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▪ Sparse, distributed information encoding through spikes

▪ Asynchronous, event-based computation relying on spikes time

▪ Local learning rules
▪ No costly back-propagation

Sze et al, IEEE Custom Integrated Circuits Conference (2017)

High energy efficiency, real-time processing, 
incremental learning

Traditional Von Neuman computing. The cost of data movement

▪ In-Memory Computing. Co-location of processing and storage 

Synapse

Neuron

Processing Storage

Bus

Brain. Closely tied processing-storage,
highly parallel

Neuromorphic Computing - Why mimic the Brain?
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Spiking Neural Networks Applications
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▪ Any input can be encoded as 
spikes

▪ Particularly effective when 
input is already sparse, event-
based or is acquired as a time 
sequence

▪ Identify interesting applications in physics  
(particle physics sensors, anomaly detection,  event 
cameras, time series data ...)

SNN

Si Pixel Sensor

t

π
+

from snnTorch

Charge

Energy efficiency, 
Real-time learning

Ideal for edge Computing, on-sensor 
processing, dataflow applications



What we are working on

Workshop sul Calcolo nell'INFN       26-30 May  2025

Edge and dataflow applications in 
physics experiments

▪ Accelerator platform for Spiking NN 

Our targetMulti-node FPGA system

▪ Modular, scalable and reconfigurable 
neuromorphic architecture
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What we are working on

Workshop sul Calcolo nell'INFN       26-30 May  2025

Edge and dataflow applications in 
physics experiments

▪ Accelerator platform for Spiking NN 

▪ Neuroscience simulator
for specific use cases

Our target

Explore application of novel 
bio-inspired AI 

Multi-node FPGA system

▪ Deterministic, reproducible results 

▪ Modular, scalable and reconfigurable 
neuromorphic architecture

▪ Support for multi-compartment neuron models

▪ Support for biologically realistic neuron 
dynamics
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What we are working on
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Workshop sul Calcolo nell'INFN       26-30 May  2025

Multi-node FPGA system

▪ Deterministic, reproducible results 

▪ Modular, scalable and reconfigurable 
neuromorphic architecture

▪ Support for biologically realistic neuron 
dynamics

Simplified two-compartment neuron 
with calcium dynamics capturing brain-
state specific apical-amplification, -
isolation and –drive Pastorelli et Al. 2025

Focus on

▪ Support for multi-compartment neuron models

Edge and dataflow applications in 
physics experiments

▪ Accelerator platform for Spiking NN 

▪ Neuroscience simulator
for specific use cases

Our target

Explore application of novel 
bio-inspired AI 
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Architecture Design – Workflow and Tools
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▪ Catapult High Level Synthesis (HLS) 
▪ Direct transition from high-level simulator to RTL
▪ Benefits: high level language, software emulation mode, early 

estimates on latency/throughput and FPGA-resources consumption 
→ relatively easy validation, reprogrammability, and debug

▪ Catapult HLS, over Vitis HLS
▪ Supports SystemC Synthesis 
▪ Vitis HLS C++ Software Emulation is not intuitevily applicable 

to a multi-FPGA simulation model
▪ SystemC RTL-like flexibility is useful to model architectural details 

such as synchronization and feedback between hardware blocks

High level SystemC
simulator

▪ SystemC (C++ based event-driven) architecture simulator
▪ Validate and test architecture functionality
▪ Modelling multi-FPGAs communication delays
▪ SystemC allows higher or lower levels of abstraction (TLM, RTL-like)

FPGA

RTL

FPGA bitstream

Catapult HLS

Workshop sul Calcolo nell'INFN       26-30 May  2025



Architecture Design
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CORE

▪ Direct network of interconnected FPGAs 
▪ Baseline topology assumption: 3D Torus
▪ Relying on internal INFN Communication IP for low-

latency inter-node and intra-node communication (< 1 
us for up to 1 kB packets)
▪ Node = FPGA
▪ Inter-node and intra-node communication between 

computing tasks (                  )

▪ NEURO-CORE
▪ Core architectural component, containing a set of 

neurons
▪ Exchanges spikes and barrier synchronization 

messages with other Neuro-Cores through the INFN 
Comm.IP

▪ Developed with High Level Synthesis (HLS) tools
▪ Switching to lower level VHDL if needed for 

performance of critical blocks
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Architecture Design
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neuroAIx-Framework: design of future neuroscience simulation 
systems exhibiting execution of the cortical microcircuit model 
20× faster than biological real-time (2023)
K.Kauth et al. Inspiration for our first design
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Modular architecture
▪ Neuro-Core contains Workers (Wj)
▪ Workers contain neurons

Architecture Design – Neuro-Core

Workshop sul Calcolo nell'INFN       26-30 May  2025

256b
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Modular architecture
▪ Neuro-Core contains Workers (Wj)
▪ Workers contain neurons (n) 

– each with multiple associated neuro-
receptors (r) to model biologically realistic 
dynamics and multi-compartments
 

Workshop sul Calcolo nell'INFN       26-30 May  2025

256b

Architecture Design – Neuro-Core
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Modular architecture
▪ Neuro-Core contains Workers (Wj)
▪ Workers contain neurons (n)

Reconfigurable
▪ Optimal Bit-filed sizes and parameters (Nr of 

Workers, Nr of Neurons per Worker) will 
depend on target application

▪ Synaptic Memory can be implemented as off-
chip DRAM or local BRAM, according to size of 
target network connectome

Workshop sul Calcolo nell'INFN       26-30 May  2025

256b

Architecture Design – Neuro-Core
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Modular architecture
▪ Neuro-Core contains Workers (Wj)
▪ Workers contain neurons (n)

