
Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Enabling performance insights: generating telemetry from software 
services developed at INFN-CNAF

Jacopo Gasparetto (INFN–CNAF)

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Workshop sul calcolo nell’INFN | La Biodola 26-30 Maggio 2025



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Outline

▪ Introduction to OpenTelemetry
▪ Telemetry data: Traces, Metrics and Logs

▪ Instrumentation

▪ Collecting telemetry data

▪ Case study: Otello

▪ Examples at INFN-CNAF

▪ Conclusions



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Introduction to telemetry: OpenTelemetry

From the official documentation

OpenTelemetry is:

● An observability framework and toolkit designed to create and manage telemetry 

data such as traces, metrics, and logs.

● Not an observability backend like Jaeger, Prometheus, or other commercial vendors.

● …

OpenTelemetry is a collection of components that provide an SDK (Software Development Kit) 

to enrich an existing code base to emit telemetry data.

OpenTelemetry does not store any data per se and some kind of database(s) is(are) needed

https://opentelemetry.io/docs/what-is-opentelemetry/


Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Telemetry data: Traces, Metrics and Logs

Telemetry data is generally grouped in three main entities, or signals: traces, metrics and logs.

● traces: represent the path of a request through an application. They are made up by spans that represent the 

single units of work or operation. Each span has start and end timestamps, a name, a parent id (if child of 

another span) and attributes. A typical trace/span information answers “how much time this function took to 

execute?” and “what is the runtime call stack at this endpoint?”

● metrics: represent the measurement emitted by a meter. Meters can typically be monotonic/non-monotonic 

counters, histograms and gauges. In the physical world “3 kWh at 2025-02-10 12:00” is the metric produced by 

the electricity meter (monotonic) of our house. An example could be: “how many requests we received so far 

at each endpoint?”

● logs: time-stamped text record, either structured or unstructured, with optional metadata. We do not deal with 

telemetry logs, as they could easily be written with a simple access/error logger

https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/traces/#spans


Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

OpenTelemetry: Instrumentation

● The process of augmenting a codebase to emit telemetry data is called instrumentation. This 

means that we are adding code to our existing code.

● OpenTelemetry has SDKs for basically every language on the market.

● For some high level languages, such has JavaScript/TypeScript, OpenTelemetry offers the so called 

Zero-code Instrumentation feature that enables telemetry with just a couple of lines of 

configuration.

● For other languages such as C++, there is no automatic instrumentation and the codebase must be 

manually instrumented at each function of interest and it is up to the developer to choose what 

they want to monitor.

● A combined approach of manual and automatic instrumentation is always possible

https://opentelemetry.io/docs/zero-code/


Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Propagation

traceparent

Client NGINX OPA API Remote Database

Headers injection

Headers
injection

Headers injection

Headers injection

Client K8S Ingress 
Controller API OPA Remote Database

Headers injection
Headers injection

Headers injection

Headers
injection

Response paths not shown in figure

Context propagation is performed by injecting headers by a service in the incoming HTTP request forwarded to the next 
service



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Collect telemetry data

● An application can be composed of several components (micro-services), each sending telemetry 

data from a different endpoint but still logically representing the same application. For example, a 

trace with its root span can be opened by a NGINX reverse proxy that proxies the request to an API. 

It is important to reconstruct those traces to understand the complete path of the request.

● An application can have manyfold replicas, each sending telemetry data.

● Due to the nature of the data, different signals (traces, metrics and logs) must be stored in different 

kind of databases. They can also be sent through different protocols (HTTP, gRPC, kafka, ect.).

