
Advanced Tracking Analysis in
Space Experiments with Graph

Neural Networks

F. Cuna, M.Bossa, F. Gargano, N. M.
Mazziotta

Workshop sul calcolo nell'INFN

1

OUTLINE

Our work aims to develop robust AI- driven

algorithms for space experiments capable of

handling real-world experimental data.

• Test beam dataset as test bench for the AI

tracking algorithm

• The Graph Neural Network (GNN)

• The application to the HERD experiment

2Workshop sul calcolo nell'INFN

A range of models inspired by computer vision applications were investigated, which operated on data from tracking detectors in
a format resembling images.
→ Promising but limited by the high dimensionality and sparsity of the data

Tracking data are naturally represented as graph by identifying hits as nodes and tracks segments as (in general) directed
edges.
→ Geometric deep learning approach.

We implemented an algorithm which exploits the potentials of the Graph Neural Networks (GNN), a subset of GDL algorithm, for
the task of track reconstruction in a model of space experiment.

Beam test set up at CERN T10
The set up has been simulated by using Geant4 toolkit.
Zirettino has not been included for now.
A beam of π- of 10 GeV/c with inclined tracks of 0.5 deg has been simulated.
M0,M1,M2,M3 are fiber tracking layers:
• Fibers are 10 cm long with a radius of 0,25 mm.
• Strip pitch read-out: 0.25 mm
M2 consists of WLS with a 100mm x 100mm x 3mm LYSO crystal in
between.

The simulation includes the LYSO crystal but considers the fiber as the
scintillating ones.
Random noise hits have been added to simulate properly the electronic
noise, spurious hits related to low-energy particles in orbit, backscattering
hits…

Beam test setup for developing AI tracking algorithm

3Workshop sul calcolo nell'INFN

π- @ 10 GeV

Passive material

A graph represents the relations (edges or links) between a collection of entities (nodes).
Graph Neural Networks (GNNs) are a class of deep learning models that are designed to operate on graph-structured data.
They have shown remarkable success in tasks such as node classification, link prediction, and graph classification.

The key idea behind GNNs is to learn representations for nodes and edges in a graph by aggregating information from their
local neighborhood.

• A Gentle Introduction to Graph Neural
Networks, https://distill.pub/2021/gnn-
intro/

• Hands-On Graph Neural Networks Using
Python, M.Labonne, Packt Publishing Ltd.

A GNN consists of a number of layers, each of
which updates the representation of each node
based on its local neighborhood.

The representation of each node is typically a
low-dimensional vector that encodes the node’s
properties and its relationships with other nodes.

The key component of a GNN layer is the
aggregation function, which takes as input the
representations of a node’s neighbors and
produces a new representation for the node.

Brief review of the GNN architecture

4Workshop sul calcolo nell'INFN

https://distill.pub/2021/gnn-intro/
https://distill.pub/2021/gnn-intro/

• Simulation of the data set

• Clustering

• Graph construction

• GNN-based tracking algorithm, which consists of a GNN classification of noise clusters from signal clusters and a

final linear fit to retrieve the track parameter (angular coefficient and intercept)

Graph Neural Network for tracks reconstruction
The journey to the algorithm

Data
simulations

Clustering

Graph
construction

GNN tracking
algorithm

5Workshop sul calcolo nell'INFN

‘What do your neighbors say
about this track?’

 That’s what a GNN does : it
listens locally to understand

globally

Node

Link

Class 0: noise clusters
Class 1: signal clusters

The hits inside tracking layers are clustered by applying a traditional clustering algorithm, where neighboring silicon strips

with activated signals are grouped together and the barycenter of charge is calculated.

Starting by the clusters, data have been organized in a graph format, where nodes are represented by the clusters position

and links by the inter layer connections between clusters.

Preprocessing phase: from row data to a graph
structure

6Workshop sul calcolo nell'INFN

SageConv algorithm:
• 4 million event,
• 550 epochs,
• lr =0.0001,
• 7 GNN layer
• Mean aggregation function

The SageConv architecture is a variant of GNN architecture.
The aggregation function takes into account the degrees of the nodes in the neighborhood.
SageConv uses the average of the representations of the neighbors, normalized by the degree of each neighbor, as the aggregate
representation.
This allows it to capture more fine-grained information about the structure of the graph.