Reconfigurable
▪ Optimal Bit-filed sizes and parameters (Nr of 

Workers, Nr of Neurons per Worker) will 
depend on target application

▪ Synaptic Memory can be implemented as off-
chip DRAM or local BRAM, according to size 
of target network connectome

Workshop sul Calcolo nell'INFN       26-30 May  2025

256b

Weights and delays data

Architecture Design – Neuro-Core
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Spike input

▪ Characterized by ID of pre-synaptic neuron 
who sent it
Address Event Representation (AER)

Workshop sul Calcolo nell'INFN       26-30 May  2025

Dataflow
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Memory Look-Up and distribution

▪ Memory Look-Up according to IDpre

▪ Extract the weight and delay of 
synapses connecting the IDpre neuron to 
the post-synaptic neurons on this core

Workshop sul Calcolo nell'INFN       26-30 May  2025

Dataflow
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Memory Look-Up and distribution

▪ Memory Look-Up according to IDpre

▪ Extract the weight and delay of 
synapses connecting the IDpre neuron to 
the post-synaptic neurons on this core

▪ Distribute this data to the post-synaptic 
neurons
▪ Multiple out lanes to increase 

throughput

Workshop sul Calcolo nell'INFN       26-30 May  2025

Dataflow
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Memory Look-Up and distribution

▪ Memory Look-Up according to IDpre

▪ Extract the weight and delay of 
synapses connecting the IDpre neuron to 
the post-synaptic neurons on this core

▪ Distribute this data to the post-synaptic 
neurons
▪ Multiple out lanes to increase 

throughput

▪ Load balancing Round Robin 
distribution to local Workers 
containing post-synaptic neurons

Dataflow
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▪ When spike synaptic data 
(weight,delay) reaches here, 
the weight gets collocated in 
ring buffer according to delay, 
to be processed at a later time,
mimicking synaptic delays

▪ Summed to previous spikes’ 
weights already in that time 
slot, making for an aggregate 
weight

Dataflow

Workshop sul Calcolo nell'INFN       26-30 May  2025
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▪ When all pre-synaptic spikes have 
been received

Worker can start Neurons 
Dynamics
Currently Leaky Integrate and Fire with delta shaped 
post synaptic currents (iaf_psc_delta from NEST 
simulator)

HLS allows agile study of different neuron models

Dataflow
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Spike emission

▪ Broadcast to all Neuro-Cores

Dataflow

Workshop sul Calcolo nell'INFN       26-30 May  2025



Functional Validation
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C++ simulator, with a Python 
interface, implementing a large 
number of models 
of biological neurons and synapses 

▪ Comparing simulation results of our system with the
enstablished NEST simulator on a common network 
testcase: same neuron model, connectivity, 
external input spike trains.

▪ Bit-exact agreement expected for software-simulator but not for final hardware 
implementation for multiple reasons, e.g.: 
▪ 64-bit floating point arithmetic in NEST vs fixed-point 

numeric representation in our system;
currently 32-bit, but evaluating smaller precision.

▪ Neuron dynamics implementation: differential equations solver methods suited 
for software vs hardware-optimized methods

▪ MPI communication vs custom communication



1 Core – 16 Workers AIGOR SystemC Simulator Raster Plot Floating Point 32 bit

Functional Validation
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Brunel-style balanced random network 
with Poisson external spike input 

0.280

Inhibi
tory
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Poisson Gen 
rate = 580 Hz

p = 0.267

p = 0.280
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p = 1

p = 1

Wexc = 2 mV  
Winh = 8 mV

Test network
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Functional Validation

NEST
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NEST Simulator Raster Plot (4000 neurons)

Studying effects of reduced fixed-point 
representation, using the SystemC RTL-
like bit-accurate simulator

1 Core – 16 Workers AIGOR SystemC Simulator Raster Plot Fixed Point <32-tot, 12-int> bit



Studying effects of reduced fixed-point 
representation, using the SystemC RTL-
like bit-accurate simulator

Neuron mean 
Inter-spike Interval (ISI) 
difference FP – FXP32

Earth Mover’s Distance (or 

Wasserstein Distance)
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and     : CDFs of     and 

and    : spike-time prob
             distribution

EMD (ms)

Spike-train distance metrics



Single Neuro-

Core
LUT FF DSP BRAM

Synaptic Mem 

requires

16 n (4 W, 4 n x W) 13.5k

0.40%

21.6k

0.32%

0

0.00%

2

0.04%

16 Kb

64 n (4 W, 16 n x 

W)

21.1k 

0.63%

31.4k

0.47%

0

0.00%

4

0.08%

197 Kb

512 n (4 W, 128 n x 

W)

75.5k

2.25%

30.6k

0.45%

0

0.00%

16

0.32%

4 Mb

2048 n (32 W, 64 n 

x W)

764.0k

22.7%

197.3k

2.93%

2

0.01%

96

1.94%
84 Mb

2048 n (16 W, 128 n 

x W)

708.5k

21.1%

106.9k

1.59%

34

0.24%

64

1.30%
84 Mb

W = workers

FPGA Occupancy Single Neuro-core on a Versal VPK-180

n = neurons

▪ Currently validating complete hardware testbed, with a Neuro-Core + a Poisson input Core on a single FPGA 
      Next steps
▪ Begin deployment of a target application, starting with a single FPGA
▪ Optimize fixed-point representation, architecture parameters and neuron model alongside the target application 

performance
▪ Validate multi-FPGA design

VPK-180 Total PL mem 994 Mb 
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