● OpenTelemetry offers a service called OpenTelemetry Collector which receives, processes and then 

exports telemetry data to the appropriate backends.

https://opentelemetry.io/docs/collector/


Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Otello: collecting telemetry data case study
● For our case study, we choose Prometheus as metrics backend and Grafana Tempo as traces backend
● Grafana is then used as web application to visualize KPIs, stats and plots
● A particular useful feature of Grafana Tempo is its built-in metrics generator which produces new metrics 

from the traces, such as the total count of requests and the latency histogram
● Otello is the prototype stack of services developed at INFN-CNAF used to collect telemetry data 

produced by software developed by the Software Development team

INDIGO IAM

StoRM Tape

Other services

OpenTelemetry 
Collector GrafanaGrafana Tempo

Grafana Loki

traces, metrics and logs

traces, metrics and logs

metrics

traces

logs

metrics

traces

logs

Metrics generated from traces

Prometheus

https://prometheus.io
https://grafana.com/docs/tempo/latest/
https://grafana.com/grafana/


Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Otello: collecting telemetry data case study
Currently it is implemented as a docker compose composed by the following services:

● NGINX (reverse proxy)
● OpenTelemetry Collector (HTTP + gRPC)
● Grafana Tempo (traces database)
● Prometheus (metrics database)
● Grafana (data visualization) with custom dashboards

Website: https://otello.cloud.cnaf.infn.it (available only inside CNAF network)
Respository: https://baltig.infn.it/cnafsd/opentelemetry

https://otello.cloud.cnaf.infn.it
https://baltig.infn.it/cnafsd/opentelemetry


Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Instrumented software at INFN-CNAF

● StoRM Tape (C++)

● StoRM WebDAV (Java, testing)

● INDIGO IAM (Java, testing)

● New IAM Dashboard (Javascript)

● Data Cloud S3 webapp (Javascript)

https://baltig.infn.it/cnafsd/storm-tape
https://github.com/italiangrid/storm-webdav/pull/119
https://github.com/indigo-iam/iam
https://github.com/indigo-iam/iam-dashboard
https://baltig.infn.it/infn-cloud/webapp-rgw


Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

StoRM Tape



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

StoRM Tape



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

StoRM Tape



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

StoRM Tap



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

StoRM WebDAV



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

StoRM WebDAV



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

IAM Dashboard



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

IAM Dashboard



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

S3 WebUI



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

S3 WebUI



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

S3 WebUI



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Conclusions
▪ OpenTelemetry is a de-facto standard to produce telemetry data across a distributed 

system of any size.
▪ Tests (Otello) demonstrated that this technology is really promising for monitoring and 

debugging, especially to identify bottlenecks and unwanted path in our code.
▪ Even though Otello is experimental, StoRM Tape is already in production with 

OpenTelemetry support.
▪ The goal is to extend OpenTelemetry support to all software developed at INFN-CNAF, 

merging the Otello stack with the t1metria monitoring service.
▪ Proposal: integration of the OpenTelemetry support to software produced for DataCloud, 

perhaps integrating a stack similar to Otello and managed by WP1



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Backup



Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Propagation

● A request can travel across several distinct services, such as, for example, a reverse proxy (NGINX), 

an authorization engine (OPA), a REST API, a database (SQL), etc.

● OpenTelemetry fully supports the concept of Context Propagation as indicated by the W3C 

TraceContext specification, which “allows traces to build causal information about a system across 

services that are arbitrarily distributed across process and network boundaries”.

● This mechanism is generally established in web services using the HTTP headers traceparent 

and tracestate
● Spans are always emitted individually to the collector by the different services.

● Many third-party software, such as OPA, NGINX and K8S Ingress Controller, natively supports 

OpenTelemetry’s Context Propagation

https://opentelemetry.io/docs/concepts/context-propagation/
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/


Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Sampling

● The amount of telemetry data, especially traces, can be huge, and overhead at runtime can be 

non-negligible. “Sampling is one of the most effective ways to reduce the costs of observability 

without losing visibility” https://opentelemetry.io/docs/concepts/sampling.

● Sampling can be performed probabilistically, for example: “sample only 10% of the incoming 

requests” 

● Sampling can be controlled via ParentBasedSamplers that produce a span only if a parent 

span is detected.

● The two approaches can be combined. For example, the first service receiving the requests (e.g, 

NGINX) can decide to sample only a fraction of them, then the other services of the chain will 

sample or based on the presence or not of the parent span

https://opentelemetry.io/docs/concepts/sampling

