
reproducibility, and integration into large- Foundation Models
scale physics workflows

Training and Industry

. Promote standardisation of tools, APIls, and
Collaboration

ifecycle management across the community

Benchmarks &

Reusability
FAIR Principles &

Open Science Sustainable Al

Practices

42 D. Bonacorsi



Strategic
Coordination

Interdisciplinary
Collaboration

Training and Industry
Collaboration

FAIR Principles &
Open Science

(my personal) reorganisation of the quoted recommendations

Scalable Al
Infrastructure

Invest in science-focused large language
models.

Train foundation models using real and

synthetic physics data, incorporating domain
knowledge

Govern the use of general-purpose commercial
models w.r.t alternatives that prioritise

transparency, automation, and interpretability

in model development and evaluation

Sustainable Al
Practices

43

A

IN-N
C
From R&D to
Production with
MLOps

)

Scientific LLMs &
Foundation Models

Benchmarks &
Reusability

D. Bonacorsi



A

(my personal) reorganisation of the quoted recommendations ~ [NFN
Strategic Scalable Al
Coordination Infrastructure From R&D to
Production with
MLOps

Interdisciplinary

| Create standardised, extensible benchmarks for
Collaboration

key physics ML tasks (e.g., classification,
tracking, ..) Scientitic LLMs &

Foundation Models
Encourage community-wide model sharing to

Training and Industry enhance reproducibility and innovation

Collaboration

/~ Benchmarks &
Reusability

FAIR Principles &

Open Science Sustainable Al

Practices
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A

. (my personal) reorganisation of the quoted recommendations ¥/~
Strateqic Scalable Al
Coordingtion Infrastructure From R&D to
Production with
MLOps

From red-Al to green(er)-Al
Interdisciplinary

Collaboration Promote community awareness of carbon

footprint and a culture of monitoring and
mitigating environmental impact of large models

Scientific LLMs &
Foundation Models

Coordinate with HPC centres towards use of
energy-efficient hardware and scheduling, and
encourage optimisation of software frameworks
and energy use in training

Training and Industry
Collaboration

Benchmarks &
Reusability

FAIR Principles & o

Open Science Sustainable Al

Practices
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A

~ (my personal) reorganisation of the quoted recommendations INFN
Strateqic Scalable Al
Coordingtion Infrastructure From R&D to
Production with
MLOps
Integrate FAIR (Findable, Accessible,
Interdisciplinary Interoperable, Reusable) principles as standards
Collaboration into publishing and research practices, and

develop tools to simplity their adoption Scientific LLMs &

Incentivise FAIR-compliant work in funding Foundation Models

o decisions and career advancement, promote
Training and Industry  open science and data sharing through training
Collaboration and policy alignment.

Benchmarks &

Q Reusability
FAIR Principles

& Open Science Sugcalnqb\e Al
ractices

40 D. Bonacorsi




A

(my personal) reorganisation of the quoted recommendations ~ [NFN
Strategic Scalable Al i .
inati Infrastructure rom o
~oordination Production with
MLOps

Interdisciplinary
Collaboration

4

Training and Industry
Collaboration

FAIR Principles &
Open Science

Ramp up in hands-on Al training courses,
summer schools, etc tailored to physicists and
researchers, both newcomers and upskilling,
that cover topics beyond “traditional”, i.e.
include in curricula reproducibility, FAIR
orinciples, MLOps, Al infrastructures, etc

Scientific LLMs &
Foundation Models

Partner with industry for co-hosted events,
internships, specific trainings, even tool
development

Benchmarks &
Reusability

Sustainable Al
Practices
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A

(my personal) reorganisation of the quoted recommendations ~ [NFN
Stratedic Scalable Al
Coordingtign Infrastructure From R&D tp
Production with
MLOps

g

\f§ L aunch goal-oriented collaborative efforts
Interdisciplinary bringing together physicists, ML researchers,

Collaboration HPC experts, engineers and foster mutual

learning,.

Scientific LLMs &

Create research programs involving physicists, Foundation Models
Al experts, HPC engineers, etc.

o Enable cross-domain innovation via shared
Training anad Industry platforms and open source.

Collaboration

Benchmarks &

Reusability
FAIR Principles &

Open Science Sustainable Al

Practices
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A

(my personal) reorganisation of the quoted recommendations ~ [NFN
) - Scalable Al
/C Stra’gegl.c Infrastructure From R&D to
oordination . .
Production with
MLOps
Interdisciplinary Form a permanent structure to
Collaboration coordinate Al strategy in fundamental

physics. Scientific LLMs &

- ion Model
Use initiatives like EUCAIF as oundation Models

o governance models?
Training and Industry

Collaboration

Benchmarks &

Reusability
FAIR Principles &

Open Science Sustainable Al

Practices

7 D. Bonacorsi