SageConv algorithm: the GNN architecture

CV 5 fold accuracy recall precision

train data 0.972±0.007 0.968 ± 0.009 0.9902 ± 0.0014

validation data 0.972±0.007 0.968 ± 0.009 0.9862±0.0024

7Workshop sul calcolo nell'INFN

Event display: the tracks identification

8Workshop sul calcolo nell'INFN

The traditional tracking pipeline minimizes the chi-square between the clusters inside each events, then fit the track with a linear
function.
The AI pipeline performs the selection of good hits and fit the track with the same linear function.

To process 5000 tracks the analytical pipeline takes 102 min, the AI pipeline takes 240 ms!

The SageConv algorithm: comparison with traditional
pipeline of the director cosines

Spartan project with Nuclear Instrument

We are developing an “on-board tracker” by implementing the trained network on low consumption GPUs.

The AI-tracker will work as a filter which:

 Reduces the amount of data

 Performs a first rough tracking

9Workshop sul calcolo nell'INFN

To test our algorithm on more complex data, we decided to analyze HERD simulated data.
The HERD (High Energy cosmic-Radiation Detection) experiment is a space mission designed to directly detect cosmic rays,
and it is set to be installed on the Chinese Space Station (CSS) in 2028.
The main goals of the mission:
• enhance our understanding of high-energy cosmic rays,
• search for indirect signals of dark matter,
• probe sources of high-energy particles such as protons, electrons, and photons.

Fiber Tracker (FIT):
• Surrounds CALO on top and

sides.
• Particle tracking and charge

measurements
• 5 sectors, each with 7 X-Y

scintillating fiber layers.
• Provides 7 precise position

measurements.

The HERD simulation dataset
The full dataset, generated using the custom
HerdSoftware simulation framework, consists
of 4,300,000 events, equally divided into
2,150,000 electron events and 2,150,000
proton events.

Both event sets are simulated within a power-
law energy spectrum E-1, spanning an energy
range from 100 GeV to 1 TeV, and are
distributed within a spherical region
surrounding the HERD detector.

Electrons set was used for the tracking
algorithm.

HERD EXPERIMENT: more complex use case

10Workshop sul calcolo nell'INFN

Data are highly imbalanced, since there are many bacskattering
tracks originating from the calorimeter, which interfere with the
correct identification of the primary particle's trajectory .

To mitigate the imbalance:
1. Clustering algorithm
2. Cut of noise clusters “far away” from the primary track
3. Adding simulated events without calorimeter

Preprocessing phase: prepare data for the GNN

xz view yz view xy view

11Workshop sul calcolo nell'INFN

Advantages and Requirements in Time Resolving Tracking for Astroparticle
Experiments in Space, M.Duranti et al.

The GNN algorithm: distributed
training

12Workshop sul calcolo nell'INFN

The training for these networks requires a lot of time, since graphs are quite dense, this
requires new strategy to enhance time consuming!

Solution: distributed training!

For data parallelism, the DistributedDataParallel module wraps any PyTorch model and handles partitioning of

data across devices as well as gradient aggregation automatically.

The same model replica handles a
different mini-batch of input data on
each device.
Their parameter updates are
aggregated.

Workshop sul calcolo nell'INFN 13

The GNN algorithm: distributed training
and hyperparameter tuning

Hyperparameter tuning is the secret sauce that turns a decent model into a production powerhouse.
But…it is a time-consuming, computationally heavy task.

Solution: Ray Tune
• it conducts large-scale hyperparameter searches efficiently, saving time and computational resources.
• it comes equipped with advanced search algorithms (like Bayesian optimization and Population-Based Training)

and schedulers designed for scalability.

How it works
1) Setup the model
2) Creating the Training Function
3) Setting Up Ray Tune Search Space for Hyperparameters
4) Creating the Ray Tune-Compatible Training Function
5) Choosing and Implementing a Scheduler
6) Using Search Algorithms for Improved Efficiency
7) Configuring Ray Tune for a Distributed Setup

Configure for multi-node with distributed Ray setup
ray.init(address="auto") # Use the head node's address here

Define Ray Tune setup for multi-GPU use
tuner = tune.Tuner(
train_model,
param_space=config,
tune_config=tune.TuneConfig(
resources_per_trial={"cpu": 4, "gpu": 3}, # 3 GPUs per trial
num_samples=100
)
)
tuner.fit()

Workshop sul calcolo nell'INFN 14

To enhance the time consuming we performed the distributing training
by using:
• the JupyterLab instance with 3 A100 NVIDIA GPUs
• the Leonardo Hub instance with 4 A100 NVIDIA GPUs

• SageConv
architecture

• 18 layers
• Mean aggregation

function

• 128 hidden size
• Adam optimizer
• Binary cross entropy

loss function

4,5 million simulated track data
75% train-15% validation-10% test

Tools for GNN training algorithm

Thanks to G. Vino, G. Donvito and all Recas
people for their support !
Thaks to spoke0/spoke3/datacloud support for
Leonardo Hub!

Main Results: GNN algorithm evaluation

Metrics Values

Accuracy 97.80%

Recall 97.65%

Precision 97.81%

F1-score 97.73%

ROC AUC 99.84%

15Workshop sul calcolo nell'INFN

Main Results: events display

16Workshop sul calcolo nell'INFN

https://ieeexplore.ieee.org/xpl/conhome/10974743/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10974743/proceeding

Conclusions and next steps

What can we do???

1) Find the precise validity limits
2) Incorporate additional data from other subdetector (heterogeneous graph neural network and more

sophisticated data preprocessing)

No worries, we’ll handle it! Stay tuned!

17Workshop sul calcolo nell'INFN

Progetto ICSC Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing - CN00000013 PNRR
Missione 4, Componente 2, Investimento 1.4 - CUP I53C21000340006 . Progetto ICSC Centro Nazionale di Ricerca in High-Performance
Computing, Big Data and Quantum Computing - CN00000013 PNRR Missione 4, Componente 2, Investimento 1.4 - CUP
I53C21000340006 .

The GNN shows promising performance for tracking tasks compared to traditional analytical approaches, both in
terms of accuracy and time efficiency.

Spoiler alert: the perfect classifier? It doesn’t exist!

The algorithm's validity is limited beyond a certain energy range!
Between 100 TeV and 1 PeV, the information from the FIT alone is insufficient to distinguish between
backscattering and primary tracks.

Thank
you

18Workshop sul calcolo nell'INFN

19

BACKUP

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

GAT algorithm
Graph Attention Networks (GATs) are a variant of Graph Neural Networks (GNNs) that leverage attention mechanisms for feature learning on
graphs.
In standard GNNs, such as Graph Convolutional Networks (GCNs), the feature update of a node is typically the average of the features of its
neighbors. This approach does not differentiate between the contributions of different neighbors.
GATs, on the other hand, assign an attention coefficient to each neighbor, indicating the importance of that neighbor’s features for the feature
update of the node. These coefficients are computed using a shared self-attention mechanism, which calculates an attention score for each pair of
nodes. The scores are then normalized across each node’s neighborhood using a SoftMax function.

600 epochs
2,6 million events
learning rate: 1e-4

CV 5 fold accuracy recall precision

train data 0.941± 0.024 0.926 ± 0.033 0.9860 ± 0.0038

validation data 0.941 ± 0.024 0.926 ± 0.033 0.9859 ± 0.0038

Performances on test data
Accuracy: 0.9557
Recall: 0.9493
Precision: 0.9849

20

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

GCN algorithm
The general idea of GCN is to apply convolution over a graph. Instead of having a 2-D array as input as in the classical CNN algorithm,
GCN takes a graph as an input

Algorithm performances:
1500 epochs
2 million events
lr 5e-4
Accuracy: 0,8662
Recall: 0,8326
Precision: 0,9663

21

	Diapositiva numero 1
	Diapositiva numero 2
	Diapositiva numero 3
	Diapositiva numero 4
	Diapositiva numero 5
	Diapositiva numero 6
	Diapositiva numero 7
	Diapositiva numero 8
	Diapositiva numero 9
	Diapositiva numero 10
	Diapositiva numero 11
	Diapositiva numero 12
	Diapositiva numero 13
	Diapositiva numero 14
	Diapositiva numero 15
	Diapositiva numero 16
	Diapositiva numero 17
	Diapositiva numero 18
	Diapositiva numero 19
	Diapositiva numero 20
	Diapositiva numero 21

